
Number Theory (part 4): Unique Factorization and Applications (by Evan Dummit, 2022, v. 3.00)

Contents

4 Unique Factorization and Applications 1

4.1 Integral Domains, Euclidean Domains, and Unique Factorization . . . . . . . . . . . . . . . . . . . . 2

4.1.1 Norms and Z[
√
D] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.1.2 Integral Domains and Common Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.1.3 Irreducible and Prime Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1.4 Euclidean Domains and Division Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1.5 Z[i] and F [x] as Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.6 Unique Factorization in Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Modular Arithmetic in Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.1 Modular Congruences and Residue Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.2 Arithmetic in R/rR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.3 Units and Zero Divisors in R/rR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.4 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.5 Orders, Euler's Theorem, Fermat's Little Theorem . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Arithmetic in F [x] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.1 Polynomial Functions, Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.2 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.3 Primitive Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Arithmetic in Z[i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Residue Classes in Z[i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Prime Factorization in Z[i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Unique Factorization and Applications

In this chapter, we extend the notion of a division algorithm to more general rings and then formalize the idea
of when a ring possesses unique factorization. Our ultimate goal is to extend number-theoretic properties of Z to
other number systems, so we then generalize the notion of modular arithmetic and establish the analogues of the
Chinese remainder theorem, Fermat's little theorem, and Euler's theorem in the general setting.

We then apply our results in two rings relevant to number theory: the polynomial ring F [x] and the Gaussian integer
ring Z[i]. In particular, we study the structure of the polynomials with coe�cients in Z/pZ and use the results to
study �nite �elds and to characterize those m for which a primitive root exists modulo m. We also make in-depth
study of the structure of the Gaussian integers, including giving a description of the modular arithmetic and prime
factorization in Z[i]. Along the way, we will also study �nite �elds from several perspectives, and establish Fermat's
characterization of the integers that can be written as the sum of two squares.
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4.1 Integral Domains, Euclidean Domains, and Unique Factorization

• Our goal in this section is to describe the class of rings that possess a division algorithm similar to that in Z,
and then establish that such rings have unique factorization.

• We �rst introduce divisibility in general rings, using the same de�nition as we used for integers:

• De�nition: If R is a commutative ring, we say that a divides b, written a|b, if there exists k ∈ R such that
b = ak.

◦ Example: We have (1 + i)|2 in Z[i], since 2 = (1 + i)(1− i).
◦ Example: We have (x+ 2)|(x3 + 8) in R[x], since x3 + 8 = (x+ 2)(x2 − 2x+ 4).

◦ Example: We have (3 + 2
√

2)|1 in Z[
√

2], since 1 = (3 + 2
√

2)(3− 2
√

2)

4.1.1 Norms and Z[
√
D]

• We also establish a few preliminary facts about the ring Z[
√
D] = {a+ b

√
D : a, b ∈ Z}:

• De�nition: For an element a+ b
√
D ∈ Z[

√
D], we de�ne its conjugate as a+ b

√
D = a− b

√
D, and we de�ne

its norm N(r) = rr: explicitly, N(a+ b
√
D) = (a+ b

√
D)(a− b

√
D) = a2 −Db2.

◦ When D < 0, the conjugation operation is simply complex conjugation, and the norm is simply the
square of the usual complex absolute value.

• The main utility of the norm is that it allows us to use facts about integer arithmetic to establish facts about
arithmetic in Z[

√
D]:

• Proposition (Conjugates and Norms): Let D be a �xed integer and let r, s ∈ Z[
√
D].

1. Conjugation respects addition and multiplication: r + s = r + s and r · s = r · s.
◦ Proof: Let r = a+ b

√
D and s = c+ d

√
D.

◦ Then r + s = (a+ c) + (b+ d)
√
D = (a+c)−(b+d)

√
D = r+s and rs = (ac+Dbd) + (ad+ bc)

√
D =

(ac+Dbd)− (ad+ bc)
√
D = r · s.

2. The norm is multiplicative: N(rs) = N(r)N(s).

◦ Proof: By (1) we have N(rs) = rs · rs = (rs)(r)(s) = (rr)(ss) = N(r)N(s).

3. If r|s in Z[
√
D], then N(r)|N(s) in Z.

◦ Proof: If s = kr, then by (2) we have N(s) = N(kr) = N(k)N(r) so N(r)|N(s).

4. The element r ∈ Z[
√
D] is a unit if and only if N(r) = 1 or N(r) = −1.

◦ Proof: First suppose r is a unit in Z[
√
D] with inverse s, so that rs = 1: then by (2) we have

N(rs) = N(r)N(s) = 1.

◦ But since N(r) and N(s) are both integers, we see that N(r) must either be 1 or −1.

◦ Conversely, if N(r) = 1 then by de�nition r · r = 1 so r is a multiplicative inverse for r.

◦ Likewise, if N(r) = −1 then r · r = −1 hence r · (−r) = 1 so −r is a multiplicative inverse for r.

• Example: Determine whether
√

3, 1 +
√

3, and 2 +
√

3 are units in Z[
√

3].

◦ We have N(
√

3) =
√

3·
√

3 = 3, N(1+
√

3) = (1+
√

3)(1−
√

3) = −2, and N(2+
√

3) = (2+
√

3)(2−
√

3) =
1.

◦ So
√

3 and 1 +
√

3 are not units , while 2 +
√

3 is a unit .
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4.1.2 Integral Domains and Common Divisors

• Now we continue our general analysis of commutative rings. Recall our de�nition of zero divisors:

• De�nition: If R is a commutative ring, we say that x ∈ R is a zero divisor if x 6= 0 and there exists a nonzero
y ∈ R such that xy = 0. (Note in particular that 0 is not a zero divisor!)

◦ Note that x is a zero divisor precisely when x|0 and x 6= 0 (whence the name �zero divisor�).

◦ We originally de�ned zero divisors when discussing the ring structure of Z/mZ.
◦ In Z/6Z, since 2 · 3 = 4 · 3 = 0, the residue classes represented by 2, 3, and 4 are zero divisors.

◦ As a general philosophy, zero divisors can be a bit troublesome (at least, to a novice ring theorist), since
they behave counter to one's natural intuition that products of nonzero elements should be nonzero.

• We recall a few important properties of zero divisors:

◦ An integer a is a zero divisor modulo m if and only if 1 < gcd(a,m) < m. In particular, Z/mZ contains
zero divisors if and only if m is composite.

◦ The ring Z/pZ is a �eld (which, in particular, contains no zero divisors).

◦ In a commutative ring with 1, a unit can never be a zero divisor.

• De�nition: If R is a commutative ring with 1 that contains no zero divisors, R is called an integral domain
(or often, just a domain).

◦ Example: Any �eld is an integral domain. More generally, any ring that is a subset of a �eld is an
integral domain: hence, the integers Z and the ring Z[

√
D] for any D are integral domains (since they

are all subsets of the �eld of complex numbers C).
◦ Example: The ring of polynomials F [x] where F is a �eld is also an integral domain.

• Integral domains generally behave more nicely than arbitrary rings, because they obey more of the laws of
arithmetic that are familiar from Z:

• Proposition (Properties of Integral Domains): If R is an integral domain, the following hold in R:

1. Multiplication in R has a cancellation law: speci�cally, if a 6= 0 and ab = ac, then b = c.

◦ Proof: Suppose that ab = ac: then by rearranging we see that a(b− c) = 0.

◦ Then since R is an integral domain, we must either have a = 0 or b − c = 0. Hence, if a 6= 0, we
must have b− c = 0 and so b = c.

2. If a|b and b|a and a, b are nonzero, then a = bu for some unit u.

◦ Proof: Since a|b, there is some u with a = bu. Since b|a, there is some w with b = aw.

◦ Multiplying the two equations gives ab = abuw, so ab(1 − uw) = 0. Since a and b are nonzero and
R is a domain, we can cancel to see that 1− uw = 0, so that u is a unit.

3. For any m 6= 0, a|b is equivalent to (ma)|(mb).
◦ Proof: Follows directly from the cancellation property (1).

• The situation in property (2) of the proposition above is important enough that we give it a name:

• De�nition: If R is a commutative ring with 1 and a′ = ua for some unit u, we say that a and a′ are associates.

◦ Notice that if a and a′ are associates, then a|a′ and a′|a. For this reason, associates have very similar
divisibility properties to one another.

◦ Example: In Z, the elements 2 and −2 are associates. Indeed, n and −n are associates for any n ∈ Z.
◦ Example: In Z[i], the elements 1 + 2i and 2− i are associates, because 2− i = −i(1 + 2i).

◦ Example: In F3[x], the elements x2 + 2 and 2x2 + 1 are associates, because 2x2 + 1 = 2(x2 + 2).
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◦ Example: In Z[
√

2], the elements
√

2 and 2+
√

2 are associates, because 2+
√

2 = (1+
√

2)
√

2 and 1+
√

2
is a unit since its norm is 1.

◦ We will remark that �being associate� is an equivalence relation on R.

• De�nition: Let a, b ∈ R where R is an integral domain. We say d is a common divisor if d|a and d|b, and we
say that a common divisor d ∈ R is a greatest common divisor of a and b if d 6= 0 and for any other common
divisor d′, it is true that d′|d.

◦ Example: 2 is a greatest common divisor of 14 and 20 in Z, and −2 is also a greatest common divisor of
14 and 20. In particular, note that the greatest common divisor is no longer unique.

◦ Example: In the polynomial ring C[x], a greatest common divisor of x2 − 4 and x2 − 5x+ 6 is x− 2: we
see x− 2 divides both x2− 4 = (x− 2)(x+ 2) and x2− 5x+ 6 = (x− 2)(x− 3), and there cannot be any
common divisor of greater degree.

◦ Note that we have not given a complete proof that these are actually greatest common divisors, since we
would need to �nd all other common divisors and verify that they do divide the claimed gcd. (We will
establish the correctness of these calculations shortly.)

• As an important warning, we will observe that in arbitrary integral domains, there can exist pairs (a, b) that
do not possess a greatest common divisor.

• Example: Show that 2(1 +
√
−5) and 6 do not possess a greatest common divisor in the ring Z[

√
−5].

◦ First observe that 2 and 1 +
√
−5 are both common divisors of 2(1 +

√
−5) and 6.

◦ Now we show using norms there is no element d that divides 2(1 +
√
−5) and 6 that is also itself divisible

by 2 and 1 +
√
−5.

◦ So suppose d does divide 2(1 +
√
−5) and 6. Then necessarily N(d) would divide N(2 + 2

√
−5) = 24

and N(6) = 36, so N(d) divides 12.

◦ Also, N(d) would also necessarily be a multiple of N(2) = 4 and N(1 +
√
−5) = 6, hence be a multiple

of 12.

◦ The only possibility is N(d) = 12, but there are no elements of norm 12, since there are no integer
solutions to a2 + 5b2 = 12. Thus, there cannot be any such element d, meaning that 2(1 +

√
−5) and 6

do not possess a greatest common divisor.

• If two elements do have a greatest common divisor, then it is unique up to taking associates:

• Proposition (GCDs and Associates): Let R be an integral domain and a, b ∈ R. If d1 and d2 are both greatest
common divisors of a and b, then d1 and d2 are associates. Conversely, if d is a greatest common divisor of a
and b, then so is any associate of d.

◦ Proof: Since d1 is a gcd, and d2 is a common divisor, we see d1|d2, and similarly d2|d1. By property (2)
of divisibility in integral domains above, this implies d1 = ud2 for a unit u, so d1 and d2 are associates.

◦ For the other statement, suppose that d is a greatest common divisor of a and b and ud is any associate
of d (where by assumption u is a unit).

◦ Then since d|a, there exists c ∈ R with a = dc, and so a = (cu−1)(ud). This means (ud)|a. Likewise,
(ud)|b, so ud is also a common divisor of a and b.

◦ Also, if d′ is any other common divisor, then d′|d by assumption. Since d|(ud) this means d′|(ud), so
every common divisor divides ud. Hence ud is also a greatest common divisor of a and b.

• We can also de�ne the analogue of relatively prime elements in an arbitrary domain:

• De�nition: If R is an integral domain and 1 is a greatest common divisor of r and s, we say r and s are
relatively prime.

◦ By the proposition above, r and s are relatively prime if and only if they have a greatest common divisor
that is a unit.

◦ Example: 2 and 5 are relatively prime in Z since they have a gcd of 1.
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◦ Example: 2 and 4 + i are relatively prime in Z[i]: any common divisor r must have N(r) divide both
N(2) = 4 and N(4 + i) = 17, hence N(r) would divide 1. This would mean r is a unit, and so r would
divide 1. Since 1 divides both 2 and 4 + i, this means 1 is a gcd of 2 and 4 + i, so they are relatively
prime.

4.1.3 Irreducible and Prime Elements

• Next, we study the analogues of prime numbers in integral domains. As we will see, there are several di�erent
natural analogues that are not generally equivalent to one another. Here is the �rst possibility we discuss:

• De�nition: If R is an integral domain, a nonzero element a ∈ R is irreducible if it is not a unit and, for any
�factorization� a = bc with b, c ∈ R, one of b and c must be a unit.

◦ Example: The irreducible elements of Z are precisely the prime numbers (and their negatives).

◦ Example: The element 5 is reducible in Z[i], since we can write 5 = (2 + i)(2− i) and neither 2 + i nor
2− i is a unit in Z[i].

◦ Important Warning: Whether a given element is irreducible depends on the ring R of which it is an
element. For example, 5 is irreducible in the ring Z, but 5 is not irreducible in the ring Z[i] because in
this ring we can write 5 = (2 + i)(2− i) and neither of these elements is a unit.

• In Z[
√
D], we can exploit norms to study irreducibility.

• Proposition (Some Irreducibles in Z[
√
D]): If an element r in Z[

√
D] has norm N(r) = ±p where p is a prime

number, then r is irreducible in Z[
√
D].

◦ Proof: Suppose N(r) = ±p and we had a factorization r = s1s2. Taking norms yields ±p = N(s1s2) =
N(s1)N(s2).

◦ But since p is prime and N(s1) and N(s2) are integers, the only possibility is to have one of N(s1) and
N(s2) equal to ±1, which by our result earlier means that s1 or s2 is a unit. Then r is indeed irreducible,
as claimed.

◦ Example: The element 2 + i is irreducible in Z[i] because N(2 + i) = 5 is a prime.

◦ Example: The element 1 − 2
√

2 is irreducible in Z[
√

2] because N(1 − 2
√

2) = −7 is the negative of a
prime.

• We will note that the converse of this proposition is not true: there can exist irreducible elements whose
norms are not prime.

◦ Example: The element 3 in Z[i] has N(3) = 9, but in fact 3 is irreducible. Any factorization 3 = cd would
require 9 = N(3) = N(c)N(d), but since N(a+ bi) = a2 + b2, we can see that norms are all nonnegative
and there are no elements of norm 3 in Z[i]. Thus the only possible factorizations would require N(c) or
N(d) to equal 1, but in that case c or d would be a unit.

◦ Example: The element 2 in Z[
√

5] has N(2) = 4, but in fact 2 is irreducible. Any factorization 2 = cd
would require 4 = N(2) = N(c)N(d), but since N(a+ b

√
5) = a2 − 5b2, a nontrivial factorization would

require either a product of two elements of norm 2 or norm −2. However, there are no elements of norm
±2, since the squares modulo 5 are 0, 1, and 4: this means a2 − 5b2 is always 0, 1, or 4 mod 5, hence
cannot be 2 or −2.

• The irreducible elements of F [x] are the irreducible polynomials of positive degree: namely, the polynomials
that cannot be factored into a product of polynomials of smaller positive degree.

◦ In polynomial rings, we can often use degrees to see immediately that a given polynomial is irreducible,
since if f = gh is a nontrivial factorization, then deg(f) = deg(g) + deg(h), where deg(g) and deg(h)
must both be positive.

◦ Example: Any polynomial of degree 1 is irreducible, since if f = gh with deg(g),deg(h) positive, then
deg(f) = deg(g) + deg(h) ≥ 2.
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◦ Example: The polynomial x2 + x+ 1 is irreducible in F2[x], since the only possible factorizations would
be x · x, x · (x+ 1), or (x+ 1) · (x+ 1), and none of these is equal to x2 + x+ 1.

◦ Example: The polynomial x2+1 is irreducible in R[x], since any nontrivial factorization would necessarily
be as a product of two linear polynomials which would therefore have a real root, but x2 + 1 has no real
roots.

◦ Example: The polynomial x2 + 1 is reducible in C[x], since it has a factorization x2 + 1 = (x+ i)(x− i).
◦ Example: The polynomial x2 − 2 is reducible in R[x] since we can factor it as (x−

√
2)(x+

√
2).

◦ Example: The polynomial x2−2 is irreducible in Q[x] since any nontrivial factorization would necessarily
require it to have a rational root, but its two roots ±

√
2 are irrational.

◦ Example: The polynomial x4+4 is reducible in Q[x], since we can write x4+4 = (x2+2x+2)(x2−2x+2).
Note that this polynomials roots are 1 ± i and −1 ± i: it has no rational (or even real) roots, but it is
still reducible.

◦ Important Warning: Whether a given polynomial is irreducible depends on the ring F [x] of which it is
an element. For example, x2 + 1 is irreducible in R[x] but not in C[x], and x2 − 2 is irreducible in Q[x]
but not in R[x].

• An irreducible element behaves much like a prime number in Z. However, there is a separate notion of a prime
element in a general domain:

• De�nition: If R is an integral domain, a nonzero element p ∈ R is prime if it is not a unit and, for any a, b ∈ R
such that p|ab, it must be the case that p|a or p|b.

◦ Example: The prime elements of Z are precisely the prime numbers (and their negatives).

◦ Example: The prime elements of F [x] are the irreducible polynomials of positive degree.

• Based on these two examples, it may seem that irreducible and prime elements are always the same. They
are indeed closely related, but they do not always coincide:

◦ Non-Example: Although the element 2 is irreducible in Z[
√
−5], it is not prime: note that 6 = (1 +√

−5)(1−
√
−5) is divisible by 2, but neither 1 +

√
−5 nor 1−

√
−5 is divisible by 2.

• In fact, prime elements are always irreducible:

• Proposition (Primes are Irreducible): If R is an integral domain and p ∈ R is a prime element, then p is
irreducible.

◦ Proof: Suppose p is prime and has a factorization p = bc.

◦ By de�nition, it must be the case that p|b or p|c; by relabeling assume p|b, with b = pu for some u.

◦ Then p = puc so p(1− uc) = 0. Cancelling p yields uc = 1, so c is a unit.

◦ Thus, in any factorization p = bc, at least one term must be a unit, and this means p is irreducible.

4.1.4 Euclidean Domains and Division Algorithms

• We now discuss what it means for an integral domain to possess a �division algorithm�.

• De�nition: If R is a domain, any function N : R→ N ∪ {0} such that N(0) = 0 is called a norm on R.

◦ Observe that this is a rather weak property, and that any given domain may possess many di�erent
norms.

◦ We will mention that the norm we have de�ned on the rings Z[
√
D] is not technically a norm under this

de�nition (it is, however, if we take the absolute value). We will leave the exact choice of whether the
absolute value is included up to context.

• De�nition: A Euclidean domain (or domain with a division algorithm) is an integral domain R that possesses
a norm N with the property that, for every a and b in R with b 6= 0, there exist some q and r in R such that
a = qb+ r and either r = 0 or N(r) < N(b).
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◦ The purpose of the norm function is to allow us to compare the size of the remainder to the size of the
original element.

◦ Example: Any �eld is a Euclidean domain, because any norm will satisfy the de�ning condition. This
follows because for every a and b with b 6= 0, we can write a = qb+ 0 with q = a · b−1.
◦ Example: The integers Z are a Euclidean domain, because if we set N(n) = |n|, then, as we have already
proven, the standard division algorithm allows us to write a = qb+ r with either r = 0 or |r| < |b|.

• Before we give additional examples, we will remark that the reason Euclidean domains have that name is that
we can perform the Euclidean algorithm in such a ring using precisely the same procedure as in Z:

• De�nition: If R is a Euclidean domain, then for any a, b ∈ R with b 6= 0, the Euclidean algorithm in R consists
of repeatedly applying the division algorithm to a and b as follows, until a remainder of zero is obtained:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qkrk + rk+1

rk = qk+1rk+1.

◦ By the construction of the division algorithm, we know that N(r1) > N(r2) > · · · , and since N(ri) is a
nonnegative integer for each i, this sequence must eventually terminate with the last remainder equalling
zero (else we would have an in�nite decreasing sequence of nonnegative integers).

• Just as in Z, we can use the Euclidean algorithm to establish the existence of greatest common divisors and
give a procedure for calculating them:

• Theorem (Bézout): If R is a Euclidean domain and a and b are arbitrary elements with b 6= 0, then the last
nonzero remainder d arising from the Euclidean Algorithm applied to a and b is a greatest common divisor of
a and b. Furthermore, there exist elements x, y ∈ R such that d = ax+ by.

◦ The ideas in the proof are the same as for the proof over Z.
◦ Proof: By an easy induction (starting with rk = qk+1rk+1), d = rk+1 divides ri for each 1 ≤ i ≤ k. Thus
we see d|a and d|b, so the last nonzero remainder is a common divisor.

◦ Suppose d′ is some other common divisor of a and b. By another easy induction (starting with d′|(a −
q1b) = r1), it is easy to see that d′ divides ri for each 1 ≤ i ≤ k + 1, and therefore d′|d. Hence d is a
greatest common divisor.

◦ For the existence of x and y with d = ax+ by, we simply observe (by yet another easy induction starting
with r1 = a− q1b) that each remainder can be written in the form ri = xia+ yib for some xi, yi ∈ R.

• Corollary: Any two elements in a Euclidean domain always possess a greatest common divisor.

4.1.5 Z[i] and F [x] as Euclidean Domains

• With the motivation for our choice of de�nition in hand, we can now give our two fundamental examples of
Euclidean domains. First, we describe the division algorithm in Z[i]:

• Theorem (Z[i] is Euclidean): The Gaussian integers Z[i] are a Euclidean domain, under the norm N(a+ bi) =
a2 + b2.

◦ Explicitly, given a + bi and c + di in Z[i], we will describe how to produce1 q, r ∈ Z[i] such that

a+ bi = q(c+ di) + r, and N(r) ≤ 1

2
N(c+ di). This is even stronger than is needed (once we note that

the only element of norm 0 is 0).

1For the rings Z[
√
D] in general, the function N(a+b

√
D) =

∣∣a2 −Db2
∣∣ is a norm, but it does not in general give a division algorithm.

Only for certain small values of |D|, like D = −1, will this function allow us to construct quotients and remainders where the remainder
is smaller (in norm) than the element being divided by.
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◦ Proof: We need to describe the algorithm for producing q and r when dividing an element a+ bi by an
element c+ di.

◦ If c+di 6= 0, then we can write
a+ bi

c+ di
= x+ iy where x = (ac+ bd)/(c2 +d2) and y = (bc−ad)/(c2 +d2)

are real numbers.

◦ Now we de�ne q = s + ti where s is the integer closest to x and t is the integer closest to y, and set
r = (a+ bi)− q(c+ di). Clearly, (a+ bi) = q(c+ di) + r.

◦ All we need to do now is showN(r) ≤ 1

2
N(c+di): �rst observe that

r

c+ di
=
a+ bi

c+ di
−q = (x−s)+(y−t)i.

◦ Then because |x− s| ≤ 1

2
and |y − t| ≤ 1

2
by construction, we see that

∣∣∣∣ r

c+ di

∣∣∣∣2 = |(x− s) + (y − t)i|2 =

(x− s)2 + (y − t)2 ≤ 1

4
+

1

4
=

1

2
.

◦ Clearing the denominator yields N(r) = |r|2 ≤ 1

2
|c+ di|2 =

1

2
N(c+ di), as desired.

• By using the Euclidean algorithm (by computing the quotient and remainder as described in the proof above)
we may now compute greatest common divisors in Z[i] and write them as explicit linear combinations, just
as we did in Z:

• Example: Find a greatest common divisor of 50 − 50i and 43 − i in Z[i], and write it as an explicit linear
combination of 50− 50i and 43− i.

◦ We use the Euclidean algorithm. Dividing 43− i into 50−50i yields
50− 50i

43− i
=

44

37
− 42

37
i, so rounding to

the nearest Gaussian integer yields the quotient q = 1−i. The remainder is then 50−50i−(1−i)(43−i) =
(8− 6i).

◦ Next, dividing 8 − 6i into 43 − i yields 43− i
8− 6i

=
7

2
+

5

2
i, so rounding to the nearest Gaussian integer

(there are four possibilities so we just choose one) yields the quotient q = 3 + 2i. The remainder is then
43− i− (3 + 2i)(8− 6i) = (7 + i).

◦ Finally, dividing 7 + i into 8− 6i yields
8− 6i

7 + i
= 1− i, so the quotient is 1− i and the remainder is 0.

◦ The last nonzero remainder is 7 + i so it is a gcd. To express the gcd as a linear combination, we solve
for the remainders:

8− 6i = 1 · (50− 50i)− (1− i) · (43− i)
7 + i = (43− i)− (3 + 2i)(8− 6i)

= (43− i)− (3 + 2i) · (50− 50i) + (3 + 2i)(1− i) · (43− i)
= (−3− 2i) · (50− 50i) + (6− i) · (43− i)

and so we have 7 + i = (−3− 2i) · (50− 50i) + (6− i) · (43− i) .

• Example: Find a greatest common divisor of 11 + 18i and 8 − 3i in Z[i], and write it as an explicit linear
combination of 11 + 18i and 8− 3i.

◦ We use the Euclidean algorithm:

11 + 18i = 2i · (8− 3i) + (5 + 2i)

8− 3i = (1− i) · (5 + 2i) + 1

5 + 2i = (5 + 2i) · 1

◦ The last nonzero remainder is 1 so it is a gcd. To express the gcd as a linear combination, we solve for
the remainders:

5 + 2i = (11 + 18i)− 2i · (8− 3i)

1 = (8− 3i)− (1− i) · (5 + 2i)

= (8− 3i)− (1− i)(11 + 18i) + 2i(1− i)(8− 3i)

= (−1 + i)(11 + 18i) + (3 + 2i)(8− 3i)
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and so we have 1 = (−1 + i)(11 + 18i) + (3 + 2i)(8− 3i) .

• We now show that F [x] is Euclidean:

• Theorem (F [x] is Euclidean): If F is any �eld, the ring of polynomials F [x] in the variable x with coe�cients
in F is a Euclidean domain, under the norm given by N(p(x)) = deg(p).

◦ The idea is simply to show the validity of polynomial long division. The reason we require F to be a �eld
is that we need to be able to divide by arbitrary nonzero coe�cients to be able to perform the divisions.
(Over Z, for instance, we cannot divide x2 by 2x and get a remainder that is a constant polynomial.)

◦ Explicitly, we will show that if a(x) and b(x) are polynomials with b(x) 6= 0, then there exist q(x) and
r(x) such that a(x) = q(x)b(x) + r(x), and either r(x) = 0 or deg(r) < deg(b).

◦ Proof: We prove this by induction on the degree n of a(x). The base case is trivial, as we may take
q = r = 0 if a = 0.

◦ Now suppose the result holds for all polynomials a(x) of degree ≤ n− 1. If deg(b) > deg(a) then we can
simply take q = 0 and r = a, so now also assume deg(b) ≤ deg(a).

◦ Write a(x) = anx
n + an−1x

n−1 + · · ·+ a0 and b(x) = bmx
m + · · ·+ b0, where bm 6= 0 since b(x) 6= 0.

◦ Observe that the polynomial a†(x) = a(x)− an
bm

xn−mb(x) has degree less than n, since we have cancelled

the leading term of a(x). (Here we are using the fact that F is a �eld, so that
an
bm

also lies in F .)

◦ By the induction hypothesis, a†(x) = q†(x)b(x)+r†(x) for some q†(x) and r†(x) with r† = 0 or deg(r†) <
deg(b).

◦ Then a(x) =

[
q†(x) +

an
bm

xn−m
]
b(x) + r†(x), so q(x) = q†(x) +

an
bm

xn−m and r(x) = r†(x) satisfy all of

the requirements.

◦ Remark: It is also straightforward to see that the quotient and remainder are unique under the require-
ment that deg(r) < deg(b), by observing that if a = qb + r = q′b + r′, then r − r′ has degree less than
deg(b) but is also divisible by b(x), hence must be zero.

• Example: Find a greatest common divisor d(x) of the polynomials p = x6 + 2 and q = x8 + 2 in F3[x], and
then write the gcd as a linear combination of p and q.

◦ We apply the Euclidean algorithm: we have

x8 + 2 = x2(x6 + 2) + (x2 + 2)

x6 + 2 = (x4 + x2 + 1)(x2 + 2)

and so the last nonzero remainder is x2 + 2 .

◦ By back-solving, we see that x2 + 2 = 1 · (x8 + 2)− x2(x6 + 2) .

• When performing the Euclidean algorithm in F [x], the coe�cients can often become quite large or complicated:

• Example: Find a greatest common divisor d(x) of the polynomials p = x3 + 7x2 + 9x− 2 and q = x2 + 4x in
R[x], and then write the gcd as a linear combination of p and q.

◦ We apply the Euclidean algorithm: we have

x3 + 7x2 + 9x− 2 = (x+ 3)(x2 + 4x) + (−3x− 2)

x2 + 4x = (−10

9
− 1

3
x)(−3x− 2) + (−20/9)

−3x− 2 =
27x+ 6

20
(−20/9)

and so the last nonzero remainder is −20/9. Thus, by rescaling, we see that the gcd is 1 .
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◦ By back-solving, we see that

−3x− 2 = 1 · (x3 + 7x2 + 9x− 2)− (x+ 3) · (x2 + 4x)

−20/9 = x2 + 4x+ (
10

9
+

1

3
x)(−3x− 2)

= (
10

9
+

1

3
x) · (x3 + 7x2 + 9x− 2)− (

7

3
+

19

9
x+

1

3
x2) · (x2 + 4x)

and thus by rescaling, we obtain 1 = (−1

2
− 3

20
) · (x3 + 7x2 + 9x− 2) + (

21

20
+

19

20
x+

3

20
x2) · (x2 + 4x) .

4.1.6 Unique Factorization in Euclidean Domains

• We would now like to study �prime factorization� in Euclidean domains. But we have two di�erent analogues
of prime numbers: prime elements and irreducible elements. Conveniently, in Euclidean domain these are
equivalent:

• Proposition (Primes and Irreducibles in Euclidean Domains): If R is a Euclidean domain, then p ∈ R is prime
if and only if it is irreducible.

◦ Proof: We showed that primes are irreducible earlier. Now suppose p is irreducible and that p|ab: we
wish to show that p|a or p|b.
◦ If p|a, we are done, so suppose p - a, and let d be a gcd of p and a, which exists since R is a Euclidean
domain.

◦ By hypothesis, d divides p, so (since p is irreducible) either d is a unit, or d = up for some unit u:
however, the latter cannot happen, because then up (hence p) would divide a. Hence d is a unit, say
with inverse e.

◦ By the Euclidean algorithm, we see that there exist x and y such that xp + ya = d. Multiplying by be
and regrouping the terms yields (bce)p+ ey(ab) = (de)b = b. Since p divides both terms on the left-hand
side, we conclude p|b.

• Our goal is to prove that every element has a unique prime factorization in a Euclidean domain. However,
this is not so easy to formulate rigorously as it might seem.

◦ To illustrate, observe that in the Gaussian integers, we can write 5 = (2− i)(2 + i) = (1 + 2i)(1− 2i).

◦ It would seem that these are two di�erent factorizations, but we should really consider them the same,
because all we have done is moved some units around: (2− i) · i = 1 + 2i and (2 + i) · (−i) = 1− 2i.

◦ We should declare that two factorizations are equivalent if the only di�erences between them are by
moving units around, which is equivalent to replacing elements with associates.

• Theorem (Unique Factorization in Euclidean Domains): If R is a Euclidean domain, then every nonzero
nonunit r ∈ R can be written as a �nite product of irreducibles r = p1p2 · · · pk, and such a factorization is
unique up to associates: if r = q1q2 · · · qd is some other factorization, then d = k and there is some reordering
of the factors such that pi is associate to qi for each 1 ≤ i ≤ k.

◦ The main ideas of the proof are the same as those over Z, but they are a bit obfuscated by some of
the technical di�culties. The existence portion of the proof contains precisely the same ideas as in our
characterization of the gcd of a collection of integers as the minimal positive linear combination of those
integers. The uniqueness portion is likewise essentially the same as for Z, namely, an induction argument
on the number of irreducible terms in a factorization.

◦ Proof (Existence): Let R be a Euclidean domain and r a nonzero nonunit.

◦ If r is irreducible, we are done. Otherwise, by de�nition we can write r = r1r2 where neither r1 nor r2
is a unit.

◦ If both r1 and r2 are irreducible, we are done: otherwise, we can continue factoring (say) r1 = r1,1r1,2
with neither term a unit. If r1,1 and r1,2 are both irreducible, we are done: otherwise, we factor again.
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◦ We claim that this process must terminate eventually: otherwise, there necessarily exists an in�nite
chain of elements x1, x2, x3, ... , such that x1|r, x2|x1, x3|x2, and so forth, where no two elements are
associates.

◦ Consider the set I of all (�nite) R-linear combinations I = {r1x1 + r2x2 + · · · + rkxk : k ≥ 1, ri ∈ R},
and let y ∈ I be a nonzero element in I of minimal norm.

◦ We claim that every element in I is divisible by y: otherwise, if there were some element s ∈ I with y not
dividing s, applying the division algorithm to write s = qy+ r† would yield the element r† = (s− qy) ∈ I
of smaller norm than y, contradiction.

◦ But now since y ∈ I, we can write y = r1x1 + · · ·+ rdxd for some d. Since xd|xd−1| · · · |x1, the LHS is a
multiple of xd, meaning xd|y.
◦ But now since xd|y and y|xd+1 we conclude xd|xd+1. But by assumption, xd+1|xd, meaning that they
are associates; this is a contradiction.

◦ Hence the factoring process must terminate, as claimed.

◦ Proof (Uniqueness): Let R be a Euclidean domain and r be a nonzero nonunit. We prove the factorization
of r is unique by induction on the number of irreducible factors of r = p1p2 · · · pd.
◦ If d = 0, then r is a unit. If r had some other factorization r = qc with q irreducible, then q would divide
a unit, hence be a unit (impossible).

◦ Now suppose d ≥ 1 and that r = p1p2 · · · pd = q1q2 · · · qk has two factorizations into irreducibles.

◦ Since p1|(q1 · · · qk) and p1 is irreducible hence prime, repeatedly applying the fact that p prime and p|ab
implies p|a or p|b shows that p1 must divide qi for some i.

◦ Then qi = p1u for some u: then since qi is irreducible (and p1 is not a unit), u must be a unit, so p1 and
qi are associates.

◦ Cancelling then yields the equation p2 · · · pd = (uq2) · · · qk, which is a product of fewer irreducibles. By
the induction hypothesis, such a factorization is unique up to associates. This immediately yields the
desired uniqueness result for r as well.

◦ Remark (for those who like ring theory): The set I from the existence proof is an ideal of R. The
underlying idea of the proof given above is to show that any ideal in a Euclidean domain is actually
principal (generated by a single element): in other words, that Euclidean domains are �principal ideal
domains�. In fact, it is actually true that a Euclidean domain is a principal ideal domain, and that any
principal ideal domain is a unique factorization domain.

• Corollary: Every element of the Gaussian integers Z[i] has a unique prime factorization (up to associates), as
does every element of the polynomial ring F [x] for any �eld F .

◦ We will note that, although our focus has been on Euclidean domains, there do also exist rings with
unique factorization that are not Euclidean.

◦ One example is the ring F [x, y] of polynomials in the two variables x and y, with coe�cients in the �eld
F : there is no Euclidean division algorithm in this ring (the degree map is not a Euclidean norm since,
e.g., there is no way to divide y2 by x and obtain a remainder of degree zero), but polynomials in F [x, y]
can still be decomposed uniquely as a product of irreducible factors.

4.2 Modular Arithmetic in Euclidean Domains

• We have previously described the division algorithm over Z and used it to study modular arithmetic in Z.
The goal of this section is to show that there is a meaningful extension of the notion of �modular arithmetic�
modulo a general element r in a Euclidean domain R, and then to establish the analogues of the major results
from in Z: the Chinese remainder theorem, and the theorems of Fermat and Euler.

◦ Our primary interest is when R is Z[i] or F [x], for F a �eld.

◦ However, many of the notions will hold in general, and so we will work in the general setting whenever
possible. We will see that almost all of the proofs are exactly the same as over Z.
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◦ We will also, when possible, remark when the results we prove hold (or fail to hold) for more general
classes of rings.

◦ Remark (for those who like ring theory): All of what we do here is subsumed by the theory of ideals in
a general ring R, and our construction of �modular arithmetic� is a special case of the quotient of a ring
by an ideal. Speci�cally, we are studying the quotient rings of the form R/I where I is a principal ideal.
Every ideal is principal in a Euclidean domain, so we do not lose anything here by studying quotients
without speaking of ideals explicitly.

4.2.1 Modular Congruences and Residue Classes

• Our underlying de�nition of modular congruences and residue classes are exactly the same as over Z:

• De�nition: Let R be a commutative ring with 1. If a, b, r ∈ R, we say that a is congruent to b modulo c,
written a ≡ b (mod c), if c|(b−a). The residue class of a modulo r, denoted a, is the set S = {a+dr : d ∈ R}
of all elements in R congruent to a modulo r.

◦ Example: In Z[i], it is true that 13−3i ≡ 2− i modulo 3+4i, because (13−3i)−(2− i) = (1−2i)(3+4i).

◦ Example: In F2[x], it is true that x3 + x ≡ x + 1 modulo x2 + x + 1, because (x3 + x) − (x + 1) =
(x+ 1) · (x2 + x+ 1).

• All of the properties of residue classes and congruences from Z extend to R:

• Proposition (Congruences and Residue Classes): Let R be an integral domain. For any r, a, b, c, d ∈ R, the
following are true:

1. We have a ≡ a (mod r), a ≡ b (mod r) if and only if b ≡ a (mod r), and if a ≡ b (mod r) and b ≡ c
(mod r) then a ≡ c (mod r).

2. If a ≡ b (mod r) and c ≡ d (mod r), then a+ c ≡ b+ d (mod r) and ac ≡ bd (mod r).

3. We have a ≡ b (mod r) if and only if a = b.

4. Two residue classes modulo r are either disjoint or identical.

◦ Proof: The proofs of all of these statements are the same as over Z.

• Proposition (Modular Arithmetic): The set R/rR consisting of all residue classes in R modulo r forms a ring
under the addition and multiplication operations a+ b = a+ b and a · b = a · b.

◦ Proof: The most di�cult part is showing that the addition and multiplication operations are well-de�ned:
that if we choose di�erent elements a′ ∈ ā and b′ ∈ b̄, the residue class of a′ + b′ is the same as that of
a+ b, and similarly for the product.

◦ Explicitly, suppose a′ ∈ ā and b′ ∈ b. Then there exists k1 ∈ R such that a′ = a + k1r and also k2 ∈ R
such that b′ = b+ k2r.

◦ Then a′ + b′ = (a+ b) + r(k1 + k2), and since these di�er by a multiple of r, we see that a′ + b′ = a+ b,
so addition is well-de�ned.

◦ Similarly, a′b′ = (a + k1r)(b + k2r) = ab + r(k1b + k2a + k1k2r), so a′b′ = ab, and multiplication is also
well-de�ned.

◦ Then the ring axioms [R1]-[R8] all follow directly from their counterparts in R. The additive identity in
R/rR is 0̄, the additive inverse of a is −a, and the multiplicative identity is 1.

• Over Z, we usually work with a speci�c collection of representatives for the residue classes modulom, generally
the integers 0 through m− 1.

◦ In a general ring, there is not usually a natural choice for residue class representatives.

◦ Or, if there does happen to be a good choice, it is not always obvious what that choice is. (For example,
try coming up with a natural choice of residue class representatives for Z[i] modulo 3 + 4i.)

◦ Unfortunately, this lack of an obvious choice makes it somewhat di�cult to give concrete examples in
situations that require a complete list of representatives. We will later describe ways to �nd a set of
representatives for Z[i] modulo a prime p, and for F [x] modulo an arbitrary polynomial.
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4.2.2 Arithmetic in R/rR

• In the ring F [x], where F is a �eld, we do get a natural collection of residue class representatives arising from
the division algorithm.

• Proposition (Residue Classes for F [x]): If R = F [x] and q(x) ∈ R is a polynomial of degree d, then the
polynomials in F [x] of degree ≤ d− 1 are a full set of residue class representatives for R/qR.

◦ Proof: By the division algorithm, every polynomial is congruent modulo q(x) to some polynomial of
degree less than d, namely, to the remainder after dividing by q(x).

◦ Conversely, each of these residue classes is distinct, because two distinct polynomials in F [x] of degree
less than d cannot be congruent modulo q(x): if they were, their di�erence would be a multiple of q(x)
of degree less than d, but the only such multiple is 0.

• Example: Describe the addition and multiplication in the ring R/qR, where R = R[x] and q(x) = x2 + 1.

◦ From the proposition above, since q has degree 2, the elements of R/qR are are of the form a+ bx where
a, b ∈ R.
◦ The addition is simply addition of polynomials: (a+ bx) + (c+ dx) = (a+ c) + (b+ d)x.

◦ The multiplication is also simply multiplication of polynomials, subject to the relation x2 + 1 = 0.

◦ Thus, in general we can write (a+ bx) · (c+ dx) = ac+ (bc+ ad)x+ bdx2 = (ac− bd) + (bc+ ad)x.

◦ This multiplication should look very familiar: in fact, it is exactly the same as the multiplication of
complex numbers (a+ bi) · (c+ di) = (ac− bd) + (bc+ ad)i.

◦ There is an obvious reason for this: the ring R/qR is really just the complex numbers C, where instead
of using i2 = −1, we say x2 = −1. (In the language of algebra, we would say that R/qR and C are
isomorphic as rings, meaning that their ring structures are exactly the same: we have just labeled the
elements di�erently.)

◦ In particular, since C is a �eld, we see that R/qR is also a �eld.

• When F is an in�nite �eld, there will be in�nitely many residue classes in R/pR, so except in nice cases it is
di�cult to write out the multiplication explicitly. However, we can easily construct addition and multiplication
tables when F is �nite.

• Example: With R = F2[x], here are the addition and multiplication tables for R/pR with p = x2:
+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x 0 x

x+ 1 0 x+ 1 x 1

◦ Notice that this ring has a zero divisor (namely x), and that the elements 1 and x+ 1 are units. Notice
that p(x) = x2 is reducible in R, since it has the factorization x2 = x · x.

• Example: With R = F2[x], here are the addition and multiplication tables for R/pR with p = x2 + x+ 1:
+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

◦ Notice that this ring is a �eld, since every nonzero residue class is a unit. Observe also that the polynomial
p(x) = x2 + x+ 1 is irreducible in R, since it has no roots.
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• Example: With R = Z[i], here are the addition and multiplication tables for R/rR with r = 2 + i:
+ 0 i −1 −i 1

0 0 i −1 −i 1
i i 1 −i 0 −1
−1 −1 −i i 1 0
−i −i 0 1 −1 i
1 1 −1 0 i −i

· 0 i −1 −i 1

0 0 0 0 0 0
i 0 −1 −i 1 i
−1 0 −i 1 i −1
−i 0 1 i 1 −i
1 0 i −1 −i 1

◦ It is less obvious that these elements do give representatives of all of the residue classes: this follows

because any possible remainder x upon dividing by 2 + i must have N(x) ≤ 1

2
N(2 + i) =

5

2
, so the only

possible remainders are the elements of norm 0, 1, and 2: namely, 0, ±1, ±i, and ±1± i. The last four
are all seen to be equivalent to the �rst �ve, since, for example 1 + i ≡ −i (mod 2 + i) and 1− i ≡ i (mod
2+ i)), and the �rst �ve all yield distinct residue classes since no two of them are congruent modulo 2+ i.

◦ Thus, there are 5 residue classes modulo 2 + i: 0, i, −1, −i, and 1.

◦ Notice that this ring is a �eld, since every nonzero residue class is a unit. As we have also shown
previously, 2 + i is irreducible in R.

4.2.3 Units and Zero Divisors in R/rR

• As suggested by the examples above, and also by the analogies between Z/mZ and R/rR, we can characterize
the units and zero divisors in R/rR:

• Proposition (Units in R/rR): If R is a Euclidean domain, an element s ∈ R is a unit in R/rR if and only r
and s are relatively prime, and an element s ∈ R is a zero divisor in R/rR whenever s 6= 0 and r and s are
not relatively prime.

◦ Proof: If r and s are relatively prime, then since R is a Euclidean domain, there exist a, b ∈ R such that
ar + bs = 1. Then, modulo r, we have b · s = 1, meaning that s is a unit in R/rR.

◦ Conversely, suppose that s is a unit in R/rR: then there exists some b such that b · s = 1 in R/rR.

◦ This means there exists some a ∈ R with bs = 1 − ar, which is to say, with ar + bs = 1. Then since
any gcd of r and s must divide ar + bs, we conclude that any gcd must be a unit. Since all gcds are
associates, we conclude 1 is a gcd of r and s.

◦ For the second statement, if s is a zero divisor than it cannot be a unit, so by what we just showed, this
means r and s cannot be relatively prime. Conversely, suppose that d is a greatest common divisor of r
and s and d is not a unit: then s · r/d = s/d · r = 0 in R/rR, and since r/d is not zero modulo r since d
is not a unit, this means s is a zero divisor.

• Just as in Z, the proof of the result above gives us a procedure for computing the inverse of a unit u in R/rR
(namely, by using the Euclidean algorithm to write 1 as a linear combination of u and r).

◦ There is an additional minor wrinkle in that the result of the Euclidean algorithm may yield a gcd that
is not 1 but rather some other unit in R: in such a case we need only scale both sides of the resulting
linear combination by the inverse of that unit to obtain a linear combination of 1.

• Example: In Z[i], show that 7− 2i is a unit modulo 11 + 8i and �nd its multiplicative inverse.

◦ We apply the Euclidean algorithm:

11 + 8i = (1 + i)(7− 2i) + (2 + 3i)

7− 2i = (1− 2i)(2 + 3i) + (−1− i)
2 + 3i = −2(−1− i) + i

−1− i = (−1 + i)(i)

The greatest common divisor is the last nonzero remainder of i. Since this is associate to 1, we see that
7− 2i is a unit modulo 11 + 8i.
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◦ To compute the inverse we solve for the remainders:

2 + 3i = 1(11 + 8i) + (−1− i)(7− 2i)

−1− i = 7− 2i− (1− 2i)(2 + 3i)

= (−1 + 2i)(11 + 8i) + (4− i)(7− 2i)

i = 2 + 3i+ 2(−1− i)
= (−1 + 4i)(11 + 8i) + (7− 3i)(7− 2i)

and so i = (−1+4i)(11+8i)+(7−3i)(7−2i). Multiplying by−i yields 1 = (4+i)(11+8i)+(−3−7i)(7−2i),
and then reducing modulo 11 + 8i yields (−3− 7i) · (7− 2i) ≡ 1 (mod 11 + 8i).

◦ Hence the inverse of 7− 2i modulo 11 + 8i is −3− 7i .

• Example: For R = F5[x], �nd the multiplicative inverse of x2 + 2 modulo x3 + 1.

◦ First we apply the Euclidean algorithm in R:

x3 + 1 = x · (x2 + 2) + (3x+ 1)

x2 + 2 = (2x+ 1) · (3x+ 1) + 1

3x+ 1 = (3x+ 1) · 1

and so the gcd of x2 + 2 and x3 + 1 is 1. Hence x2 + 2 is indeed a unit modulo x3 + 1.

◦ To compute the inverse we solve for the remainders:

3x+ 1 = (x3 + 1)− x · (x2 + 2)

1 = (x2 + 2)− (2x+ 1)(3x+ 1) = (2x2 + x+ 1)(x2 + 2)− (2x+ 1)(x3 + 1)

and thus by reducing both sides modulo x3 + 1, we see that the multiplicative inverse of x2 + 2 modulo

x3 + 1 is 2x2 + x+ 1 .

• One of the other nice properties of Z/mZ is that if p is prime, then Z/pZ is actually a �eld. This remains
true if we replace Z with an arbitrary Euclidean domain:

• Proposition (R/pR and Fields): If R is a Euclidean domain, the element p ∈ R is a prime element (equivalently,
irreducible) if and only if R/pR is a �eld.

◦ Proof: Suppose p is a prime element. If p|a, then a ≡ 0 (mod p), so a = 0. Now suppose that p does not
divide a.

◦ Then because p is prime (hence irreducible), the only possible common divisors of a and p are units.
This means a and p are relatively prime, so a is a unit modulo p. Thus, every nonzero element in R/pR
is a unit, so R/pR is a �eld.

◦ Conversely, suppose R/pR is a �eld. If a, b ∈ R are such that p|ab, then ab ≡ 0 (mod p).

◦ Since R/pR is a �eld, it has no zero divisors, meaning that a ≡ 0 (mod p) or b ≡ 0 (mod p), which is to
say, p|a or p|b. Thus, p is a prime element of R.

◦ Remark: This proposition is not true if R is only assumed to be a general commutative ring with 1:
the correct equivalence in that case is �the element p ∈ R is a prime element if and only if R/pR is an
integral domain�.

• The above proposition gives us a very easy way to construct new �elds, which we will explore shortly.

4.2.4 The Chinese Remainder Theorem

• Another foundational result of arithmetic in Z was the Chinese Remainder Theorem. This result generalizes
to arbitrary Euclidean domains, with essentially the same statement.

• We �rst start with the analogous proposition on solving a single linear congruence.
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• Proposition (Linear Congruences): Let R be a Euclidean domain, with a, b ∈ R, and let d any gcd of a and r.
Then the equation ax ≡ b (mod r) has a solution for x ∈ R if and only if d|b. In this case, if a = a′d, b = b′d,
and r = r′d, then ax ≡ b (mod r) is equivalent to a′x ≡ b′ (mod r′) and the solution is x ≡ (a′)−1b′ (mod r′).

◦ The proof is the same as over Z.
◦ Proof: If x is a solution to the congruence ax ≡ b (mod r), then there exists an s ∈ R with ax− rs = b.
Then since d divides the left-hand side, it must divide b.

◦ Now if we set a′ = a/d, b′ = b/d, and r′ = r/d, our original equation becomes a′dx ≡ b′d (mod r′d).

◦ Solving this equation is equivalent to solving a′x ≡ b′ (mod r′), by one of our properties of congruences.

◦ But since a′ and r′ are relatively prime, a′ is a unit modulo r′, so we can simply multiply by its inverse
to obtain x ≡ b′ · (a′)−1 (mod r′).

• Example: Solve the congruence (7 + i)x ≡ 3− i modulo 8− 9i in Z[i].

◦ Using the Euclidean algorithm we can verify that 7 + i and 8− 9i are relatively prime:

8− 9i = (1− i)(7 + i) + (−3i)

7 + i = (2i)(−3i) + (1 + i)

−3i = (−2− 2i)(1 + i) + i

1 + i = (1− i)(i)

and so i, and hence 1, is a gcd.

◦ By solving for the remainders we can write 1 as a linear combination explicitly as 1 = (11− i)(7 + i) +
(−4− 5i)(8− 9i). Hence the inverse of 7 + i modulo 8− 9i is 11− i.
◦ Multiplying both sides of the original congruence by 11−i yields x ≡ (11−i)(7+i)x ≡ (11−i)(3−i) ≡ 3+i

(mod 8− 9i), so the solution is x ≡ 3 + i (mod 8− 9i) .

• As over Z, the above proposition converts a problem of solving a general system of congruences in the variable
x to a system of the form x ≡ ai (mod ri).

• Theorem (Chinese Remainder Theorem): Let R be a Euclidean domain and r1, r2, . . . , rk be pairwise relatively
prime elements of R, and a1, a2, . . . , ak be arbitrary elements of R. Then the system

x ≡ a1 (mod r1)

x ≡ a2 (mod r2)

...
...

...

x ≡ ak (mod rk)

has a solution x0 ∈ R. Furthermore, x is unique modulo r1r2 · · · rk, and the general solution is precisely the
residue class of x0 modulo r1r2 · · · rk.

◦ The proof is the same as over Z.
◦ Proof: Since we may repeatedly convert two congruences into a single one until we are done, by induction
it su�ces to prove the result for two congruences

x ≡ a1 (mod r1)

x ≡ a2 (mod r2).

◦ For existence, the �rst congruence implies x = a1+kr1 for some k ∈ R; plugging into the second equation
then yields a1 +kr1 ≡ a2 (mod r2). Rearranging yields kr1 ≡ (a2−a1) (mod r2). Since by hypothesis r1
and r2 are relatively prime, by our proposition above we see that this congruence has a unique solution
for k modulo r2, and hence a solution for x.
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◦ For uniqueness, suppose x and y are both solutions. Then x−y is 0 modulo r1 and 0 modulo r2, meaning
that r1|(x − y) and r2|(x − y). But since r1 and r2 are relatively prime, their product must therefore
divide x − y, meaning that x is unique modulo r1r2. Finally, it is obvious that any other element of R
congruent to x modulo r1r2 also satis�es the system.

• Example: In R = C[x], solve the system q(x) ≡ 1 (mod x− 1), q(x) ≡ 3 (mod x).

◦ Since x − 1 and x are relatively prime polynomials, by the Chinese Remainder Theorem all we have to
do is �nd one polynomial satisfying the system.

◦ If we take the solution q(x) = 3 + ax to the second equation and plug it into the �rst equation, we must
solve 3 + ax ≡ 1 (mod x− 1).

◦ Since 3 + ax ≡ (3 + a) mod (x− 1), we can take a = −2.

◦ Hence the polynomial q(x) = 3 − 2x is a solution to the system. The general solution is there-

fore 3− 2x+ x(x− 1) · s(x) for an arbitrary polynomial s(x) ∈ R. Equivalently, the solution is

q(x) ≡ 3− 2x (mod x2 − x) .

4.2.5 Orders, Euler's Theorem, Fermat's Little Theorem

• We can also study powers in R/rR in the same way as in Z/mZ, with the only caveat being that some elements
may not have a �nite order:

• De�nition: If R is a commutative ring with 1 and u is a unit of R, then the smallest k > 0 such that uk ≡ 1
(mod m) is called the order of u. (If there exists no such k, then we say u has in�nite order.)

◦ Example: The element −1 has order 2 in Z (and also in Q, R, and C), and the element i has order 4 in
Z[i] and in C.
◦ Example: The element 2 does not have �nite order in R, since no positive power of 2 is equal to 1.

• All of our properties of order hold in general commutative rings with 1:

• Proposition (Properties of Orders): Suppose R is a commutative ring with 1 and u is a unit in R.

1. If un ≡ 1 (mod m) for some n > 0, then the order of u is �nite and divides n.

2. If u has order k, then un has order k/ gcd(n, k). In particular, if n and k are relatively prime, then un

also has order k.

3. If un ≡ 1 (mod m) and un/p 6= 1 (mod m) for any prime divisor p of n, then u has order n.

4. If u has order k and w has order l, where k and l are relatively prime, then uw has order kl.

◦ Proof: The proofs are the same as in Z/mZ.

• One of our foundational results in Z/mZ was Euler's theorem. There is a natural generalization of the Euler
ϕ-function and of Euler's theorem that holds in the case where there are �nitely many units in R/rR.

• Theorem (Generalization of Euler's Theorem): If R is a commutative ring with 1 and r ∈ R, let ϕ(r) denote
the number of units in the ring R/rR, assuming this number is �nite. Then if a is any unit in R/rR, we have
aϕ(r) ≡ 1 (mod r).

◦ The proof is the same as over Z/mZ: the point is that if a is a unit and u1, · · · , uk are the units in R,
then the elements au1, · · · , auk are the same as u1, · · · , uk, just in a di�erent order.

◦ Proof: Let the set of all units inR/rR be u1, u2, . . . , uϕ(r), and consider the elements a · u1, a · u2, . . . , a · uϕ(r)

in R/rR: we claim that they are simply the elements u1, u2, . . . , uϕ(r) again (possibly in a di�erent
order).

◦ Since there are ϕ(r) elements listed and they are all still units, it is enough to verify that they are all
distinct.
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◦ So suppose a · ui ≡ a · uj (mod r). Since a is a unit, multiply by a−1: this gives ui ≡ uj (mod r), but
this forces i = j.

◦ Hence modulo r, the elements a · u1, a · u2, . . . , a · uϕ(r) are simply u1, u2, . . . , uϕ(r) in some order.

◦ Therefore we have (a ·u1)(a ·u2) · · · (a ·uϕ(r)) ≡ u1 ·u2 · · ·uϕ(r) (mod r), and so cancelling u1 ·u2 · · ·uϕ(r)

from both sides yields aϕ(r) ≡ 1 (mod r) as desired.

• Although this is the reverse of our approach over Z, we can obtain Fermat's little theorem quite easily using
Euler's theorem.

• Corollary (Generalization of Fermat's Little Theorem): If R is a Euclidean domain and p ∈ R is a prime
element, and the number of elements in R/pR is n, then an ≡ a (mod p) for every a ∈ R.

◦ Proof: Since R/pR is a �eld, the only nonunit is zero, so ϕ(p) = n− 1.

◦ By the generalization of Euler's theorem, we know that aϕ(p) ≡ 1 (mod p) for every a that is a unit
modulo p, so an = aϕ(p)+1 ≡ a (mod p) for such a.

◦ Since an ≡ a (mod p) is also true when p|a, we see that it holds for every a ∈ R.

• Example: Verify the result of Euler's theorem for the element x in R/pR where R = F3[x] and p = x2 +x+ 2.

◦ It is straightforward to see that p = x2 + x+ 2 is irreducible in F3[x], so R/pR is a �eld.

◦ We also know that the residue classes have the form a+ bx for a, b ∈ F3. Thus, R/pR has 9 elements, 8
of which are units.

◦ To verify Euler's theorem we need to evaluate x8, which we can do using successive squaring: x2 = 2x+ 1,

x4 = (2x+ 1)2 = 2, and then x8 = 2
2

= 1.

◦ Thus, x8 = 1, meaning that x8 ≡ 1 (mod p), as dictated by Euler's theorem.

4.3 Arithmetic in F [x]

• In this section, we use all of the ring-theoretic machinery we have developed to study the arithmetic of the
polynomial ring F [x].

◦ We will �rst discuss polynomials as functions and use the results to give ways to determine when poly-
nomials of small degree are irreducible.

◦ Then we will discuss some of the applications of modular arithmetic in this ring to the construction of
�nite �elds, and (in particular) establish the analogue of the Prime Number Theorem in Fp[x].

◦ We will also use the arithmetic of F [x] to establish the existence of primitive roots in �nite �elds, and
also to characterize the moduli m for which there exists a primitive root.

4.3.1 Polynomial Functions, Roots of Polynomials

• In elementary algebra, polynomials are examples of functions. We would like to extend this idea of �plugging
values in� to a general polynomial in F [x], because this allows us to glean some information about potential
factorizations.

• De�nition: If F is a �eld and p = a0 + a1x + · · · + anx
n is an element of F [x], for any r ∈ F we de�ne the

value p(r) to be the element a0 + a1r + · · ·+ anr
n ∈ F .

◦ It is straightforward to see from the de�nition that if p and q are any polynomials in F [x] and r is any
element of F , then (p+ q)(r) = p(r) + q(r) and (pq)(r) = p(r)q(r). Thus, evaluation at an element of F
respects the addition and multiplication structure of the polynomial ring.

◦ Example: If p = 1 + x2 in C[x], then p(1) = 1 + 12 = 2, and p(i) = 1 + i2 = 0.

◦ Example: If p = 1 + x2 in F5[x], then p(0) = 1, p(1) = 2, p(2) = 0, p(3) = 0, and p(4) = 2.

◦ In this way, we can view a polynomial p ∈ F [x] as a function p : F → F , where p(r) = a0+a1r+· · ·+anrn.
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◦ Warning: The �traditional� polynomial notation p(x) is somewhat ambiguous: we may be considering
p(x) as a ring element in F [x] (in which case �x� represents an indeterminate), or we may be viewing it
as a function from F to F (in which case �x� represents the variable of the function).

• Example: If p = x2 + x in F2[x], observe that p(0) = p(1) = 0.

◦ Thus, although p is not the zero polynomial in F2[x] (since it has degree 2), as a function from F2 to F2

it is the identically zero function!

◦ More generally, if F is any �nite �eld with elements r1, r2, . . . , rn, then the polynomial p(x) = (x −
r1)(x− r2) · · · (x− rn) is the identically zero function from F to F .

◦ Thus, in general, we cannot always uniquely specify a polynomial p ∈ F [x] by describing its behavior as
a function p : F → F .

• To begin our study of polynomial functions, we start with a pair of observations that are likely familiar from
elementary algebra:

• Proposition (Remainder/Factor Theorem): Let F be a �eld. If p ∈ F [x] is a polynomial and r ∈ F , then the
remainder upon dividing p(x) by x − r is p(r). In particular, x − r divides p(x) if and only if p(r) = 0. (In
this case we say r is a zero or a root of p(x).)

◦ Proof: Suppose p(x) = a0 + a1x + · · · + anx
n. Observe �rst that (xk − rk) = (x − r)(xk−1 + xk−2r +

· · ·+ xrk−2 + rk−1), so in particular, x− r divides xk − rk for all k.

◦ Now we simply write p(x) − p(r) =

n∑
k=0

ak(xk − rk), and since x − r divides each term in the sum, it

divides p(x)− p(r).
◦ Since p(r) is a constant, it is therefore the remainder after dividing p(x) by x− r. The other statement
is immediate from the uniqueness of the remainder in the division algorithm.

• We can also bound the number of roots that a polynomial can have:

• Proposition (Number of Roots): Let F be a �eld. If p ∈ F [x] is a polynomial of degree d, then p has at most
d distinct roots in F .

◦ Proof: We induct on the degree d. For d = 1, the polynomial is of the form a0 + a1x for a1 6= 0, which
has exactly one root, namely −a0/a1.
◦ Now suppose the result holds for all polynomials of degree ≤ d and let p be a polynomial of degree d+ 1.

◦ If p has no roots we are obviously done, so suppose otherwise and let p(r) = 0. We can then factor to
write p(x) = (x− r)q(x) for some polynomial q(x) of degree d.

◦ By the induction hypothesis, q(x) has at most d roots: then p(x) has at most d + 1 roots, because
(a− r)q(a) = 0 only when a = r or q(a) = 0 (since F is a �eld).

• The above results, while seemingly obvious, can fail spectacularly if the coe�cient ring is not a �eld. Here
are some especially distressing examples:

◦ The quadratic polynomial q(x) = x2 − 1 visibly has four roots modulo 8, namely x = 1, 3, 5, 7. Further-
more, q(x) can be factored in two di�erent ways: as (x− 1)(x− 7) and as (x− 3)(x− 5).

◦ The linear polynomial q(x) = x, despite having degree 1, is not irreducible modulo 6: it can be written
as the product (2x + 3)(3x + 2). Furthermore, q(x) = x has one zero (namely x = 0), even though its
two factors 2x+ 3 and 3x+ 2 each have no zeroes modulo 6.

• In general, it is not easy to determine when an arbitrary polynomial is irreducible. In low degree, this task
can be done by examining all possible factorizations. The following result is frequently useful:

• Proposition (Polynomials of Small Degree): If F is a �eld and q(x) ∈ F [x] has degree 2 or 3 and has no roots
in F , then q(x) is irreducible.
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◦ Proof: If q(x) = a(x)b(x), taking degrees shows 3 = deg(q) = deg(a) + deg(b). Since a and b both
have positive degree, one of them must have degree 1. Then its root is also a root of q(x). Taking the
contrapositive gives the desired statement.

◦ Example: Over R, the polynomial x2+x+11 has no roots (since it is always positive), so it is irreducible.

◦ Example: Over F5, the polynomial q(x) = x3 + x + 1 has no roots, since q(0) = 1, q(1) = 3, q(2) = 1,
q(3) = 1, and q(4) = 4. Thus, q(x) is irreducible in F5[x].

• For polynomials of larger degree, determining irreducibility can be a much more di�cult task. For certain
particular �elds, we can say more about the structure of the irreducible polynomials.

• Theorem (Fundamental Theorem of Algebra): Every polynomial of positive degree in C[x] has at least one
root. Therefore, the irreducible polynomials in C[x] are precisely the polynomials of degree 1, and so every
polynomial in C[x] factors into a product of degree-1 polynomials.

◦ The �rst statement of this theorem is a standard result from analysis over the complex numbers, and we
take it for granted.

◦ To deduce the second statement from the �rst, observe that if p(x) is any complex polynomial of degree
larger than 1, then by assumption it has at least one root r in C, so we can write p(x) = (x− r)q(x) for
some other polynomial q(x): then p is reducible.

◦ Therefore, the irreducible polynomials in C[x] are precisely the polynomials of degree 1. The �nal
statement follows from the characterization of irreducible polynomials, because every polynomial is a
product of irreducibles.

• Another property that we can fruitfully study in a general �eld is the presence of �repeated factors�:

◦ Example: Over C, the polynomial x3 + x2 − x− 1 factors into irreducibles as (x− 1)2(x+ 1), which has
the repeated factor x− 1.

◦ Example: Over F2, the polynomial x4 + x2 + 1 factors into irreducibles as (x2 + x+ 1)2, which has the
repeated factor x2 + x+ 1.

• As a �rst goal, we can give a necessary condition for when a polynomial has repeated roots.

◦ Recall from calculus that if a polynomial q(x) has a �double root� at r, then q(r) and q′(r) are both zero.
By the factor theorem, this is equivalent to saying that q and q′ are both divisible by x− r.
◦ We can formulate a similar test over an arbitrary �eld using a purely algebraic de�nition of the derivative:

• De�nition: If q(x) =

n∑
k=0

akx
k is a polynomial in F [x], its derivative is the polynomial q′(x) =

n∑
k=0

kakx
k−1.

◦ Example: In C[x], the derivative of x6 − 4x2 + x is 6x5 − 8x+ 1.

◦ Example: In Fp[x], the derivative of xp
2 − x is p2xp

2−1 − 1 = −1. Notice here that although the degree
of the original polynomial is p2, the degree of its derivative is 0.

◦ It is a straightforward calculation to verify that the standard di�erentiation rules apply: (f + g)′(x) =
f ′(x) + g′(x) and (fg)′(x) = f ′(x)g(x) + f(x)g′(x). (For the product rule, the easiest method is to check
it for products of monomials and then apply the distributive law, since both sides are additive.)

• Proposition (Repeated Factors): Let F be a �eld and q ∈ F [x]. Then r is a repeated root of q if and only if
q(r) = q′(r) = 0. More generally, q has a repeated factor if and only if q and q′ are not relatively prime.

◦ Proof: First suppose that q(x) has a repeated root r: then q(x) = (x− r)2s(x) for some s(x) ∈ F [x].

◦ Taking the derivative yields q′(x) = 2(x− r)s(x) + (x− r)2s′(x) = (x− r) · [2s(x) + (x− r)s′(x)]. Thus,
q′ is also divisible by x− r in F [x], so by the factor theorem, we conclude that q(r) = q′(r) = 0.

◦ Conversely, if q(r) = q′(r) = 0, then by the factor theorem x − r divides q(x), so we may write q(x) =
(x − r)a(x). Then by the product rule we see that q′(x) = a(x) + (x − r)a′(x), so q′(r) = a(r). Thus
a(r) = 0 and so x− r divides a(x): then q(x) is divisible by (x− r)2 so r is a repeated root.
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◦ For the second statement, any root2 of a common factor of q and q′ is a multiple root (by the above)
and conversely any repeated root of q will yield a nontrivial common factor of q and q′ in F [x].

• Since we can e�ciently compute the gcd of q(x) and q′(x) using the Euclidean algorithm in F [x], we can
quickly determine if a given polynomial has a repeated factor.

• Example: Determine whether q(x) = x4 + 3x3 + 3x2 + 3x+ 1 has a repeated factor in F5[x].

◦ We have q′(x) = 4x3 + 4x2 + x+ 3.

◦ Now we perform the Euclidean algorithm: this yields

x4 + 3x3 + 3x2 + 3x+ 1 = (4x+ 3)(4x3 + 4x2 + x+ 3) + (2x2 + 3x+ 2)

4x3 + 4x2 + x+ 3 = (2x+ 4)(2x2 + 3x+ 2)

and so since 2x2 + 3x+ 2 is a greatest common divisor (it is associate to monic polynomial x2 + 4x+ 1)

we see that q(x) has a repeated factor .

◦ Indeed, if we divide q(x) by x2 + 4x+ 1, we will see that q(x) = (x2 + 4x+ 1)2.

4.3.2 Finite Fields

• We can fruitfully apply our results to the case where F = Fp = Z/pZ is a �nite �eld with p elements:

• Theorem (Finite Fields): If q(x) ∈ Fp[x] is an irreducible polynomial of degree d, then the ring R/qR is a
�nite �eld with pd elements.

◦ Proof: We simply invoke our previous results: the residue classes in the ring R/qR are given by the
polynomials in Fp[x] of degree ≤ d− 1.

◦ Such a polynomial has the form a0+a1x+ · · ·+ad−1xd−1, where the coe�cients ai are arbitrary elements
of Fp. There are clearly p

d such polynomials.

◦ Furthermore, since q(x) is irreducible, R/qR is a �eld. Hence R/qR is a �nite �eld with pd elements, as
claimed.

• Example: Show that the ring R/qR, where R = F2[x] and q(x) = x2 + x+ 1, is a �eld with 4 elements.

◦ This follows because x2 + x+ 1 is irreducible modulo 2: if it had a nontrivial factorization, then since it
is a polynomial of degree 2, it would necessarily have a root (which it does not).

◦ We showed this fact explicitly earlier when we wrote out the addition and multiplication tables for this
�eld.

• Example: Show that the ring R/qR, where R = F3[x] and q(x) = x2 + 1, is a �eld with 9 elements.

◦ This follows because x2 + x + 1 is irreducible modulo 3, since, if it had a nontrivial factorization, then
since it is a polynomial of degree 3, it would necessarily have a root (which it does not).

◦ Explicitly, the nine elements of this �eld are 0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, and 2x+ 2. Addition is
taken with coe�cients modulo 3, and multiplication is performed under the convention that x2 + 1 = 0
(i.e., x2 = 2, since coe�cients are taken modulo 3).

2We note here that the common factor may not have any roots in F , in which case one must (in general) instead apply this argument
in a larger �eld K (containing F ) in which this polynomial does have a root. Such an extension always exists, and in fact it can be
constructed using polynomial modular arithmetic.
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◦ Here is the multiplication table for this �eld:
· 0 1 2 x x+ 1 x+ 2 2x 2x+ 1 2x+ 2

0 0 0 0 0 0 0 0 0 0
1 0 1 2 x x+ 1 x+ 2 2x 2x+ 1 2x+ 2
2 0 2 1 2x 2x+ 2 2x+ 1 x x+ 2 x+ 1
x 0 x 2x 2 x+ 2 2x+ 2 1 x+ 1 2x+ 1

x+ 1 0 x+ 1 2x+ 2 x+ 2 2x 1 2x+ 1 2 x
x+ 2 0 x+ 2 2x+ 1 2x+ 2 1 x x+ 1 2x 2

2x 0 2x x 1 2x+ 1 x+ 1 2x+ 2 2x+ 1 d+ 2
2x+ 1 0 2x+ 1 x+ 2 x+ 1 2 2x 2x+ 2 x 1
2x+ 2 0 2x+ 2 x+ 1 2x+ 1 x 2 x+ 2 1 2x

• Example: Construct a �nite �eld with 8 elements.

◦ From our discussion, since 8 = 23, such a �eld can be obtained as R/qR where R = F2[x] and q is an
irreducible polynomial in R of degree 3.

◦ It is easy to see that q(x) = x3 + x + 1 is irreducible in F2[x] since it has no roots, so R/qR is a �nite
�eld with 8 elements.

• We can now use Fermat's little theorem in these �nite �elds to extract interesting and useful information.

◦ To start, observe that by (the original) Fermat's little theorem, ap ≡ a (mod p). Thus, if q(x) = xp − x,
then q(a) = 0 for every a ∈ Fp.

◦ In other words, this polynomial xp − x has the rather strange property that its value is always zero, yet
it is not the zero polynomial.

• Proposition (Factorization of xp − x): The factorization of xp − x in Fp[x] is xp − x =
∏

a∈Fp
(x− a).

◦ Proof: As noted above, q(x) = xp − x is such that q(a) = 0 for every a ∈ Fp.

◦ Hence, x− a is a divisor of q(x) for every a ∈ Fp.

◦ However, because this polynomial has at most p roots, and we have exhibited p roots, the factorization
of q(x) must be q(x) =

∏
a∈Fp

(x− a), since the leading terms agree.

• Another immediate application of this factorization is an easy proof of Wilson's Theorem.

◦ By dividing through by x, we see that xp−1 − 1 =
∏

a∈Fp,a6=0

(x− a).

◦ Now examine the constant term of the product: it is (−1)p−1
∏

a∈Fp,a6=0(a) = (−1)p−1 · (p− 1)! .

◦ But (modulo p) the constant term is also equal to −1, so we deduce (p− 1)! ≡ (−1)p−2 ≡ −1 (mod p).

• As we observed above, the polynomial xp − x has a nice factorization in Fp[x]. Let us now consider the
factorization of the polynomial xp

n − x in Fp[x].

◦ Example: For n = 2 and p = 2, we �nd the irreducible factorization x4 − x = x(x+ 1)(x2 + x+ 1).

◦ Example: For n = 3 and p = 2, we �nd the irreducible factorization x8− x = x(x+ 1)(x3 + x2 + 1)(x3 +
x+ 1).

◦ Example: For n = 4 and p = 2, we �nd the irreducible factorization x16 − x = x(x+ 1)(x2 + x+ 1)(x4 +
x3 + 1)(x4 + x+ 1)(x4 + x3 + x2 + x+ 1).

◦ Example: For n = 2 and p = 3, we �nd the irreducible factorization x9−x = x(x+1)(x+2)(x2 +2)(x2 +
x+ 2)(x2 + 2x+ 2).

◦ Example: For n = 2 and p = 5, the list of irreducible factors of x25 − x is x, x+ 1, x+ 2, x+ 3, x+ 4,
x2 + 2, x2 + 3, x2 + x+ 1, x2 + x+ 2, x2 + 2x+ 3, x2 + 2x+ 4, x2 + 3x+ 3, x2 + 3x+ 4, x2 + 4x+ 1,
and x2 + 4x+ 2.

22



• We notice (especially in the p = 5 example) that the irreducible factors all appear to be of small degree, and
that there are no repeated factors.

◦ In fact, it seems that the factorization of xp
n − x over Fp contains all of the irreducible polynomials of

degree n, or of degree dividing n. To prove this we �rst require a lemma:

• Lemma: If p is a prime number, then the greatest common divisor of pn − 1 and pd − 1 is pgcd(n,d) − 1.

◦ Proof: Use the division algorithm to write n = qd+ r, and let a = pr(p(q−1)d + p(q−2)d + · · ·+ pd + 1).

◦ Then it is not hard to see by expanding the products that pn − 1 = (pd − 1)a+ (pr − 1).

◦ Therefore, by properties of gcds, we see that gcd(pn − 1, pd − 1) = gcd(pd − 1, pr − 1): but this means
we can perform the Euclidean algorithm on the exponents without changing the gcd. The end result is
pgcd(n,d) − 1, so this is the desired gcd.

• Theorem (Factorization of xp
n − x): The polynomial xp

n − x factors in Fp[x] as the product of all monic
irreducible polynomials over Fp of degree dividing n.

◦ We prove the result in the following way: �rst, we show that there are no repeated factors. Second, we
show that every irreducible polynomial of degree dividing n divides q(x). Finally, we show that no other
irreducible polynomial can divide q(x).

◦ Proof: Let q(x) = xp
n − x and R = Fp[x].

◦ For the �rst part, we have q′(x) = pnxp
n−1 − 1 = −1, so q(x) and q′(x) are relatively prime. Thus, by

our earlier results, we know that q(x) has no repeated irreducible factors.

◦ For the second part, suppose that s(x) ∈ Fp[x] is an irreducible polynomial of degree d, where n = ad.

◦ We know that R/sR is a �nite �eld F having pd elements, so by Euler's theorem in F , we see that

xp
d−1 ≡ 1 (mod s).

◦ But, by the Lemma above, pd − 1 divides pn − 1, so raising to the appropriate power modulo s shows
xp

n−1 ≡ 1 (mod s). We conclude that s divides xp
n − x, as desired.

◦ For the �nal part, suppose s(x) ∈ Fp[x] is an irreducible polynomial that divides xp
n − x and has degree

d not dividing n. Since s(x) 6= x, we can assume s divides xp
n−1 − 1.

◦ As above, R/sR is a �nite �eld F having pd elements, so by Euler's theorem in F , we see that ap
d−1 ≡ 1

(mod s) for every nonzero a ∈ F .
◦ Since ap

n−1 ≡ 1 (mod s) holds for every nonzero a ∈ F by the above assumptions, we conclude that

ap
gcd(d,n)−1 ≡ 1 (mod s).

◦ But this is impossible, because q(t) = tp
gcd(d,n)−1 − 1 is then a polynomial of degree pgcd(d,n) − 1 which

has pd − 1 roots over the �eld Fp.

◦ We have shown all three parts, so we are done.

• As a corollary, the above theorem allows us to count the number of monic irreducible polynomials in Fp[x] of
any particular degree n.

◦ Let fp(n) be the number of monic irreducible polynomials of exact degree n in Fp[x].

◦ The theorem above says that pn =
∑

d|n dfp(d), since both sides count the total degree of the product of
all irreducible polynomials of degree dividing n.

◦ Using this recursion, we can compute the �rst few values:

n 1 2 3 4 5 6 7 8

fp(n) p
1

2
(p2 − p) 1

3
(p3 − p) 1

4
(p4 − p2)

1

5
(p5 − p) 1

6
(p6 − p3 − p2 + p)

1

7
(p7 − p) 1

8
(p8 − p4)

◦ For example, the formula says that there are 2 irreducible polynomials of degree 3 over F2, which there
are: x3 + x2 + 1 and x3 + x+ 1.

◦ In fact, we can essentially write down a general formula.
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• De�nition: The Möbius function is de�ned as µ(n) =

{
0 if n is divisible by the square of any prime

(−1)k if n is the product of k distinct primes
.

In particular, µ(1) = 1.

• Proposition (Möbius Inversion): If f(n) is any sequence satisfying a recursive relation of the form g(n) =∑
d|n f(d), for some function g(n), then f(n) =

∑
d|n µ(d)g(n/d).

◦ Proof: First, consider the sum
∑

d|n µ(d): we claim it is equal to 1 if n = 1 and 0 if n 6= 0.

∗ To see this, if n = pa1
1 · · · p

ak

k , the only terms that will contribute to the sum
∑

d|n µ(d) are those

values of d = pb11 · · · p
bk
k where each bi is 0 or 1.

∗ If k > 0, then half of these 2k terms will have µ(d) = 1 and the other half will have µ(d) = −1, so
the sum is zero.

∗ Otherwise, k = 0 means that n = 1, in which case the sum is clearly 1.

◦ Now we prove the desired result by (strong) induction. It clearly holds for n = 1, so now suppose the
result holds for all k < n.

◦ By hypothesis and induction, we have
∑

d|n µ(d)g(n/d) =
∑

d|n µ(d)
∑

d′|(n/d) f(d′) =
∑

dd′|n µ(d)f(d′) =∑
d′|n f(d′)

∑
d|(n/d′) µ(d), but this last sum is simply f(n), because

∑
d|(n/d′) µ(d) is zero unless n/d′ is

equal to 1.

• By applying Möbius inversion to our particular function fp(n), we immediately obtain the following:

• Corollary: The number of monic irreducible polynomials of degree n in Fp[x] is fp(n) =
1

n

∑
d|n p

n/dµ(d).

◦ From this corollary, we see that fp(n) =
1

n
pn +O(pn/2), where the �big-O� notation means that the error

is of size bounded above by a constant times pn/2.

• This has the following interesting reinterpretation: let X be the number of polynomials in Fp[x] of degree less
than n. Clearly, X = pn.

◦ Now we ask: of all these X polynomials, how many of them are �prime� (i.e., irreducible)?

◦ This is simply fp(n) =
1

n
pn +O(pn/2) =

X

logp(X)
+O(

√
X).

◦ In other words: the number of �primes less than X� is equal to
X

logp(X)
, up to a bounded error term.

◦ Notice how very similar this statement is to the statement of the Prime Number Theorem for the integers
Z! This is not a coincidence: in fact, it is the analogue of the Prime Number Theorem for the ring Fp[x].

• It is also fairly easy to show using the formula that fp(n) > 0 for every prime p and every integer n ≥ 1. As
we showed earlier, if q(x) is an irreducible polynomial of degree n in R = Fp[x], then R/qR is a �nite �eld of
size pn. Thus, we also obtain the following:

• Corollary: For any prime p and any n, there exists a �nite �eld having pn elements.

◦ Remark: It can be shown that the number of elements in a �nite �eld must be a prime power3, so this
result completely characterizes the number of elements that a �nite �eld can have.

3To summarize: if K is a �nite �eld, if we let K′ be the sub�eld of K generated by the element 1 (in other words, the sub�eld whose
elements are 0, 1, 1 + 1, 1 + 1 + 1, ...), it can be shown that K′ has a prime number of elements p, and that K is a vector space over
K′. Then because every vector space has a basis, if we select a basis with d elements for K as a vector space over K′, then by counting
the possible linear combinations of the basis elements we see that the number of elements in K is pd, which is a prime power.
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4.3.3 Primitive Roots

• We discussed primitive roots previously, but did not categorize when they do or do not exist modulo m. We
will now extend our viewpoint slightly and treat primitive roots in arbitrary rings:

• De�nition: If R is a commutative ring with 1 having �nitely many units, an element u ∈ R is a primitive root
if every unit of R is some power of u.

◦ More explicitly, if there are n units in R, then an element is a primitive root precisely when its order is
n.

◦ Example: If R is F2[x] modulo x2 + x + 1, which we have previously established is a �eld, then the
elements x and x+ 1 are primitive roots in R, since R has 3 units and each element has order 3 (their
orders divide 3 by Euler's theorem, and neither element has order 1).

◦ Example: If R is F3[x] modulo x2 + 1, which is also a �eld, then the element x+ 1 is a primitive root in

R, since R has 8 units and x+ 1 has order 8 (its order divides 8 by Euler's theorem, and x+ 1
4

= 2 so
its order does not divide 4).

• Our �rst goal is to prove that every �nite �eld has a primitive root. To do so we require the following
preliminary fact:

• Proposition: Let R be a commutative ring with 1 having �nitely many units. If M is the maximal order
among all units in R, then the order of every unit divides M .

◦ Proof: Suppose u has order M , and let w be any other unit, of order k.

◦ Suppose k does not divide M . Then there is some prime q which occurs to a higher power qf in the
factorization of k than the corresponding power qe dividing M .

◦ Observe that the element uq
f

has order M/qf , and the element wk/qe has order qe.

◦ Since these two orders are relatively prime, the element uq
f · wk/qe has order M · qf−e, which is a

contradiction because this is larger than M .

◦ Remark (for those who like group theory): This result actually holds in any abelian group, with the same
proof: if M is the maximal order among all elements of a �nite abelian group, then the order of every
element divides M .

• Theorem (Primitive Roots in Finite Fields): If F is a �nite �eld, then F has a primitive root.

◦ Our proof is nonconstructive: we will show the existence of a primitive root without explicitly �nding
one.

◦ Proof: Suppose M is the maximal order among all units in F . Then by the �nite-�eld version of Euler's
theorem, we know that M ≤ |F | − 1, since a|F |−1 = 1 in F for every unit a ∈ F .
◦ By the above proposition, all units in F then have order dividing M , so the polynomial xM − 1 has
|F | − 1 roots in F .

◦ But this is impossible unless M ≥ |F | − 1, since a polynomial of degree M can only have at most M
roots in F .

◦ Hence we concludeM = |F |−1, meaning that some element has order |F |−1: this element is a primitive
root.

• By setting F = Z/pZ, we obtain the existence of a primitive root modulo p, which we use to construct a
primitive root modulo p2:

• Proposition (Primitive Roots Modulo p2): If a is a primitive root modulo p for p an odd prime, then a is a
primitive root modulo p2 if ap−1 6≡ 1 (mod p2). In the event that ap−1 ≡ 1 (mod p2), then a+ p is a primitive
root modulo p2.

◦ Proof: Since a is a primitive root modulo p, if the order of a mod p2 is r, then since ar ≡ 1 (mod p2)
certainly implies ar ≡ 1 (mod p), we see that p− 1 divides r.
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◦ Since ϕ(p2) = p(p− 1), there are two possibilities: the order of a modulo p2 is p− 1 or it is p(p− 1).

◦ The order of a modulo p2 will be p− 1 if and only if ap−1 ≡ 1 (mod p2). This gives the �rst statement.

◦ For the second statement, suppose that ap−1 ≡ 1 (mod p2).

◦ The binomial theorem implies (a + p)p−1 = ap−1 + (p − 1)p · ap−2 + p2 · [other terms], which is simply
ap−1 − p ap−2 (mod p2).

◦ Since ap−1 ≡ 1 (mod p2), we see that ap−2 − p ap−2 cannot be equivalent to 1 mod p2, because p ap−2

is not divisible by p2. So (a + p)p−1 6≡ 1 (mod p2), so by the earlier argument a + p is a primitive root
modulo p2.

• Example: Find a primitive root modulo 112.

◦ First we show that that 2 is a primitive root modulo 11: since the order of 2 must divide ϕ(11) = 10,
and 22 6≡ 1 (mod 11) and 25 6≡ 1 (mod 11), the order divides neither 2 nor 5, hence must be 10.

◦ We can also compute 210 = 1024 ≡ 56 (mod 112), so the proposition above dictates that 2 is also a
primitive root modulo 112.

• Primitive roots modulo pd for d > 2 turn out to be essentially the same as primitive roots modulo p2:

• Proposition (Primitive Roots Modulo pd): If a is a primitive root modulo p2 for p an odd prime, then a is a
primitive root modulo pd for all d ≥ 2.

◦ Proof: We show this by induction on d: the base case d = 2 is vacuous.

◦ Now suppose that a is a primitive root modulo pd and that it has order r modulo pd+1: thus, ar ≡ 1
(mod pd+1). Note that Euler's theorem implies that r divides ϕ(pd+1) = pd(p− 1).

◦ Reducing modulo pd shows ar ≡ 1 (mod pd), so since a is a primitive root modulo pd we see that r is
divisible by ϕ(pd) = pd−1(p− 1).

◦ Thus, the only possibilities are r = pd−1(p − 1) and r = pd(p − 1): we just need to eliminate the �rst
possibility.

◦ By Euler's theorem, ap−1 ≡ 1 (mod p) so we can write ap−1 = 1 + kp for some integer k.

◦ Then, since a is a primitive root modulo p2, we also know that k is not divisible by p (as otherwise a
would have order p− 1 modulo p2).

◦ Expanding with the binomial theorem yields (ap−1)p
d−1

= (1+kp)p
d−1

= 1+pd−1 ·kp+pd+1 ·[other terms].
But this is 6≡ 1 modulo pd+1, since k is not divisible by p.

◦ Hence ap
d−1(p−1) 6≡ 1 (mod pd+1), so a must have order pd(p − 1) = ϕ(pd+1), meaning a is in fact a

primitive root.

• Example: Find a primitive root modulo 11100.

◦ We saw in the previous example that 2 was a primitive root modulo 112. Hence by the proposition above,
2 is a primitive root modulo 11d for any d ≥ 2 hence (in particular) for d = 100.

• Given a primitive root modulo pd, it is easy to construct a primitive root modulo 2pd:

• Proposition: If a is a primitive root modulo pd for p an odd prime, then a is a primitive root modulo 2pd if a
is odd, and a+ pd is a primitive root modulo 2pd if a is even.

◦ Proof: If a is odd, then a, a2, ... , aϕ(pd) are all odd and distinct modulo pd. Hence they all remain
invertible modulo 2pd, and are clearly still distinct.

◦ But since ϕ(2pd) = ϕ(pd), the elements a, a2, ... , aϕ(pd) exhaust all of the distinct unit residue classes
modulo 2pd, meaning that a is a primitive root.

◦ If a is even then a+ pd is odd, so by the argument above we see a+ pd is a primitive root modulo 2pd.

• Example: Find a primitive root modulo 2 · 11100.
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◦ From before, we know that 2 is a primitive root modulo 11100. Since 2 is even, the above proposition
implies that 2 + 11100 is a primitive root modulo 2 · 11100.

• With all of the above results, we can now �nish the characterization of the moduli that have primitive roots:

• Theorem (Primitive Roots Modulo m): There exists a primitive root modulo m if and only if m = 1, 2, 4, or
m = pk or 2pk for an odd prime p and some k ≥ 1.

◦ Proof: We have already shown the existence of primitive roots in all of these cases except m = 1, 2, 4,
but the existence of a primitive root for those moduli is trivial. All we have left to do is show that a
primitive root cannot exist for other m.

◦ We begin with the observation that if there exists a primitive root r modulo m, then necessarily the
congruence x2 ≡ 1 (mod m) has only two solutions modulo m.

∗ Suppose u = rd for some 0 ≤ d < ϕ(m) is a solution to u2 ≡ 1 (mod m).

∗ Then r2d ≡ 1 mod m, so since r has order ϕ(m) there are only two possibilities for d, namely d = 0
and d = ϕ(m)/2.

∗ Hence, there are only two possible u (which are, indeed, u = 1 and u = −1).

◦ We then see that there cannot exist a primitive root modulo 4p for any prime p (including p = 2).

∗ The congruence x2 ≡ 1 (mod 4p) has the four distinct solutions x ≡ ±1 and x ≡ ±(2p − 1), so by
the above there cannot be a primitive root.

◦ Similarly, there cannot exist a primitive root modulo pq for any distinct odd primes p and q.

∗ By the Chinese Remainder Theorem, there are four solutions to x2 ≡ 1 (mod pq), obtained by solving
the congruences x ≡ ±1 (mod p) and x ≡ ±1 (mod q) simultaneously.

◦ We also note that if r is a primitive root modulo m and d divides m, then r is a primitive root modulo
d.

∗ If the powers of r yield all the invertible residue classes modulo m, then they certainly yield all the
invertible residue classes modulo d.

◦ Therefore: if m is divisible by 4p for any prime p, or is divisible by two distinct odd primes, there is no
primitive root modulo m. These two cases together encompass everything we needed to show, so we are
done.

• For completeness, we restate a result we showed in a previous chapter about the number of primitive roots
modulo m:

• Proposition (Number of Primitive Roots): If there exists a primitive root modulo m, then there are precisely
ϕ(ϕ(m)) primitive roots modulo m.

◦ Proof: Suppose that there exists a primitive root u modulo m, whose order is therefore ϕ(m).

◦ We know that the invertible residue classes modulo p are represented by u1, . . . , uϕ(m), so it su�ces to
determine how many of these have order ϕ(m).

◦ Since the order of uk is ϕ(m)/ gcd(k, ϕ(m)), we see that uk is a primitive root if and only if k is relatively
prime to ϕ(m).

◦ There are ϕ(ϕ(m)) such k, so there are ϕ(ϕ(m)) primitive roots modulo m.

• Example: Find a primitive root modulo 232020 and the number of primitive roots modulo 232020.

◦ First, we �nd a primitive root modulo 23. The order of any element will divide ϕ(23) = 22, so to see
that a given element is a primitive root we need only check that its order does not divide 11 or 2.

◦ It is not hard to check that both 2 and 3 have order 11, but 52 ≡ 2 (mod 23) and 511 ≡ −1 (mod 23),
so 5 has order 22 hence is a primitive root modulo 23.

◦ Then we can also compute 522 ≡ 323 (mod 232) using successive squaring. Hence by our results above,
we see that 5 is a primitive root modulo 232, and hence modulo 23d for any value of d ≥ 2. This means
that 5 is a primitive root modulo 232020.

◦ The total number of primitive roots is ϕ(ϕ(232020)) = ϕ(22 ·232019) = ϕ(22)ϕ(232019) = 10 · 22 · 232018 .
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4.4 Arithmetic in Z[i]

• In this section, we use all of the ring-theoretic machinery we have developed to study the arithmetic of the
Gaussian integer ring Z[i].

◦ Our �rst goal is to study modular arithmetic in this ring.

◦ Then we turn our attention to characterizing the irreducible elements in this ring. Since Z[i] is a Euclidean
domain, we know that prime elements are the same as irreducible elements, but we will generally use the
term �irreducible� element when referring to Z[i], so as not to cause too much confusion with the term
�prime number� when we refer to rational integers in Z.
◦ We will reserve the letter p for a prime integer (in Z), and we will use π to denote an irreducible element
in Z[i]. (The use of the letter π is traditional, and should not cause confusion with the real number π.)

• Recall that in Z[i], we have the norm map N(a + bi) = a2 + b2 = |a+ bi|2, taking values in the nonnegative
integers, and that this map is multiplicative: N(zw) = N(z)N(w).

◦ Additionally, solving N(a+ bi) = 1 shows that the units in Z[i] are ±1 and ±i.
◦ Also recall, as we showed earlier, that if N(a+bi) is an integer prime, then a+bi is necessarily irreducible.

4.4.1 Residue Classes in Z[i]

• A natural question is: if β ∈ Z[i] is some arbitrary element, how many residue classes modulo β are there,
and is there an easy way to write them down?

◦ It might seem as though the division algorithm would give them to us: we proved that for any α ∈ Z[i],

there exist a q, r ∈ Z[i] such that α = qβ + r, and where N(r) ≤ 1

2
N(β).

◦ Thus, the collection of possible remainders r with N(r) ≤ 1

2
N(β) certainly give all the residue classes.

◦ However, the quotient and remainder arising in the division algorithm are not guaranteed to be unique:

there can be more than one possible r such that α ≡ r (mod β) and N(r) <
1

2
N(β).

• It turns out that it is much easier to understand the modular arithmetic in Z[i] from a geometric point of
view.

◦ In the complex plane, the Gaussian integers form the set of lattice points, the points whose coordinates
are both integers. We can also view Gaussian integers as vectors in this lattice, since the additive
structure of Z[i] agrees with the additive structure of vectors in the plane.

2 + i

−1 + 2i

Figure 1: The Gaussian integers as a lattice, and the two vectors β = 2 + i and iβ = −1 + 2i.

◦ Now consider the multiples of a given Gaussian integer β: every multiple is of the form (x + iy)β =
xβ + y(iβ), so it is an integer linear combination of β and iβ.
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◦ Thus, drawing all of the Z[i]-multiples of β is the same as drawing all of the vectors that can be obtained
by an integer number of �steps� each in the direction of β or iβ, which produces a square tiling of the
plane.

Figure 2: The Z[i]-multiples of β = 2 + i with marked vectors β = 2 + i and iβ = −1 + 2i.

◦ Geometrically, two Gaussian integers will be congruent modulo β if and only if they are located in the
same position within two di�erent squares.

• Thus, if we take the collection of lattice points inside any one of these squares, it will yield a �fundamental
region� for the Gaussian integers modulo β: the elements in the fundamental region will be unique represen-
tatives for the residue classes modulo β.

Figure 3: A fundamental region for Z[i] modulo β = 2 + i and a marked set of representatives.

• As shown in the �gures, there is a fundamental region for Z[i] modulo 2 + i containing the 5 points 0, i, 2i,
1 + i, and 1 + 2i.

◦ Hence, every element of Z[i] is congruent modulo 2 + i to 0, i, 2i, 1 + i, or 2 + i.

◦ We conclude that there are 5 residue classes modulo 2 + i. (Recall that we showed this earlier using a
di�erent approach.)

• Notice that N(2 + i) = 5, and there are 5 residue classes modulo 2 + i. In general, it turns out that there are
exactly N(β) residue classes modulo β for any nonzero β. We can prove this using (of all things) a theorem
from elementary geometry!
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• Theorem (Pick's Theorem): If R is a polygon in the plane whose vertices are all lattice points, then the area

of R is given by the formula A = I +
1

2
B − 1, where I is the number of lattice points in the interior of R and

B is the number of lattice points on the boundary of R.

◦ Remark: We say a point of R is a boundary point if it lies on one of the sides of R. We say a point of R
is an interior point if it does not lie on one of the sides of R.

◦ The result is easiest to see with an example: by drawing a rectangle around the given polygon and

subtracting small triangles, one can see that this polygon has area
17

2
= 5 +

9

2
− 1.

Figure 4: A lattice polygon with 9 boundary points (in blue) and 5 interior points (in red).

◦ We will omit the full proof4, since it is not really relevant to our goals.

• We can use Pick's theorem to give an easy computation of the number of residue classes in Z[i] modulo β:

• Theorem (Number of Residue Classes in Z[i]/β): If β is a nonzero Gaussian integer, the number of distinct
residue classes in Z[i] modulo β is equal to N(β).

◦ Proof: Consider a fundamental region for Z[i] modulo β.

◦ By our geometric arguments above, every Gaussian integer has a unique representative modulo β that
lies in the fundamental region, which we can take to be the square whose vertices are 0, β, iβ, and β+ iβ
in the complex plane.

◦ Each interior point of this square yields one residue class.

◦ The boundary points of the square come in pairs (on opposite edges of the square) each yielding one
residue class, except for the four vertices (0, β, iβ, β + iβ) which all lie in the same residue class.

◦ Thus, the total number of residue classes is I +
B − 4

2
+ 1 = I +

1

2
B − 1.

◦ But by Pick's Theorem, this is precisely the area of the fundamental region. Since this region is a square
with side length |β|, the area is simply |β|2 = N(β).

• Thus, to list all of the residue classes modulo β ∈ Z[i], we need only give a list of N(β) inequivalent residue
classes, which must therefore be exhaustive. (To generate this list, we can draw a fundamental region for Z[i]
modulo β.)

• Example: Find representatives for the residue classes modulo 2 + 2i in Z[i].

◦ We have N(2 + 2i) = 8 so there are 8 residue classes.

◦ It is then not hard to verify that the 8 values 0, 1, 2, 3, i, 1 + i, 2 + i, and 3 + i are all pairwise distinct
modulo 2 + 2i. Thus, these are representatives of all of the residue classes.

4To summarize: �rst establish Pick's theorem for rectangles (an easy counting argument), and that it is consistent with taking unions
of regions along an edge and also with removing a portion of a region along an edge. Then deduce that it holds for right triangles, then
for all triangles, and �nally that any polygonal region can be constructed by adding or subtracting triangular regions from rectangles.

30



4.4.2 Prime Factorization in Z[i]

• We now turn our attention to factorization in Z[i].

◦ If π ∈ Z[i], π certainly divides N(π). So if π is irreducible in Z[i], then since irreducibles are prime
elements in a Euclidean domain, we conclude that π must divide one of the (integer) prime factors of
the integer N(π).

◦ Therefore, to identify the irreducible elements of Z[i], we need to study how primes p ∈ Z factor in Z[i].

• Proposition (Reducibility and Sums of Squares): If p is a prime integer, then p is irreducible in Z[i] if and only
if p is not the sum of two squares (of integers). In particular, 2 is reducible in Z[i], while any prime congruent
to 3 modulo 4 is irreducible in Z[i].

◦ Proof: Suppose that p = (a+ bi)(c+ di) for some nonunits a+ bi and c+ di, where p is a prime in Z.
◦ Taking norms yields p2 = N(p) = (a2 + b2)(c2 + d2), and now since a+ bi and c+ di are not units, both
a2 + b2 and c2 + d2 must be larger than 1.

◦ The only possibility is a2 + b2 = c2 + d2 = p, so we see that p = a2 + b2 for some integers a and b.

◦ Conversely, if p = a2 + b2 for some integers a and b, we immediately have the factorization p = (a +
bi)(a− bi).
◦ For the last statement, clearly 2 = 12 + 12, and also, any square is 0 or 1 modulo 4, so the sum of two
squares cannot be congruent to 3 modulo 4.

• We are now left to analyze primes congruent to 1 modulo 4.

◦ By testing a few small cases like 5 = (2− i)(2 + i) and 13 = (3 + 2i)(3− 2i), it would appear that such
primes always factor into a product of two complex-conjugate irreducible factors in Z[i]. This turns out
to be the case.

• Proposition (Factorization of 1 Mod 4 Primes): If p is a prime integer and p ≡ 1 (mod 4), then p is a reducible
element in the ring Z[i], and its factorization into irreducibles is p = (a + bi)(a − bi) for some a and b with
a2 + b2 = p.

◦ First, we show that there exists some integer n such that p divides n2 + 1. Then we use the result to
show that p is reducible in Z[i].

◦ Proof: For the �rst part, let p = 4k + 1 and let u be a primitive root modulo p (which we have shown
necessarily exists).

◦ Then u4k ≡ 1 mod p, so u2k ≡ −1 (mod p), since its square is 1 but it cannot equal 1 (as otherwise u
would have order ≤ 2k and thus not be a primitive root).

◦ Then uk = n is an element whose square is −1 modulo p, so p divides the integer n2 + 1.

◦ For the second part, we see that p divides n2 + 1 = (n+ i)(n− i) in Z[i].

◦ Then, since p is a real number, if p divides one of n± i then taking complex conjugates would show that
p also divides the other. But this is not possible, since then p would divide (n+ i)− (n− i) = 2i, which
it clearly does not.

◦ Therefore, p is not a prime element in Z[i], so it must be reducible. By the previous proposition, this
means there exist integers a and b with p = a2 + b2.

◦ Then N(a+bi) = N(a−bi) = p so these two elements are both irreducible, meaning that the factorization
of p in Z[i] is p = (a+ bi)(a− bi) as claimed.

• This completes our characterization of the irreducible elements in Z[i]. Explicitly:

• Theorem (Irreducibles in Z[i]): Up to associates, the irreducible elements in Z[i] are as follows:

1. The element 1 + i (of norm 2).

2. The primes p ∈ Z congruent to 3 modulo 4 (of norm p2).
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3. The distinct irreducible factors a+ bi and a− bi (each of norm p) of p = a2 + b2 where p ∈ Z is congruent
to 1 modulo 4.

◦ Proof: The above propositions show that each of these are irreducible elements; we need only show there
are no others. So suppose π = a+ bi is an irreducible element in Z[i].

◦ Then N(π) = p1p2 · · · pk for some (integer) primes pi ∈ Z; since π is a prime element we conclude that it
must divide one of the pi. But we have characterized how pi factors into irreducibles in Z[i], so it must
be associate to one of the elements on our list above.

• Using this characterization of irreducible elements, we can describe a method for factoring an arbitrary
Gaussian integer into irreducibles. (This is the �prime factorization� in Z[i].)

◦ First, �nd the prime factorization of N(a+ bi) = a2 + b2 over the integers Z, and write down a list of all
(rational) primes p ∈ Z dividing N(a+ bi).

◦ Second, for each p on the list, �nd the factorization of p over the Gaussian integers Z[i].

◦ Finally, use trial division to determine which of these irreducible elements divide a + bi in Z[i], and to
which powers. (The factorization of N(a+ bi) can be used to determine the expected number of powers.)

• Example: Find the factorization of 4 + 22i into irreducibles in Z[i].

◦ We compute N(4 + 22i) = 42 + 222 = 22 · 53. The primes dividing N(4 + 22i) are 2 and 5.

◦ Over Z[i], we �nd the factorizations 2 = −i(1 + i)2 and 5 = (2 + i)(2− i).
◦ Now we just do trial division to �nd the correct powers of each of these elements dividing 4 + 22i.

◦ Since N(4 + 22i) = 22 · 53, we should get two copies of (1 + i) and three elements from {2 + i, 2− i}.

◦ Doing the trial division yields the factorization 4 + 22i = −i · (1 + i)2 · (2 + i)3 . (Note that in order to

have powers of the same irreducible element, we left the unit −i in front of the factorization.)

• The primes appearing in the example above were small enough to factor over Z[i] by inspection, but if p is large
then it is not so obvious how to factor p in Z[i]. We brie�y explain how to �nd this expression algorithmically.

◦ Per the proof given above, we �rst want to �nd n such that p divides n2 + 1, which is equivalent to
�nding a square root of −1 modulo p.

◦ One way to search for such values is to choose a (random) unit u modulo p: then since up−1 ≡ 1 (mod
p), we know that the square of u(p−1)/2 will be ≡ 1 (mod p). We will show later that half of the units
modulo p will have u(p−1)/2 ≡ −1 (mod p), in which case the value u(p−1)/4 will be a square root of −1
modulo p. By trying various choices for u, we can eventually �nd the desired n. (Note of course that we
can compute u(p−1)/4 very e�ciently using successive squaring.)

◦ Now suppose we have computed such an n: if we factor p = ππ in Z[i], then since π divides n2 + 1 =
(n+ i)(n− i) and π is a prime element, either π divides n+ i or π divides n− i. Equivalently, either π
divides n+ i or π divides n+ i.

◦ Furthermore, since p clearly does not divide n + i, we see that exactly one of π and π divides n + i.
Therefore, either π or π is a greatest common divisor of p and n+ i in Z[i].

◦ Thus, to compute the solution to p = a2 + b2, we can use the Euclidean algorithm in Z[i] to �nd a
greatest common divisor of p and n+ i in Z[i]: the result will be an element π = a+ bi with a2 + b2 = p.

• Example: Express the prime p = 3329 as the sum of two squares.

◦ Using modular exponentiation, we can verify that 3(p−1)/4 ≡ 1729 (mod p). Thus, our discussion above
tells us that 1729 is a square root of −1 modulo p, and indeed, 17292 + 1 = 898 · 3329.

◦ Now we compute the gcd of 1729 + i and 3329 in Z[i] using the Euclidean algorithm:

3329 = 2(1729 + i) + (−129− 2i)

1729 + i = −13(−129− 2i) + (52− 25i)

−129− 2i = (−2− i)(52− 25i)
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◦ The last nonzero remainder is 52− 25i, and indeed we can see that 3329 = 522 + 252 .

• As a corollary to our characterization of the irreducible elements in Z[i], we can deduce the following theorem
of Fermat on when an integer is the sum of two squares:

• Theorem (Fermat): Let n be a positive integer, and write n = 2kpn1
1 · · · p

nk

k qm1
1 · · · qmd

d , where p1, · · · , pk are
distinct primes congruent to 1 modulo 4 and q1, · · · , qd are distinct primes congruent to 3 modulo 4. Then n
can be written as a sum of two squares in Z if and only if all the mi are even. Furthermore, in this case, the
number of ordered pairs of integers (A,B) such that n = A2 +B2 is equal to 4(n1 + 1)(n2 + 1) · · · (nk + 1).

◦ Proof: Observe that the question of whether n can be written as the sum of two squares n = A2 +B2 is
equivalent to the question of whether n is the norm of a Gaussian integer A+Bi.

◦ Write A + Bi = ρ1ρ2 · · · ρr as a product of irreducibles (unique up to units), and take norms to obtain
n = N(ρ1) ·N(ρ2) · · · · ·N(ρr).

◦ By the classi�cation above, if ρ is irreducible in Z[i], then N(ρ) is either 2, a prime congruent to 1
modulo 4, or the square of a prime congruent to 3 modulo 4. Hence there exists such a choice of ρi with
n =

∏
N(ρi) if and only if all the mi are even.

◦ Furthermore, since the factorization of A+Bi is unique, to �nd the number of possible pairs (A,B), we
need only count the number of ways to select terms for A + Bi and A − Bi from the factorization of n
over Z[i], which is n = i−k(1 + i)2k(π1π1)n1 · · · (πkπk)nkqm1

1 · · · qmd

d .

◦ Up to associates, we must choose A+Bi = (1+i)k(πa1
1 π1

b1) · · · (πak

k πk
bk)q

m1/2
1 · · · qmd/2

d , where ai+bi = ni
for each 1 ≤ i ≤ k.
◦ Since there are ni + 1 ways to choose the pair (ai, bi), and 4 ways to multiply A+Bi by a unit, the total
number of ways is 4(n1 + 1) · · · (nk + 1), as claimed.

• Example: Find all ways of writing n = 6649 as the sum of two squares.

◦ We factor 6649 = 61 · 109. This is the product of two primes each congruent to 1 modulo 4, so it can be
written as the sum of two squares in 16 di�erent ways.

◦ We compute 61 = 52 + 62 and 109 = 102 + 32 (either by the algorithm above or by inspection), so the
16 ways can be found from the di�erent ways of choosing one of 5± 6i and multiplying it with 10± 3i.

◦ Explicitly: (5 + 6i)(10 + 3i) = 32 + 75i, and (5 + 6i)(10− 3i) = 68 + 45i, so we obtain the sixteen ways
of writing 6649 as the sum of two squares as (±32)2 + (±75)2, (±68)2 + (±45)2, and the eight other
decompositions with the terms interchanged.

• As another application of our results, we can prove a classical characterization of the �Pythagorean triples� of
integers (a, b, c) such that a2 + b2 = c2 (so named because these represent the side lengths of a right triangle).

◦ If a2 + b2 = c2 for integers a, b, c, note that if two of a, b, c are divisible by a prime p, then so is the third.
We can then �reduce� the triple (a, b, c) by dividing each term by p to obtain a new triple (a′, b′, c′) with
(a′)2 + (b′)2 = (c′)2.

◦ For this reason it is su�cient to characterize the �primitive� Pythagorean triples with gcd(a, b, c) = 1.
For such triples, since a and b cannot both be odd (since then a2 + b2 ≡ 2 (mod 4) cannot be a perfect
square) we see that exactly one of a, b is even.

• Theorem (Pythagorean Triples): Every triple of positive integers (a, b, c) with a2+b2 = c2 with gcd(a, b, c) = 1
and a even is of the form (a, b, c) = (2st, s2 − t2, s2 + t2), for some relatively prime integers s > t of opposite
parity, and (conversely) any such triple is Pythagorean and primitive.

◦ Proof: It is easy to see that (2st)2+(s2−t2)2 = (s2+t2)2 simply by multiplying out, and it is likewise not
di�cult to see that if s and t are relatively prime and have opposite parity, then gcd(s2− t2, s2 + t2) = 1
so this triple is primitive.

◦ To show that (a, b, c) must be of the desired form, suppose that a2 + b2 = c2, and factor the equation in
Z[i] as (a+ bi)(a− bi) = c2.
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◦ We claim that a+ bi and a− bi are relatively prime in Z[i]: any gcd must divide 2x and 2y, hence divide
2. However, a+ bi is not divisible by the prime 1 + i, since a and b are of opposite parity.

◦ Hence, since a+ bi and a− bi are relatively prime and have product equal to a square, by the uniqueness
of prime factorization in Z[i], there exists some s + it ∈ Z[i] and some unit u ∈ {1, i,−1,−i} such that
a+ bi = u(s+ ti)2.

◦ Multiplying out yields a+ bi = u
[
(s2 − t2) + (2st)i

]
. Since a is even, b is odd, and both are positive, we

must have u = −i and s > t: then we see a = 2st, b = s2 − t2, and c = s2 + t2 as claimed.

• Using the characterization above, we can easily generate a list of Pythagorean triples with small hypotenuses.

◦ Here is a table of the Pythagorean right triangles with hypotenuse ≤ 100:
s t Primitive Triple Non-Primitive Triples

2 1 (3, 4, 5) (6, 8, 10), (9, 12, 15), ... , (60, 80, 100)
3 2 (5, 12, 13) (10, 24, 26), (15, 36, 39), ... , (35, 84, 91)
4 1 (8, 15, 17) (16, 30, 34), (24, 45, 51), ... , (40, 75, 85)
4 3 (7, 24, 25) (14, 48, 50), (21, 72, 75)
5 2 (20, 21, 29) (40, 42, 58), (60, 63, 87)
5 4 (9, 40, 41) (18, 80, 82)
6 1 (12, 35, 37) (24, 70, 74)
6 5 (11, 60, 61)

s t Primitive Triple

7 2 (28, 45, 53)
7 4 (33, 56, 65)
7 6 (13, 84, 85)
8 1 (16, 63, 65)
8 3 (48, 55, 73)
8 5 (39, 80, 89)
9 2 (36, 77, 85)
9 4 (65, 72, 97)

• We can also enumerate all of the Pythagorean right triangles having a side of a particular length.

• Example: Find all Pythagorean right triangles having one side of length 20.

◦ From our result above, any such right triangle has legs of lengths k(2st) and k(s2− t2), with hypotenuse
k(s2 + t2), where s > t are positive integers of opposite parity and k is some positive integer.

◦ If 20 = 2stk, then 10 = stk, so (s, t, k) = (10, 1, 1) or (5, 2, 1), yielding 20-99-101 and 20-21-29 triangles.

◦ If 20 = k(s2− t2), then k must be divisible by 4. Since k 6= 20 we see k = 4, and then s2− t2 = 5 requires
s = 3 and t = 2. This yields a 15-20-25 triangle.

◦ If 20 = k(s2 + t2), then since s2 + t2 ≥ 5 the only possibilities are k = 4 (yielding s = 2 and t = 1), k = 2
(yielding s = 3 and t = 1 but these are not of opposite parity) or k = 1 (yielding s = 4 and t = 2 but
again these are not of opposite parity). This yields a 12-16-20 triangle.

◦ Hence there are four such triangles: (20, 99, 101), (20, 21, 29), (15, 20, 25), (12, 16, 20) .

• As a third corollary of our classi�cation, we obtain another way to construct �nite �elds: if p ∈ Z is a prime
congruent to 3 modulo 4, then, for R = Z[i], we know that R/pR is a �eld of size N(p) = p2.

◦ By drawing the fundamental region for R/pR, we can see that a set of residue class representatives is
given by the elements of the form a+ bi for 0 ≤ a, b ≤ p− 1.

◦ With p = 3, we obtain a �eld with 9 elements whose elements are the residue classes of 0, 1, 2, i, 1 + i,
2 + i, 2i, 1 + 2i, and 2 + 2i. In this �eld, for example, we have (1 + i) · (2 + i) = 1 + 3i ≡ 1 (mod 3).

◦ Notice that we constructed another �eld of order 9 earlier: F3[x] modulo x2+1. In this �eld, for example,
we have 1 + x · 2 + x = 2 + 3x+ x2 = 1.

◦ As can be veri�ed by trying out a few more examples, the arithmetic in these two �elds turns out to be
identical! (Simply replace i by x.)

◦ Here is the reason: notice that F3[x] modulo x2 + 1 is obtained from Z by �rst declaring that 3 is equal
to 0 (thus forming F3 = Z/3Z), and then introducing a new element x whose square is −1.

◦ On the other hand, Z[i] modulo 3 is obtained from Z by �rst introducing a new element i whose square
is −1, and then declaring that 3 is equal to 0.

◦ These two �elds, therefore, are related because these two operations can be performed in either order.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2022. You may not reproduce or distribute this
material without my express permission.
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