E. Dummit’s Math 3527 ~ Number Theory 1, Spring 2022 ~ Final Part B Review Answers

1. For more detailed solutions to problems like these, see the homework assignments and lecture notes.
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There are primitive roots mod 34 and 37 but not mod 35 or mod 36.
2 is a primitive root mod 32 hence mod 32°?2. Total number is p(p(32022)) = 2 . 32020,

2 is a primitive root mod 32022 so 2+ 32022 is a prim root mod 2-32°22, Total number is p(p(2-32022)) =
2. 32020_

The number of residue classes is N (7 — 5i) = 49 + 25 = 74.

By drawing the fundamental region (square with vertices 0, 8, i3, (1+4)8 =0, 2 —4, 1 + 24, 3+ i), and
picking inequivalent points, we get 0, 1, 2, 1+ 14, 2 + 4.

We have 5+ 5i = (14 ¢)(2 4+ ¢)(2 — 1), up to associates.

We have 11 + 12i = (2 — ¢)(7 — 2i), up to associates.

We have 999 = 33(6 — 4)(6 + 1), up to associates.

By Fermat’s theorem, 104 = 102 4 22 and 666 = 212 + 152 can, 224 and 420 cannot.

Since N(1+14) = 2, N(2+14) = 5, N(3 £ 2i) = 13, take (1 +i)%(2 +4)(3 + 2i) = —14 + 8 yielding
260 = 82 + 142, and also (1 +i)2(2 +i)(3 — 2i) = 2 + 16 yielding 260 = 22 + 162

Since N(1+14) =2, N(3) = 3%, N(2+4) = 5, take (1+1)3(2+1i)? = 21 — 3¢ yielding 450 = 212 + 32, and
also (1 +1)3(2+1)(2 — i) = 15 + 15i yielding 450 = 152 + 152

Solving k(s? + t?) = 65 gives various cases: k = 1 and s? + t? = 65 (with (s,t) = (8,1) or (7,4)), k=5
with s2 +¢? = 13 (with (s,t) = (3,2)), k = 13 with s +¢*> = 5 (with (s,¢) = (2,1)). Yields four triangles
(2kst, k(s? — 12), k(s? + t2)): 16-63-65, 25-60-65, 33-56-65, 39-52-65.

Solving k(s? — t2) = 49 gives various cases: k = 7 with (s +t)(s —t) = 7so s = 4 and t = 3, or
k=1 with (s +1t)(s —t) = 49 giving s +¢ =49, s —¢t = 1 so s = 50,¢ = 49. Yields two triangles
(2kst, k(s2 — t2), k(s? + t2)): 49-1200-1201, 49-168-175.

12,22,32 42 52 62,72,82,9% = 1,4,9,16,6,17,11,7,5 mod 19.

Mod 43 there are (43—1)/2 = 21, mod 49 the quadratic residues are the same as those mod 7 ((7—1)/2 = 3
choices) for a total of 7-3 = 21, mod 51 = 3- 17 the quadratic residues are those that are QRs mod 3 (1
choice) and 17 (8 choices) for a total of 1-8 = 8.

7 43 1 11 43 -1 14
Compute (43> <7> (7> ’ (43> (11) (11) , and (43)
<423> (473> = (=1)(=1) = 1 since (;) = —1 for p = 3,5 mod 8. So 11 and 14 are QRs mod 43

but 7 is not.
The QRs mod 432922 are the same as those mod 43, so 11 and 14 are QRs but 7 is not.

13 2027 -1 26 2 13 .

= —1for p=3,5 mod 8. So 13 is a QR but 26 is not.
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Compute (71> N <7l> <7l> —h (7> o <7> - hand (71> o <15) o (15> -
15 4
(11> = <11> = 1 using reciprocity for Jacobi symbols. So 15 is a QR but 28 is not.
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We compute <171> =— <7> =— (7) = —1. Since this is —1, 7 is not a QR mod 11, and thus it also

7
is not a QR mod 143. (Note however that the Jacobi symbol <M3> = +1, even though 7 is not a QR.)
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)l () = (Z=2) =1 Z)=_1forp= =) =
(u) We compute (307> (103) (131> since < ’ ) or p=5,7 mod &, and (307)
307N _ (25
141)  \141/)
47 245 10 2 5 47 2 _ 2
0 wemme (355) = (57) = () = () (&) =+ (5) =2 (5) == (5) -
B 177 245 2 \? /17 177 7 17
forp=1,7mod 8 and )( ) (m) <m>(n)(n>(7>
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2. Many problems of similar types were covered on the homework.
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(a) First note that there are N(4 + ¢) = 17 residue classes and since 4 + i is irreducible, there are 16 units.
Then (1+44)2 =2i,s0 (1+i)* = (20)> = —4=14, (1+4)® =i>=—1, and finally (14+4)! = (-1)2=1as
required.

11
(b) We compute <97> = <?I> = (191> = +1, so the Legendre symbol is +1. This means 11 is a quadratic

residue mod 97 so z2 = 11 (mod 97) has a solution.

(c) Completing the square gives (z + 3)2 = 5 (mod 101) so we must determine whether 5 is a quadratic
5 101 1
residue modulo 101. We compute (m) = (5> = (5> =1, so 5 is a quadratic residue and thus

there are solutions.

(d) Asin (c) we have (z + 3)2 =5 (mod 1012). The quadratic residues modulo 101? are the same as those
mod 101, so since 5 is a QR mod 101 from (c), it is also a QR mod 1012, so there is a solution here also.
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(e) We want to compute (p) If p =1 (mod 4), then (p> = (g) = +1 only when p = 1 (mod 3)
which together say p = 1 (mod 12). Likewise, if p = 3 (mod 4), then 3 = — <§) = +1 only when
p

p = 2 (mod 3), which together say p = 11 (mod 12). If p = 5,7 (mod 12) then the calculations show

B

(f) We want to compute <_3> If p=1 (mod 4), then <_3> = <_1> (3> =+4+1- E) = +1 only when
p p p /) \p 3
_ kewise, if p = Sy (2 (2= (P = (P) =
p =1 (mod 3). Likewise, if p = 3 (mod 4), then < ) ) = ( ’ ) (p) =-1 (3) = (3) = +1 only
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when p =1 (mod 3). So in either case, (p) = 41 only when p =1 (mod 3).

(g) Completing the square gives n? +4n —1 = (n+2)%2 — 5, so we want primes p such that there is a solution
to (n +2)? =5 (mod p), which is equivalent to solving 22 = 5 (mod p). Clearly there is a solution for
5
p = 2,5. For other p we compute () = (g) which is +1 for p = 1,4 (mod 5) and —1 for p = 2,3
p
(mod 5). So p divides some n? +4n — 1 iff p=2,5 or p = 1,4 (mod 5).

(h) Completing the square gives n? + 6n + 11 = (n + 3)? + 2, so we want primes p such that there is a
solution to (n + 3)? = —2 (mod p), which is equivalent to solving #? = —2 (mod p). Clearly there is a

-2

solution for p = 2. For other p we know () = +1 precisely when p = 1,3 (mod 8). So p divides some
p

n?+6n+11iff p=2or p=1,3 (mod 8).




