E. Dummit's Math $3527 \sim$ Number Theory 1, Spring $2020 \sim$ Midterm 1 Review Answers

- 1. You are highly encouraged to write up 1 or 2 sentences on each of these topics yourself.
- 2. This problem is from homework 1. Please review the Euclidean algorithm there and in the notes if you had trouble. The answers are (a) $\gcd 4 = 4 \cdot 12 - 1 \cdot 44$, (b) $\gcd 6 = -168 \cdot 20223 + 1681 \cdot 2022$, (c) $\gcd 19 = 17 \cdot 12445 - 38 \cdot 5567$, (d) $1 = -55 \cdot 233 + 89 \cdot 144$.
- 3. (a) No, 10 and 25 not relatively prime. (b) Yes, by Euclid, inverse is $\overline{16}$. (c) Yes, by Euclid, inverse is $\overline{23}$. (d) No, 30 and 42 not relatively prime. (e) Yes, by Euclid, inverse is $\overline{19}$. (f) No, 32 and 42 not relatively prime.
- 4. Note that the order of any element modulo m divides $\varphi(m)$. We can then evaluate $a^{\varphi(m)/p}$ for primes p dividing $\varphi(m)$ to find the order. Also, if a has order n, then a^k has order $n/\gcd(n,k)$. (a) Note $2^{12} \equiv 1$, but $2^6 \equiv -1$, $2^4 \equiv 3$ so 2 has order 12. Also $3^3 \equiv 1$ and $3^1 \equiv 3$ so 3 has order 3. (b) Note $2^4 \equiv -1$ so $2^8 \equiv 1$ so 2 has order 8. Then $4 = 2^2$ has order $8/\gcd(2,8) = 4$ while $8 = 2^3$ has order $8/\gcd(3,8) = 8.$ (c) Note $2^4 \equiv 1$ but $2^2 \equiv 4$ so 2 has order 4. Then $4 = 2^2$ has order 2, while $8 = 2^3$ has order 4. (d) Note $3^4 \equiv 1$ but $3^2 \equiv 9$ so 3 has order 4. Also $5^2 \equiv 9$ so $5^4 \equiv 1$ so 5 also has order 4. But $15 \equiv -1$ has order 2. (e) Use successive squaring: note $5^2 \equiv 3$ so $5^4 \equiv 9$ and thus $5^5 \equiv 1$, so 5 has order 5. (f) Note $2^2 \equiv 4$, $2^4 \equiv 16$, $2^8 \equiv -19$, $2^{16} \equiv -24$, so $2^5 \equiv 32$, $2^{10} \equiv -1$, and $2^{20} \equiv 1$. Thus, 2 has order 20. Then $4 = 2^2$
 - has order 10, $8 = 2^3$ has order 20, $16 = 2^4$ has order 5, and $32 = 2^5$ has order 4.

(c) gcd $2^3 3^2 5^4$, lcm $2^4 3^3 5^4 7 \cdot 11$. (e) $\overline{4}^{-1} \equiv \overline{18}, \, \overline{5}^{-1} \equiv \overline{57}, \, \overline{6}^{-1} \equiv \overline{12}$. (b) By Euclid, gcd 3, lcm 921 · 177/3. 5. (a) By Euclid, gcd 8, lcm $256 \cdot 520/8$. (d) sum is $\overline{2}$, difference is $\overline{6}$, product is $\overline{0}$. (g) $n \equiv 24 \pmod{38}$ (f) Units $\{1, 3, 5, 9, 11, 13\}$, zero divs $\{2, 4, 6, 7, 8, 10, 12\}$. (h) $n \equiv 35 \pmod{50}$ (k) $10 \equiv -1$ by Wilson's theorem (l) 2 by Fermat's little theorem (i) $n \equiv 23 \pmod{380}$. (j) $n \equiv 119 \pmod{126}$. (n) $\varphi(121) = 110$ and $\varphi(5^57^{10}) = 5^44 \cdot 7^96$. (m) 1 by Euler's theorem (o) 3 or 5(r) 10 has order 2 mod 11, so period 2. (p) $\varphi(\varphi(97)) = \varphi(96) = 32.$ (q) 124/990

6. (a) Induct on *n* with base case n = 1. Inductive step: If $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$, then $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}} = \frac{1}{2^n} + \frac{$ $2 - \frac{1}{2^n} + \frac{1}{2^{n+1}} = 2 - \frac{1}{2^{n+1}}$ as required.

(b) Note $\tilde{p}|a \cdot a$, so since p is prime then p|a or p|a. Since the two conclusion statements are the same, we have p|a. (c) Suppose xy = 0. Then (ux)y = u(xy) = u0 = 0, and also $ux \neq 0$ since multiplying by u^{-1} would give x = 0(impossible). So ux is also a zero divisor.

(d) Note $\varphi(18) = 6$. Then $5^6 \equiv 1 \pmod{18}$ by Euler, but $5^2 \equiv 7$ and $5^3 \equiv -1 \pmod{18}$, so order does not divide 2 or 3, hence must be 6.

(e) Induct on *n*. Base case n = 1. Inductive step: if $b_n = 2^n + n$ then $b_{n+1} = 2(2^n + n) - n + 1 = 2^{n+1} + (n+1)$.

(f) If $p|k^2$ and $p|(k+1)^2$ then by (b) we have p|k and p|(k+1) so that p|(k+1) - k = 1, impossible. Alternatively, could use Euclid to see that $(2k+3)k^2 - (2k-1)(k+1)^2 = 1$.

(g) Induct on *n*. Base case n = 1: $\frac{1}{2} = \frac{1}{2}$. Inductive step: if $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$ then $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n}{n+1} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n+1}{n+2}$ as required. (h) Note $4^{239} \equiv 4 \pmod{239}$ by Fermat, so $4^{240} \equiv 4 \cdot 4 \equiv 16 \pmod{239}$. Likewise, since $\varphi(55) = 40, 4^{40} \equiv 1 \pmod{55}$

by Euler, so $2^{240} \equiv (2^{40})^6 \equiv 1^6 \equiv 1 \pmod{55}$.

(i) By Euler, $a^4 \equiv 1 \pmod{5}$ for every unit, and $0^4 \equiv 0 \pmod{5}$. Then the sum of three fourth powers is 0, 1, 2, or 3 mod 5, hence cannot be 2024 since 2024 is $4 \mod 5$.

(j) Note that $a^3 \equiv a \pmod{3}$ by Fermat, and also $a^2 \equiv a \pmod{2}$ so $a^3 \equiv a^2 \equiv a \pmod{2}$ also by Fermat. So $a^3 - a$ is divisible by both 2 and 3 hence by 6.

(k) Induct on n with base cases n = 1 and n = 2. Inductive step: if $d_n = 2^n$ and $d_{n-1} = 2^{n-1}$ then $d_{n+1} = 2^n + 2(2^{n-1}) = 2^{n-1}$ $2^n + 2^n = 2^{n+1}$ as required.

(1) If a = b then gcd(a, a) = a = lcm(a, a). Conversely if gcd(a, b) = lcm(a, b) then every prime must appear to the same power in the prime factorizations of a and b (since otherwise the higher power would be the power in the lcm and the lower power would be the power in the gcd), hence a = b.

(m) Note $3^1 \equiv 3$, $3^2 \equiv 9$, $3^4 \equiv 81 \equiv 20$, $3^8 \equiv 400 \equiv 34$. So $3^{10} \equiv 3^8 \cdot 3^2 \equiv 34 \cdot 9 \equiv 1$ so the order divides 10. But $3^5 \equiv 3^4 \cdot 3 \equiv 60$ and $3^2 \equiv 9$, so the order does not divide 2 or 5, so it is 10.

(n) If $p \le 100$ is prime then p|99! so p does not divide 99! - 1. By Wilson's theorem, $99! \equiv 100!/100 \equiv 100/100 \equiv 1$ (mod 101), so 101 does divide 99! - 1.