Topics on this exam:

- Cryptography terminology $+$ history
- Rabin encryption
- RSA encryption
- Zero-knowledge proofs
- Primality tests (Fermat, Miller-Rabin)
- Factorization algorithms (Pollard $p-1$, Pollard ρ)
- Euclidean domains
- The Euclidean algorithms in $\mathbb{Z}[i]$ and $F[x]$
- Irreducible and prime elements
- Unique factorization
- The structure of R/rR
- Units and zero divisors in R/rR
- Multiplicative inverses of units in R/rR
- The Chinese remainder theorem in R/rR
- The order of a unit in a ring
- Fermat's little theorem in R/rR
- Euler's theorem in R/rR
- Roots of polynomials
- Factorization and irreducibility in $F[x]$
- \bullet Finite fields
- 1. For each statement, briefly explain whether it is true or false in 1-2 sentences:
	- (a) Many historical cryptosystems were designed that are very secure and hard to break.
	- (b) Asymmetric cryptosystems are much more secure than symmetric cryptosystems.
	- (c) Rabin encryption is easy to break with a computer, and should not be used.
	- (d) RSA encryption is extremely secure and is suitable for modern computerized use.
	- (e) There exists a way for Peggy to convince Victor that she knows a secret without divulging any information about it.
	- (f) It is feasible to decide whether a large integer is prime very quickly on a computer.
	- (g) If $a^N \equiv a \pmod{N}$ for every integer a, then N must be prime.
	- (h) It is feasible to determine the factorization of a large integer very quickly on a computer.
- 2. For each pair of elements, use the Euclidean algorithm in the ring R to calculate a greatest common divisor $d = \gcd(a, b)$ and also to find $x, y \in R$ such that $d = ax + by$.
	- (a) $a = x^4 + x$ and $b = x^3 + x$ in $\mathbb{F}_2[x]$. (b) $a = 11 + 24i$ and $b = 13 - i$ in $\mathbb{Z}[i]$.
	- (c) $a = x^3 x$ and $b = x^2 3x + 2$ in $\mathbb{R}[x]$.
	- (d) $a = 9 5i$ and $b = 3 + 2i$ in $\mathbb{Z}[i]$.
- 3. For each given a, p, and R, determine whether \overline{a} is a unit or a zero divisor in the ring of residue classes R/pR . If it is a unit find \overline{a}^{-1} , and if it is a zero divisor find a nonzero element \overline{b} with $\overline{a} \cdot \overline{b} = \overline{0}$.
	- (a) $a = 2 i$, $p = 5 + 5i$, $R = \mathbb{Z}[i]$. (b) $a = x + 3, p = x^2 - 2, R = \mathbb{R}[x]$. (c) $a = 3 + 4i$, $p = 7 - 8i$, $R = \mathbb{Z}[i]$. (d) $a = x^2 + x$, $p = x^4 + 1$, $R = \mathbb{F}_2[x]$. (e) $a = x^2 + x$, $p = x^3 + 3x + 1$, $R = \mathbb{F}_5[x]$.
- 4. Let $R = \mathbb{F}_2[x]$ and $p = x^3 + x^2 + x + 1$.
	- (a) List the 8 residue classes in R/pR .
	- (b) Calculate $\overline{x^2} + \overline{x^2 + 1}$, $\overline{x^2} \cdot \overline{x^2 + 1}$, and $\overline{x^2 + 1}$ in R/pR and express the results as $\overline{ax^2 + bx + c}$ for some $a, b, c \in \mathbb{F}_2$.
	- (c) Identify all of the units and zero divisors in R/pR .
	- (d) Verify Euler's theorem for the unit $x^2 + x + 1$ in R/pR .
	- (e) Solve the congruence $x^2 \cdot q(x) \equiv x+1 \pmod{x^3+x^2+x+1}$ in $\mathbb{F}_2[x]$.

5. Determine / calculate / find the following:

- (a) All elements $a + b\sqrt{-2}$ with $N(a + b\sqrt{-2}) = 9$ in $\mathbb{Z}[\sqrt{-2}]$.
- (b) The quotient and remainder when $19 + 3i$ is divided by $4 + i$ in $\mathbb{Z}[i]$.
- (c) The quotient and remainder when x^5 is divided by $x^3 + x$ in $\mathbb{R}[x]$.
- (d) The solution to $(1 + i)n \equiv 3 \pmod{8 + i}$ in $\mathbb{Z}[i]$.
- (e) All z with $z \equiv 2 i \pmod{3 + i}$ and $z \equiv 3 \pmod{4 + 5i}$ in $\mathbb{Z}[i]$.
- (f) All p with $p \equiv x \pmod{x^2}$ and $p \equiv 10 \pmod{x-2}$ in $\mathbb{R}[x]$.
- (g) The number of residue classes in $\mathbb{F}_7[x]$ modulo $x^3 + 5x + 2$.
- (h) All of the units and zero divisors in $\mathbb{F}_3[x]$ modulo $x^2 + 2x$.
- (i) All of the units and zero divisors in $\mathbb{F}_5[x]$ modulo x^2 .
- (j) The irreducible factorizations of $x^2 x + 4$ in $\mathbb{F}_2[x]$, $\mathbb{F}_3[x]$, and $\mathbb{F}_5[x]$.
- (k) The number of monic irreducible polynomials in $\mathbb{F}_2[x]$ of degree 7.
- (l) The number of monic irreducible polynomials in $\mathbb{F}_7[x]$ of degree 4.
- (m) The number of monic irreducible polynomials in $\mathbb{F}_2[x]$ of degree 10.

6. Prove the following:

- (a) Show that the element $7 + 4\sqrt{3}$ is a unit in $\mathbb{Z}[\sqrt{3}]$ 3 and find its multiplicative inverse.
- (b) Show that the element $(1 + \sqrt{5})^{2022}$ is not a unit, but $(2 + \sqrt{5})^{2022}$ is a unit in $\mathbb{Z}[\sqrt{5}]$ 5].
- (c) Show that the element $4+5i$ is irreducible and prime in $\mathbb{Z}[i]$.
- (d) Show that the element $2 + \sqrt{-7}$ is irreducible in $\mathbb{Z}[\sqrt{-7}]$.
- (e) Show that the element $1 + \sqrt{-7}$ is irreducible in $\mathbb{Z}[\sqrt{-7}]$. [Hint: Show that there are no elements of norm 2 or 4.]
- (f) Show that the element $1 + \sqrt{-7}$ is not prime in $\mathbb{Z}[\sqrt{-7}]$.
- (g) Show that $x^2 + x + 1$ is irreducible and prime in $\mathbb{F}_2[x]$.
- (h) Verify Euler's Theorem for the residue class of $x^2 + 1$ in $\mathbb{F}_2[x]$ modulo x^3 .
- (i) Verify Fermat's Little Theorem for the residue class of i in $\mathbb{Z}[i]$ modulo $2 + i$, given that there are 5 residue classes.
- (j) Show that $\mathbb{F}_5[x]$ modulo $x^3 + x + 1$ is a field.
- (k) Show that $\mathbb{F}_5[x]$ modulo $x^4 + x + 1$ is not a field.
- (l) Show that $\mathbb{R}[x]$ modulo $x^2 + 2x + 8$ is a field.
- (m) Construct, with proof, a field with exactly 125 elements.