
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2022 ∼ Midterm Exam, due Thu Mar 10th.

Directions: Read ALL of the following directions.

This is an open-notes, open-homework, open-textbook exam. There is no o�cial time limit, but it
is suggested that you should be able to solve most of the problems within approximately 5 hours.

There are 11 problems on this exam, with points as indicated.

Justify any answers you give, including computations. You may freely refer to results from in class,
from the course notes, course assignments and solutions, and the course textbook, but please make
it clear what results you are using.

Proofs and explanations are expected to be clear, concise, and correct.

In problems with multiple parts, you MAY use the results of previous parts in later parts, even if
you were unable to solve the earlier parts correctly.

You MAY use a computer for typesetting and to access any material on the course webpage (e.g.,
the course notes and homework solutions), and to perform computations. Any such computations
must be clearly identi�ed and justi�ed as correct.

You MAY NOT use a computer to access any other information.

You MAY ask the instructor for help on any part of the exam, during o�ce hours or via email,
and in fact YOU ARE ENCOURAGED to do so.

You MAY NOT discuss the material on this exam with anyone except for the instructor (until
after the due date). This includes asking others for hints or solutions, searching for information
about the problems online, or posting about the problems on discussion forums.

Please include AND SIGN the following statement with your exam:

I certify that I have neither given nor received any assistance on this exam and have used no
resources other than those allowed.

Exams submitted without this certi�cation WILL NOT BE GRADED.

We share a philosophy about linear algebra: we think basis-free, we write basis-free, but when the chips are down
we close the o�ce door and compute with matrices like fury.

Irving Kaplansky

There are lots of things that are obvious that are not true.

Jim Wiseman

In real life, I assure you, there is no such thing as algebra.

Fran Lebowitz
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1. (10) Identify each of the following statements as true or false (no justi�cation required):

(a) If V is a vector space that has a linearly independent subset of 3 vectors that does not span V , then
dim(V ) > 3.

(b) The functions 1, sinx, cosx, sin2 x, sinx cosx, cos2 x are linearly dependent on the interval [0, 1].

(c) If a 7× 3 matrix has linearly independent columns, then its reduced row-echelon form has 4 rows of all
zeroes.

(d) There exists a linear transformation T : R4 →M2×2(R) whose nullity is 3 and whose rank is 1.

(e) There exists a vector space V and a linear transformation T : V → V that is onto but not an isomorphism.

(f) If T : V →W is one-to-one and V,W are �nite-dimensional, then dim(imT ) = dim(V ).

(g) If V and W are �nite-dimensional vector spaces, then L(V,W ) is isomorphic to L(W,V ).

(h) If α and β are ordered bases of the �nite-dimensional vector space V and T : V → V is an isomorphism,

then [T ]ββ = Q[T ]ααQ
−1 where Q = [T ]βα.

(i) If A is an n × n matrix and x, c are n × 1 column vectors, then Ax = c has a unique solution for x if
and only if the nullspace of A consists only of the zero vector.

(j) If V has ordered bases α and β and I : V → V is the identity transformation, then [I]βα is the identity
matrix if and only if α = β.

2. (20) Calculate the following things (no justi�cation required):

(a) A basis for the rowspace, column space, and nullspace of

 2 4 2 0 4 2
3 6 1 0 2 9
4 8 3 0 6 7

.
(b) A basis for the vector space of 2× 3 matrices A such that

[
1 1
0 0

]
A =

[
0 0 0
0 0 0

]
.

(c) An extension of the linearly independent set {(1, 1, 0, 0), (1, 1, 2, 2)} to a basis of R4.

(d) A subset of the vectors {(1, 2, 1), (2, 1, 5), (1,−1, 4), (0,−1, 1)} that give a basis of their span.

(e) A basis for the kernel and image of the linear transformation S : M2×2(R) → M2×2(R) with S(A) =
A+AT .

(f) The matrix [S]ββ associated to the linear transformation S :M2×2(C)→M2×2(C) with S(A) = A+AT ,

where β =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

(g) The matrix [T ]γβ associated to the linear transformation T : P3(R)→ P3(R) with P (p) = xp′(x)− p(x),
where β = {1− x, 1− x2, 1− x3, x2 + x3} and γ = {1, x, x2, x3}.

(h) The �angle� between the functions f(x) = 1 + sinx and g(x) = 1 − sinx in C[0, 2π] with inner product

〈f, g〉 =
´ 2π
0
f(x)g(x) dx.

(i) The coordinate vector [v]β where v = (9, 7,−8) and β = {e1, e2, e3} is the orthogonal basis
{(−1, 1, 2), (2, 0, 1), (1, 5,−2)} of R3.

(j) An orthogonal basis for P2(R) under the inner product 〈p, q〉 =
´ 6
0
p(x)q(x) dx.

3. (5) If W1 and W2 are subspaces of V , show that W1 ∪W2 is a subspace of V if and only if W1 ⊆ W2 or
W2 ⊆W1.

4. (5) Suppose T : V → W is linear. If W1 is a subspace of W , we de�ne the inverse image T−1(W1) = {v ∈
V : T (v) ∈W1} to be all vectors in V whose image under T lies in W1. Show that T−1(W1) is a subspace of
V . (Note that T−1 is not necessarily a function.)
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5. (5) Suppose T : V → W is a linear transformation where dim(V ) = 2022 and dim(W ) = 1947. Prove that
dim(kerT ) > 70.

6. (5) Suppose T : V → V is a linear transformation such that T 3 is the identity transformation. Prove that T
is one-to-one and onto.

7. (10) Suppose V and W are �nite-dimensional vector spaces and T : V →W is linear.

(a) If β and γ are ordered bases of V and W respectively such that [T ]γβ is the identity matrix, show that T
is an isomorphism.

(b) If T is an isomorphism, show that there exist ordered bases β and γ of V and W respectively such that
[T ]γβ is the identity matrix.

(c) If V has ordered basis β = {v1, . . . ,vn}, prove that γ = {T (v1), . . . , T (vn)} is a basis of W if and only
if T is an isomorphism.

8. (10) Suppose that V is a �nite-dimensional vector space and T : V → V is linear.

(a) Suppose there exists a basis β of V such that [T ]ββ is a diagonal matrix whose diagonal entries are all 1s

and 0s. Show that T is a projection map (i.e., that T 2 = T ).

(b) Conversely, suppose that T is a projection map. Show that there exists a basis β of V such that

[T ]ββ is a diagonal matrix whose diagonal entries are all 1s and 0s. [Hint: As shown on homework 4,
V = ker(T )⊕ im(T ); take β be a basis of ker(T ) followed by a basis of im(T ).]

9. (10) Suppose T : V →W is a linear transformation and 〈·, ·〉W is an inner product on W .

(a) If T is one-to-one, show that 〈v1,v2〉V = 〈T (v1), T (v2)〉W is an inner product on V .

(b) Show that if A is an invertible n × n real matrix, then the pairing 〈v,w〉 = vT (ATA)w is an inner
product on Rn. [Hint: x · y = xTy.]

(c) Is the map de�ned in part (a) necessarily an inner product if the assumption that T is one-to-one is
dropped? Explain why or why not.

10. (10) Let V = R2.

(a) Show that the pairing 〈(a, b), (c, d)〉 = ac+ ad+ bc+ 3bd is an inner product on V .

(b) Show that (ac+ ad+ bc+ 3bd)
2 ≤ (a2 + 2ab+ 3b2)(c2 + 2cd+ 3d2) for any reals a, b, c, d.

(c) Show that
√
(a+ c)2 + 2(a+ c)(b+ d) + 3(b+ d)2 ≤

√
a2 + 2ab+ 3b2 +

√
c2 + 2cd+ 3d2 for any reals

a, b, c, d.

11. (10) Let V be a �nite-dimensional inner product space with orthonormal basis {e1, e2, . . . , en}.

(a) For any x ∈ V show that x = 〈x, e1〉 e1 + 〈x, e2〉 e2 + · · ·+ 〈x, en〉 en.
(b) For any x,y ∈ V show that 〈x,y〉 = 〈x, e1〉 〈y, e1〉+ 〈x, e2〉 〈y, e2〉+ · · ·+ 〈x, en〉 〈y, en〉.
(c) For any x ∈ V show that ||x||2 = |〈x, e1〉|2 + |〈x, e2〉|2 + · · ·+ |〈x, en〉|2 =

∑n
i=1 |〈x, ei〉|

2
. What theorem

from classical geometry does this generalize?
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