- 1. Use the extended Euclidean algorithm to calculate the gcd and write it as a linear combination:
 - (a) gcd $4 = 4 \cdot 12 1 \cdot 44$
 - (b) gcd $6 = -168 \cdot 20223 + 1681 \cdot 2022$
 - (c) $\gcd 19 = 17 \cdot 12445 38 \cdot 5567$,
 - (d) gcd $1 = -55 \cdot 233 + 89 \cdot 144$.
- 2. In general \overline{a} is a unit modulo m if and only if a is relatively prime to m. In this case use Euclid to write the gcd 1 as a linear combination 1 = xa + ym: then $xa \equiv 1 \pmod{m}$ so $x = a^{-1}$.
 - (a) No, 10 and 25 not relatively prime.
 - (b) Yes, by Euclid, inverse is $\overline{16}$.
 - (c) Yes, by Euclid, inverse is $\overline{23}$.
 - (d) No, 30 and 42 not relatively prime.
 - (e) Yes, by Euclid, inverse is $\overline{19}$.
 - (f) No, 32 and 42 not relatively prime.
- 3. Note that the order of any element modulo m divides $\varphi(m)$. We can then evaluate $a^{\varphi(m)/p}$ for primes p dividing $\varphi(m)$ to find the order. Also, if a has order n, then a^k has order $n/\gcd(n,k)$.
 - (a) Note $2^{12} \equiv 1$, but $2^6 \equiv -1$, $2^4 \equiv 3$ so 2 has order 12. Also $3^3 \equiv 1$ and $3^1 \equiv 3$ so 3 has order 3.
 - (b) Note $2^4 \equiv -1$ so $2^8 \equiv 1$ so 2 has order 8. Then $4 = 2^2$ has order $8/\gcd(2,8) = 4$ while $8 = 2^3$ has order $8/\gcd(3,8) = 8$.
 - (c) Note $2^4 \equiv 1$ but $2^2 \equiv 4$ so 2 has order 4. Then $4 = 2^2$ has order 2, while $8 = 2^3$ has order 4.
 - (d) Note $3^4 \equiv 1$ but $3^2 \equiv 9$ so 3 has order 4. Also $5^2 \equiv 9$ so $5^4 \equiv 1$ so 5 also has order 4. But $15 \equiv -1$ has order 2.
 - (e) Use successive squaring: note $5^2 \equiv 3$ so $5^4 \equiv 9$ and thus $5^5 \equiv 1$, so 5 has order 5.
 - (f) Note $2^2 \equiv 4$, $2^4 \equiv 16$, $2^8 \equiv -19$, $2^{16} \equiv -24$, so $2^5 \equiv 32$, $2^{10} \equiv -1$, and $2^{20} \equiv 1$. Thus, 2 has order 20. Then $4 = 2^2$ has order 10, $8 = 2^3$ has order 20, $16 = 2^4$ has order 5, and $32 = 2^5$ has order 4.
- 4. Here are answers with brief comments about the approach:
 - (a) By Euclid, gcd 8, lcm $256 \cdot 520/8$.
 - (b) By Euclid, gcd 3, lcm $921 \cdot 177/3$.
 - (c) The gcd has the min power in each exponent while the lcm has the max: gcd $2^3 3^2 5^4$, lcm $2^4 3^3 5^4 7 \cdot 11$.
 - (d) We have $\overline{4} + \overline{6} = \overline{10} = \overline{2}, \ \overline{4} \overline{6} = \overline{-2} = \overline{6}, \ \overline{4} \cdot \overline{6} = \overline{24} = \overline{0}.$
 - (e) By Euclid, we get $\overline{4}^{-1} \equiv \overline{18}, \overline{5}^{-1} \equiv \overline{57}, \overline{6}^{-1} \equiv \overline{12}$.
 - (f) Units are $\{1, 3, 5, 9, 11, 13\}$, zero divisors are $\{2, 4, 6, 7, 8, 10, 12\}$.
 - (g) Cancel 5 to get $n \equiv 24 \pmod{38}$.
 - (h) Cancel 2 to get $3n \equiv 5 \pmod{50}$, then multiply by $3^{-1} \equiv 17$ to get $n \equiv 35 \pmod{50}$.
 - (i) Plug in n = 3 + 20a to $n \equiv 4 \pmod{19}$ to get $n \equiv 23 \pmod{380}$.
 - (j) Plug in n = 7 + 14a to $n \equiv 2 \pmod{9}$ to get $n \equiv 119 \pmod{126}$.
 - (k) Since 11 is prime, we have $10! \equiv -1 \pmod{11}$ by Wilson's theorem.
 - (1) Since 47 is prime, we have $2^{47} \equiv 2 \pmod{47}$ by Fermat's little theorem.
 - (m) Since $\varphi(25) = 20$, we have $6^{20} \equiv 1 \pmod{25}$ by Euler's theorem.
 - (n) $\varphi(121) = \varphi(11^2) = (11^2 11) = 110$ and $\varphi(5^57^{10}) = (5^5 5^4)(7^{10} 7^9)$.
 - (o) 3 or 5, since they are the only elements with order 6 modulo 7.
 - (p) If $x = 0.1\overline{25}$ then $990x = 1000x 10x = 125.\overline{25} 1.\overline{25} = 124$, so x = 124/990.
 - (q) 10 has order 2 mod 11, so 7/11 has period 2.

- 5. Here are brief responses:
 - (a) The Caesar shift is insecure because it can be broken very easily by hand: it has only 26 possible decodings, which is easy to brute-force, and other methods like frequency analysis can break it even more efficiently.
 - (b) Finding the four decodings of a single Rabin ciphertext c does allow rapid factorization of the modulus: if the decodings are $\pm m$ and $\pm w$ then gcd(m + w, N) will be one of the prime factors of N. If Eve is able to obtain the four decodings of any single ciphertext, she can factor N: for this reason Rabin encryption is not suitable for modern use.
 - (c) It is generally believed that RSA encryption is difficult to break on a general message. Finding a general decryption exponent is essentially equivalent in most cases to calculating $\varphi(N)$ which as shown on the homework is equivalent to factoring N.
 - (d) Using a zero-knowledge protocol like the Rabin protocol described in class, where Peggy proves to an arbitrarily high probability that she knows the square root of a particular value s^2 modulo N = pq, will allow Peggy to convince Victor that she knows the secret s without revealing any information that makes s easily calculable.
 - (e) Using primality/compositeness tests like the Fermat test, the Lucas primality criterion, or Miller-Rabin, allow for rapid and accurate testing of primality even for very large integers.
 - (f) Among the various factorization algorithms discussed in class like trial division, Pollard p 1, Pollard ρ , and the sieving methods, none allows for extremely fast factorization of large integers (factoring integers more than 100 base-10 digits takes a huge amount of time and memory).
- 6. Here are brief outlines of each proof:
 - (a) Induct on *n* with base case n = 1. Inductive step: If $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$, then $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}} = 2 \frac{1}{2^n} + \frac{1}{2^{n+1}} = 2 \frac{1}{2^{n+1}}$ as required.
 - (b) Note $p|a \cdot a$, so since p is prime then p|a or p|a. Since the two conclusion statements are the same, we have p|a.
 - (c) If p is prime and $p|k^2$ and $p|(k+1)^2$ then by (b) we have p|k and p|(k+1) so that p|(k+1) k = 1, impossible.
 - (d) Suppose xy = 0. Then (ux)y = u(xy) = u0 = 0, and also $ux \neq 0$ since multiplying by u^{-1} would give x = 0 (impossible). So ux is also a zero divisor.
 - (e) Note $\varphi(18) = 6$. Then $5^6 \equiv 1 \pmod{18}$ by Euler, but $5^2 \equiv 7$ and $5^3 \equiv -1 \pmod{18}$, so order does not divide 2 or 3, hence must be 6.
 - (f) Induct on *n*. Base case n = 1. Inductive step: if $b_n = 2^n + n$ then $b_{n+1} = 2(2^n + n) n + 1 = 2^{n+1} + (n+1)$.
 - (g) Induct on *n*. Base case n = 1: $\frac{1}{2} = \frac{1}{2}$. Inductive step: if $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$ then $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n}{n+1} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n+1}{n+2}$ as required.
 - (h) Note $4^{239} \equiv 4 \pmod{239}$ by Fermat, so $4^{240} \equiv 4 \cdot 4 \equiv 16 \pmod{239}$. Likewise, since $\varphi(55) = 40, 4^{40} \equiv 1 \pmod{55}$ by Euler, so $2^{240} \equiv (2^{40})^6 \equiv 1^6 \equiv 1 \pmod{55}$.
 - (i) By Euler, $a^4 \equiv 1 \pmod{5}$ for every unit, and $0^4 \equiv 0 \pmod{5}$. Then the sum of three fourth powers is 0, 1, 2, or 3 mod 5, hence cannot be 2024 since 2024 is 4 mod 5.
 - (j) Note that $a^3 \equiv a \pmod{3}$ by Fermat, and also $a^2 \equiv a \pmod{2}$ so $a^3 \equiv a^2 \equiv a \pmod{2}$ also by Fermat. So $a^3 a$ is divisible by both 2 and 3 hence by 6.
 - (k) Induct on n with base cases n = 1 and n = 2. Inductive step: if $d_n = 2^n$ and $d_{n-1} = 2^{n-1}$ then $d_{n+1} = 2^n + 2(2^{n-1}) = 2^n + 2^n = 2^{n+1}$ as required.
 - (1) If a = b then gcd(a, a) = a = lcm(a, a). Conversely if gcd(a, b) = lcm(a, b) then every prime must appear to the same power in the prime factorizations of a and b (since otherwise the higher power would be the power in the lcm and the lower power would be the power in the gcd), hence a = b.
 - (m) Note $3^1 \equiv 3$, $3^2 \equiv 9$, $3^4 \equiv 81 \equiv 20$, $3^8 \equiv 400 \equiv 34$. So $3^{10} \equiv 3^8 \cdot 3^2 \equiv 34 \cdot 9 \equiv 1$ so the order divides 10. But $3^5 \equiv 3^4 \cdot 3 \equiv 60$ and $3^2 \equiv 9$, so the order does not divide 2 or 5, so it is 10.
 - (n) If $p \le 100$ is prime then p|99! so p does not divide 99! 1. By Wilson's theorem, $99! \equiv 100!/100 \equiv 100/100 \equiv 1 \pmod{101}$, so 101 does divide 99! 1.
 - (o) Note gcd(n, n + p) = gcd(n, p) by gcd properties. Then gcd(n, p) divides p so is either 1 or p, and it is equal to p if and only if p|n (by definition of gcd).