
E. Dummit's Math 3527 ∼ Number Theory 1, Spring 2022 ∼ Final Part B Review Answers

1. For more detailed solutions to problems like these, see the homework assignments and lecture notes.

(a) There are primitive roots mod 34 and 37 but not mod 35 or mod 36.

(b) 2 is a primitive root mod 32 hence mod 32022. Total number is ϕ(ϕ(32022)) = 2 · 32020.
(c) 2 is a primitive root mod 32022 so 2+32022 is a prim root mod 2 ·32022. Total number is ϕ(ϕ(2 ·32022)) =

2 · 32020.
(d) The number of residue classes is N(7− 5i) = 49 + 25 = 74.

(e) By drawing the fundamental region (square with vertices 0, β, iβ, (1 + i)β = 0, 2− i, 1 + 2i, 3 + i), and
picking inequivalent points, we get 0, 1, 2, 1 + i, 2 + i.

(f) We have 5 + 5i = (1 + i)(2 + i)(2− i), up to associates.

(g) We have 11 + 12i = i(2− i)(7− 2i), up to associates.

(h) We have 999 = 33(6− i)(6 + i), up to associates.

(i) By Fermat's theorem, 104 = 102 + 22 and 666 = 212 + 152 can, 224 and 420 cannot.

(j) Since N(1 + i) = 2, N(2 ± i) = 5, N(3 ± 2i) = 13, take (1 + i)2(2 + i)(3 + 2i) = −14 + 8i yielding
260 = 82 + 142, and also (1 + i)2(2 + i)(3− 2i) = 2 + 16i yielding 260 = 22 + 162.

(k) Since N(1+ i) = 2, N(3) = 32, N(2± i) = 5, take (1+ i)3(2+ i)2 = 21− 3i yielding 450 = 212 +32, and
also (1 + i)3(2 + i)(2− i) = 15 + 15i yielding 450 = 152 + 152.

(l) Solving k(s2 + t2) = 65 gives various cases: k = 1 and s2 + t2 = 65 (with (s, t) = (8, 1) or (7, 4)), k = 5
with s2+ t2 = 13 (with (s, t) = (3, 2)), k = 13 with s2+ t2 = 5 (with (s, t) = (2, 1)). Yields four triangles
(2kst, k(s2 − t2), k(s2 + t2)): 16-63-65, 25-60-65, 33-56-65, 39-52-65.

(m) Solving k(s2 − t2) = 49 gives various cases: k = 7 with (s + t)(s − t) = 7 so s = 4 and t = 3, or
k = 1 with (s + t)(s − t) = 49 giving s + t = 49, s − t = 1 so s = 50, t = 49. Yields two triangles
(2kst, k(s2 − t2), k(s2 + t2)): 49-1200-1201, 49-168-175.

(n) 12, 22, 32, 42, 52, 62, 72, 82, 92 ≡ 1, 4, 9, 16, 6, 17, 11, 7, 5 mod 19.

(o) Mod 43 there are (43−1)/2 = 21, mod 49 the quadratic residues are the same as those mod 7 ((7−1)/2 = 3
choices) for a total of 7 · 3 = 21, mod 51 = 3 · 17 the quadratic residues are those that are QRs mod 3 (1
choice) and 17 (8 choices) for a total of 1 · 8 = 8.

(p) Compute

(
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= 1, and
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)
= (−1)(−1) = 1 since

(
2

p

)
= −1 for p ≡ 3, 5 mod 8. So 11 and 14 are QRs mod 43

but 7 is not.

(q) The QRs mod 432022 are the same as those mod 43, so 11 and 14 are QRs but 7 is not.

(r) Compute

(
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=
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=
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= −1 for p ≡ 3, 5 mod 8. So 13 is a QR but 26 is not.
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=
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)
= 1 using reciprocity for Jacobi symbols. So 15 is a QR but 28 is not.

(t) We compute
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)
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)
= −1. Since this is −1, 7 is not a QR mod 11, and thus it also

is not a QR mod 143. (Note however that the Jacobi symbol

(
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)
= +1, even though 7 is not a QR.)



(u) We compute
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(v) We compute
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for p ≡ 1, 7 mod 8, and
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2. Many problems of similar types were covered on the homework.

(a) First note that there are N(4 + i) = 17 residue classes and since 4 + i is irreducible, there are 16 units.
Then (1 + i)2 ≡ 2i, so (1 + i)4 ≡ (2i)2 ≡ −4 ≡ i, (1 + i)8 ≡ i2 ≡ −1, and �nally (1 + i)16 ≡ (−1)2 ≡ 1 as
required.

(b) We compute

(
11

97

)
=

(
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11

)
=

(
9

11

)
= +1, so the Legendre symbol is +1. This means 11 is a quadratic

residue mod 97 so x2 ≡ 11 (mod 97) has a solution.

(c) Completing the square gives (x + 3)2 ≡ 5 (mod 101) so we must determine whether 5 is a quadratic

residue modulo 101. We compute

(
5

101

)
=

(
101

5

)
=

(
1

5

)
= 1, so 5 is a quadratic residue and thus

there are solutions.

(d) As in (c) we have (x + 3)2 ≡ 5 (mod 1012). The quadratic residues modulo 1012 are the same as those
mod 101, so since 5 is a QR mod 101 from (c), it is also a QR mod 1012, so there is a solution here also.

(e) We want to compute

(
3

p

)
. If p ≡ 1 (mod 4), then

(
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p

)
=

(p
3

)
= +1 only when p ≡ 1 (mod 3)

which together say p ≡ 1 (mod 12). Likewise, if p ≡ 3 (mod 4), then

(
3

p

)
= −

(p
3

)
= +1 only when

p ≡ 2 (mod 3), which together say p ≡ 11 (mod 12). If p ≡ 5, 7 (mod 12) then the calculations show(
3

p

)
= −1.

(f) We want to compute

(
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p

)
. If p ≡ 1 (mod 4), then

(
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)
=

(
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)(
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)
= +1 ·
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3

)
= +1 only when

p ≡ 1 (mod 3). Likewise, if p ≡ 3 (mod 4), then
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)
=

(
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)(
3
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)
= −1 · −
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3

)
=

(p
3

)
= +1 only

when p ≡ 1 (mod 3). So in either case,

(
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p

)
= +1 only when p ≡ 1 (mod 3).

(g) Completing the square gives n2+4n−1 = (n+2)2−5, so we want primes p such that there is a solution
to (n + 2)2 ≡ 5 (mod p), which is equivalent to solving x2 ≡ 5 (mod p). Clearly there is a solution for

p = 2, 5. For other p we compute

(
5

p

)
=

(p
5

)
which is +1 for p ≡ 1, 4 (mod 5) and −1 for p ≡ 2, 3

(mod 5). So p divides some n2 + 4n− 1 i� p = 2, 5 or p ≡ 1, 4 (mod 5).

(h) Completing the square gives n2 + 6n + 11 = (n + 3)2 + 2, so we want primes p such that there is a
solution to (n + 3)2 ≡ −2 (mod p), which is equivalent to solving x2 ≡ −2 (mod p). Clearly there is a

solution for p = 2. For other p we know

(
−2

p

)
= +1 precisely when p ≡ 1, 3 (mod 8). So p divides some

n2 + 6n+ 11 i� p = 2 or p ≡ 1, 3 (mod 8).


