
E. Dummit's Math 3527 ∼ Number Theory I, Spring 2022 ∼ Homework 7, due Fri Mar 25th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Submit scans of your responses via Canvas.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Eve wants to decipher the ciphertext

c = 09925133775403023161145765436168132558312424526975951883114357491259354928694566

that Alice sent Bob using Bob's RSA key

N = 25721846750453992857920211151404185773973809170109756788979587593106010382198809

e = 257.

Eve manages to sneak in and use Bob's decryption computer: she �rst asks it to decode the message c, but
Bob has programmed his computer to remember all of the ciphertexts it has decoded and not allow them to
be decoded again, so Eve's �rst attempt fails. Eve then asks the computer to decipher the message

2ec = 23134950268396883542330416160947543385253909800862777028533354726015417063152123

and it returns the response

w = 02280248284034080022224826080806382820080830084208281010482840340428243040380834.

From the result, Eve is able to �nd Alice's original plaintext m that was encoded in the standard way (a = 00,
b = 01, ... , z = 25): how did she do this, and what was Alice's message? [Hint: What is the decryption of
2ec?]

2. Factor the given integers using the stated procedure (make sure to give enough detail so the computations
can be followed):

(a) N = 1084 055 561 by looking for a Fermat factorization.

(b) N = 5686 741 440 097 by looking for a Fermat factorization.

(c) N = 1032 899 106 233 by using Pollard's (p− 1)-algorithm with a = 2.

(d) N = 12 038 459 by using Pollard's (p− 1)-algorithm with a = 2.

(e) N = 1626 641 013 131 by using Pollard's ρ-algorithm with a = 2 and p(x) = x2 + 1.

(f) N = 12 038 459 by using Pollard's ρ-algorithm with a = 2 and p(x) = x2 + 1.

3. Two of the following six integers are prime and the other four are composite:

N1 = 147451228887363586625323456966525905720989842312760509775958662775459536677624741

N2 = 181724486732607374235034401344439931270145141565372874381350646276632766328969281

N3 = 258424126740178352128100370736889906817607518086806632752038758788555704304604649

N4 = 324234657928347051123113232023409710234012389751239847120398471917665655581200339

N5 = 408869971164328247524265450583823930434406844303142816841351879439544818685702841

N6 = 542408184634943257672698834917404611542248228873337459368210624910406937582942097

(a) Try the Fermat test for each of these integers. (Stop after you �nd the integer is composite, or after 3
tests.)

(b) Try the Miller-Rabin test for each of the integers remaining after part (a). (Stop after you �nd the
integer is composite, or after 3 tests.)

(c) Your results from parts (a)-(b) should have identi�ed the four composite numbers. Why can't either of
these tests prove that the remaining two integers are actually prime?
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4. For each element in each ring Z[
√
D], determine (i) whether it is a unit and if so �nd its multiplicative inverse,

and (ii) whether it is irreducible and if not �nd a nontrivial factorization.

(a) The elements −i, 3 + 2i, 1 + i, and 1 + 5i in Z[i].
(b) The elements 1 + 2

√
5, 9 + 4

√
5 , and 5 +

√
5 in Z[

√
5].

5. As proven on homework 2, the only possible primes of the form an−1 are the Mersenne numbers 2p−1 where
p is a prime. The goal of this problem is to study the prime factorizations of Mersenne numbers.

(a) Apply the Miller-Rabin test with a = 2, 3, 5 on 2p−1 for p = 11, 13, 17, 19, 23, 29. You should �nd that
three values are composite: why can you not conclude that the other three values are necessarily prime?

(b) Use Pollard's ρ-algorithm with a = 3 and polynomial p(x) = x2+1 to �nd the factorizations of the three
values 2p− 1 you identitied as composite in part (a). (Note that the largest one has three prime factors;
make sure to �nd all three by extending the computation past where the �rst prime factor is found.)
How many steps are required to �nd the factorizations?

Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

6. For all of the factorizations in problem 5, notice that all of the prime factors of 2p − 1 are congruent to 1
modulo p. The goal is now to prove this fact, which was �rst established by Euler.

(a) Suppose that q is a prime that divides 2p − 1. Show that the order of 2 modulo q must equal p.

(b) Suppose that q is a prime that divides 2p − 1. Show that q ≡ 1 (mod p).

7. As we have discussed, the Fermat test can only establish that a particular integer is composite, and cannot be
used to establish primality. The goal of this problem is to give a re�nement, due to Lucas, that can establish
primality.

(a) Suppose m is a positive integer such that there exists an element of order m− 1 modulo m. Show that
m must be prime.

(b) Suppose that a and m are positive integers such that am−1 ≡ 1 (mod m) but a(m−1)/p 6≡ 1 (mod m) for
any prime p dividing m− 1. Show that m must be prime.

The test from part (b) is called the Lucas primality criterion.

(c) Use the Lucas primality criterion to show that 1013 is prime, and then establish that 2027 is prime.
[Hint: Try a = 7 for both.]

(d) Use the Lucas primality criterion with a = 10 to show that the integer

N = 843156784620274963828079044664499378320177127026840734436833335222593049312927235387489615873

is prime. (You don't need to write all the results of the modular exponentiations, but just give the �rst
four and last four digits.)

2


