
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2022 ∼ Homework 7, due Mon Mar 28th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Submit scans of your responses via Canvas.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Let 〈·, ·〉 be an inner product on V with scalar �eld F . Identify each of the following statements as true or
false:

(a) If V is �nite-dimensional and W is any subspace of V , then dim(W ) = dim(W⊥).

(b) If V has an orthonormal basis {e1, e2, e3, e4}, then ||e1 + e2 + e3 + e4|| = 2.

(c) If V has an orthonormal basis {e1, e2, e3} and W = span(e1 + 2e3), then W
⊥ = span(e2, 2e1 − e3).

(d) If w⊥ is a vector in W⊥, then the orthogonal projection of w⊥ onto W is w⊥ itself.

(e) If β = {v1, . . . ,vn} is a basis of V , then w = 〈w,v1〉v1 + · · ·+ 〈w,vn〉vn for any w ∈W .

(f) If β = {w1, . . . ,wn} is an orthonormal basis of W , then w = 〈v,w1〉w1 + · · · + 〈v,wn〉wn is the
orthogonal projection of v into w.

(g) If Ax = c is an inconsistent system of linear equations, then the best approximation of a solution is given
by the solutions x̂ of A∗x̂ = A∗Ac.

(h) If V is �nite-dimensional, v ∈ V , and W is any subspace of V , the vector w ∈ W minimizing ||v −w||
is the orthogonal projection of v into w.

(i) If T : V → V is linear, then the adjoint of T exists and is unique.

(j) If T : V → V is linear and V is �nite-dimensional, then the adjoint of T exists and is unique.

(k) If T : V → F is linear and V is �nite-dimensional, then there exists w ∈ V such that T (v) = 〈v,w〉 for
all v ∈ V .

(l) For any S, T : V → V such that S∗ and T ∗ exist, we have (S + 2T )∗ = S∗ + 2T ∗.

(m) For any S, T : V → V such that S∗ and T ∗ exist, we have (S + iT )∗ = S∗ + iT ∗.

(n) For any S, T : V → V such that S∗ and T ∗ exist, we have (ST )∗ = S∗T ∗.

2. Calculate the following things (assume any unspeci�ed inner product is the standard one):

(a) Write v = (−5, 5,−6) as a linear combination of the orthogonal basis (i,−i, 0), (1, 1, 2i), (i, i, 1) of C3.

(b) A basis for W⊥, if W = span[(1, 1, 1, 1), (2, 3, 4, 1)] inside R4.

(c) A basis for W⊥, if W = span[(1, 1, 2i), (1,−i, 4)] inside C3. [Hint: Over C, compute the complex
conjugate of the nullspace.]

(d) The orthogonal decomposition v = w +w⊥ of v = (2, 0, 11) into W = span[ 13 (1, 2, 2),
1
3 (2,−2, 1)] inside

R3. Also, verify the relation ||v||2 = ||w||2 +
∣∣∣∣w⊥∣∣∣∣2.

(e) An orthogonal basis for W = span[x, x2, x3], and the orthogonal projection of v = 1+ 2x2 into W , with

inner product 〈f, g〉 =
´ 1
−1 f(x)g(x) dx.

(f) The quadratic polynomial p(x) ∈ P2(R) that minimizes the expression
´ 1
0
[p(x)−

√
x]2 dx.

(g) The least-squares solution to the inconsistent system x+ 3y = 9, 3x+ y = 5, x+ y = 2.

(h) The least-squares line y = mx+ b approximating the points {(4, 7), (11, 21), (15, 29), (19, 35), (30, 49)}.
(Give three decimal places.)

(i) The least-squares quadratic y = ax2+bx+c approximating the points {(−2, 22), (−1, 11), (0, 4), (1, 3), (2, 13)}.
(Give three decimal places.)
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Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

3. Let V be an inner product space with scalar �eld F . The goal of this problem is to prove the so-called
�polarization identities�.

(a) If F = R, prove that 〈v,w〉 = 1

4
||v +w||2 − 1

4
||v −w||2.

(b) If F = C, prove that 〈v,w〉 = 1

4

∑4
k=1 i

k
∣∣∣∣v + ikw

∣∣∣∣2.
4. Let V be a �nite-dimensional inner product space and W be a subspace of V .

(a) Prove that W ∩W⊥ = {0} and deduce that V =W ⊕W⊥. [Hint: Use dim(W ) + dim(W⊥) = dim(V ).]

(b) Let T : V → W be the function de�ned by setting T (v) = w where v = w + w⊥ for w ∈ W and
w⊥ ∈ W⊥. Prove that T is linear, that T 2 = T , that im(T ) = W , and that ker(T ) = W⊥. Conclude
that T is projection onto the subspace W with kernel W⊥.

(c) Show that (W⊥)⊥ =W . [Hint: For (W⊥)⊥ ⊆W , write v ∈ (W⊥)⊥ as v = w +w⊥ and �nd
〈
v,w⊥

〉
.]

• Remark: Most of these results break down if V is in�nite-dimensional (see problem 8 for examples).

5. Suppose V is an inner product space (not necessarily �nite-dimensional) and T : V → V is a linear transforma-
tion possessing an adjoint T ∗. We say T is Hermitian (or self-adjoint) if T = T ∗, and that T is skew-Hermitian
if T = −T ∗.

(a) Show that T is Hermitian if and only if iT is skew-Hermitian.

(b) Show that T + T ∗, T ∗T , and TT ∗ are all Hermitian, while T − T ∗ is skew-Hermitian.

(c) Show that T can be written as T = S1 + iS2 for unique Hermitian transformations S1 and S2.

(d) Suppose T is Hermitian. Prove that 〈T (v),v〉 is a real number for any vector v.

6. Suppose V is an inner product space over the �eld F (where F = R or C) and T : V → V is linear. We say T
is a �distance-preserving map� on V if ||Tv|| = ||v|| for all v in V , and we say T is an �angle-preserving map�
on V if 〈v,w〉 = 〈Tv, Tw〉 for all v and w in V .

(a) Prove that T is distance-preserving if and only if it is angle-preserving. [Hint: Use problem 3.]

A map T : V → V satisfying the distance- and angle-preserving conditions is called a (linear) isometry.

(b) Show that the transformations S, T : R3 → R3 given by S(x, y, z) = (z,−x, y) and T (x, y, z) = 1

3
(x +

2y + 2z, 2x+ y − 2z, 2x− 2y + z) are both isometries under the usual dot product.

(c) Show that isometries are one-to-one.

(d) Show that isometries preserve orthogonal and orthonormal sets.

(e) Suppose T ∗ exists. Prove that T is an isometry if and only if T ∗T is the identity transformation.

(f) We say that a matrix A ∈ Mn×n(F ) is unitary if A−1 = A∗. Show that the isometries of Fn (with its
usual inner product) are precisely those maps given by left-multiplication by a unitary matrix.

• Remark: Notice that A ∈Mn×n(C) is unitary if and only if the columns of A are an orthonormal basis of
C. Thus, the result of part (f) can equivalently be thought of as saying that the distance-preserving maps
on Cn (or Rn) are simply changes of basis from one orthonormal basis (the columns of A) to another
(the standard basis).
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7. Let V = C[0, 2π] with inner product 〈f, g〉 =
´ 2π
0
f(x)g(x) dx. Also de�ne ϕ0(x) =

1√
2π

, and for positive

integers k set ϕ2k−1(x) =
1√
π
cos(kx) and ϕ2k(x) =

1√
π
sin(kx).

(a) Show that {ϕ0, ϕ1, ϕ2, . . . } is an orthonormal set in V .

(b) Let f(x) = x. Find ||f || and 〈f, ϕn〉 for each n ≥ 0. (You don't need to give details of the integral
evaluations, just the resulting values.)

(c) With f(x) = x, assuming that f(x) =
∑∞
k=0 〈f, ϕk〉ϕk(x), derive Leibniz's formula

π

4
= 1−1

3
+
1

5
−1

7
+· · · .

[Hint: Set x = π/2.]

(d) With f(x) = x, assuming that ||f ||2 =
∑∞
k=0 〈f, ϕk〉

2
(see problem 11 of the midterm for why this is a

reasonable statement), �nd the exact value of
∑∞
k=1

1

k2
.

Remarks: The identity ||f ||2 =
∑∞
k=0 〈f, ϕk〉

2
is known as Parseval's identity. The problem of computing

the value of the in�nite sum
∑∞
k=1

1

k2
is known as the Basel problem. The correct value was (famously)

�rst found by Euler, who evaluated the sum by decomposing the function
sin(πx)

πx
as the in�nite product∏∞

n=1(1−
x2

n2
) and then comparing the power series coe�cients of both sides.

8. [Challenge] The goal of this problem is to illustrate some complexities with orthogonal complements, pro-
jections, and adjoints in in�nite-dimensional spaces. Let V be the vector space of in�nite real sequences
{ai}i≥1 = (a1, a2, . . . ) with only �nitely many nonzero terms, with inner product given by 〈{ai}, {bi}〉 =∑∞
i=1 aibi. (Note that this converges since only �nitely many terms in the sum are nonzero.) Let ei be the

ith unit coordinate vector and observe that {ei}i≥1 is an orthonormal basis for V .

(a) For each n ≥ 2, let vn = e1−en and de�ne W = span(v2,v3,v4, . . . ). Show that e1 6∈W so that W is a
proper subspace of V , but that W⊥ = {0}. Deduce that W⊥ +W 6= V and that (W⊥)⊥ 6=W , yielding
counterexamples to problems 4(a) and 4(c) in the in�nite-dimensional case.

(b) Let T : V → V be the linear transformation de�ned by setting T (en) =
∑n
i=1 ei for each i ≥ 1. If T had

an adjoint T ∗ : V → V , show that in�nitely many components of T ∗(e1) would be nonzero, and deduce
that T ∗ cannot exist.
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