- 1. For more detailed solutions to problems like these, see the homework assignments and lecture notes.
 - (a) There are primitive roots mod 34 and 37 but not mod 35 or mod 36.
 - (b) 2 is a primitive root mod 3² hence mod 3²⁰²². Total number is $\varphi(\varphi(3^{2022})) = 2 \cdot 3^{2020}$.
 - (c) 2 is a primitive root mod 3^{2022} so $2+3^{2022}$ is a prim root mod $2\cdot 3^{2022}$. Total number is $\varphi(\varphi(2\cdot 3^{2022})) = 2\cdot 3^{2020}$.
 - (d) The number of residue classes is N(7-5i) = 49 + 25 = 74.
 - (e) By drawing the fundamental region (square with vertices 0, β , $i\beta$, $(1+i)\beta = 0$, 2-i, 1+2i, 3+i), and picking inequivalent points, we get 0, 1, 2, 1+i, 2+i.
 - (f) We have 5 + 5i = (1 + i)(2 + i)(2 i), up to associates.
 - (g) We have 11 + 12i = i(2 i)(7 2i), up to associates.
 - (h) We have $999 = 3^3(6-i)(6+i)$, up to associates.
 - (i) By Fermat's theorem, $104 = 10^2 + 2^2$ and $666 = 21^2 + 15^2$ can, 224 and 420 cannot.
 - (j) Since N(1+i) = 2, $N(2 \pm i) = 5$, $N(3 \pm 2i) = 13$, take $(1+i)^2(2+i)(3+2i) = -14 + 8i$ yielding $260 = 8^2 + 14^2$, and also $(1+i)^2(2+i)(3-2i) = 2 + 16i$ yielding $260 = 2^2 + 16^2$.
 - (k) Since N(1+i) = 2, $N(3) = 3^2$, $N(2 \pm i) = 5$, take $(1+i)3(2+i)^2 = 21 3i$ yielding $450 = 21^2 + 3^2$, and also (1+i)3(2+i)(2-i) = 15 + 15i yielding $450 = 15^2 + 15^2$.
 - (l) Solving $k(s^2 + t^2) = 65$ gives various cases: k = 1 and $s^2 + t^2 = 65$ (with (s, t) = (8, 1) or (7, 4)), k = 5 with $s^2 + t^2 = 13$ (with (s, t) = (3, 2)), k = 13 with $s^2 + t^2 = 5$ (with (s, t) = (2, 1)). Yields four triangles $(2kst, k(s^2 t^2), k(s^2 + t^2))$: 16-63-65, 25-60-65, 33-56-65, 39-52-65.
 - (m) Solving $k(s^2 t^2) = 49$ gives various cases: k = 7 with (s + t)(s t) = 7 so s = 4 and t = 3, or k = 1 with (s + t)(s t) = 49 giving s + t = 49, s t = 1 so s = 50, t = 49. Yields two triangles $(2kst, k(s^2 t^2), k(s^2 + t^2))$: 49-1200-1201, 49-168-175.
 - (n) $1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2 \equiv 1, 4, 9, 16, 6, 17, 11, 7, 5 \mod 19.$
 - (o) Mod 43 there are (43-1)/2 = 21, mod 49 the quadratic residues are the same as those mod 7 ((7-1)/2 = 3 choices) for a total of $7 \cdot 3 = 21$, mod $51 = 3 \cdot 17$ the quadratic residues are those that are QRs mod 3 (1 choice) and 17 (8 choices) for a total of $1 \cdot 8 = 8$.

(p) Compute
$$\left(\frac{7}{43}\right) = -\left(\frac{43}{7}\right) = -\left(\frac{1}{7}\right) = -1$$
, $\left(\frac{11}{43}\right) = -\left(\frac{43}{11}\right) = -\left(\frac{-1}{11}\right) = 1$, and $\left(\frac{14}{43}\right) = \left(\frac{2}{43}\right) \left(\frac{7}{43}\right) = (-1)(-1) = 1$ since $\left(\frac{2}{p}\right) = -1$ for $p \equiv 3,5 \mod 8$. So 11 and 14 are QRs mod 43 but 7 is not.

(q) The QRs mod 43^{2022} are the same as those mod 43, so 11 and 14 are QRs but 7 is not.

(r) Compute
$$\left(\frac{13}{2027}\right) = \left(\frac{2027}{13}\right) = \left(\frac{-1}{13}\right) = 1$$
 and $\left(\frac{26}{2027}\right) = \left(\frac{2}{2027}\right) \left(\frac{13}{2027}\right) = (-1)(1) = -1$ since $\left(\frac{2}{p}\right) = -1$ for $p \equiv 3,5 \mod 8$. So 13 is a QR but 26 is not.

- (s) Compute $\left(\frac{28}{71}\right) = \left(\frac{2}{71}\right)^2 \left(\frac{7}{71}\right) = 1 \cdot -\left(\frac{71}{7}\right) = -\left(\frac{1}{7}\right) = -1$ and $\left(\frac{15}{71}\right) = -\left(\frac{71}{15}\right) = -\left(\frac{11}{15}\right) = \left(\frac{15}{11}\right) = \left(\frac{4}{11}\right) = 1$ using reciprocity for Jacobi symbols. So 15 is a QR but 28 is not.
- (t) We compute $\left(\frac{7}{11}\right) = -\left(\frac{11}{7}\right) = -\left(\frac{4}{7}\right) = -1$. Since this is -1, 7 is not a QR mod 11, and thus it also is not a QR mod 143. (Note however that the Jacobi symbol $\left(\frac{7}{143}\right) = +1$, even though 7 is not a QR.)

(u) We compute
$$\left(\frac{103}{307}\right) = -\left(\frac{307}{103}\right) = -\left(\frac{-2}{131}\right) = 1$$
 since $\left(\frac{-2}{p}\right) = -1$ for $p \equiv 5, 7 \mod 8$, and $\left(\frac{141}{307}\right) = \left(\frac{307}{141}\right) = \left(\frac{25}{141}\right) = 1$.
(v) We compute $\left(\frac{47}{245}\right) = \left(\frac{245}{47}\right) = \left(\frac{10}{47}\right) = \left(\frac{2}{47}\right) \left(\frac{5}{47}\right) = 1 \cdot \left(\frac{47}{5}\right) = 1 \cdot \left(\frac{2}{5}\right) = -1$ since $\left(\frac{2}{p}\right) = 1$ for $p \equiv 1, 7 \mod 8$, and $\left(\frac{177}{245}\right) = \left(\frac{245}{177}\right) = \left(\frac{68}{177}\right) = \left(\frac{2}{177}\right)^2 \left(\frac{17}{177}\right) = \left(\frac{177}{17}\right) = \left(\frac{7}{17}\right) = \left(\frac{17}{7}\right) = \left(\frac{3}{7}\right) = -1$.

- 2. Many problems of similar types were covered on the homework.
 - (a) First note that there are N(4+i) = 17 residue classes and since 4+i is irreducible, there are 16 units. Then $(1+i)^2 \equiv 2i$, so $(1+i)^4 \equiv (2i)^2 \equiv -4 \equiv i$, $(1+i)^8 \equiv i^2 \equiv -1$, and finally $(1+i)^{16} \equiv (-1)^2 \equiv 1$ as required.
 - (b) We compute $\left(\frac{11}{97}\right) = \left(\frac{97}{11}\right) = \left(\frac{9}{11}\right) = +1$, so the Legendre symbol is +1. This means 11 is a quadratic residue mod 97 so $x^2 \equiv 11 \pmod{97}$ has a solution.
 - (c) Completing the square gives $(x + 3)^2 \equiv 5 \pmod{101}$ so we must determine whether 5 is a quadratic residue modulo 101. We compute $\left(\frac{5}{101}\right) = \left(\frac{101}{5}\right) = \left(\frac{1}{5}\right) = 1$, so 5 is a quadratic residue and thus there are solutions.
 - (d) As in (c) we have $(x + 3)^2 \equiv 5 \pmod{101^2}$. The quadratic residues modulo 101^2 are the same as those mod 101, so since 5 is a QR mod 101 from (c), it is also a QR mod 101^2 , so there is a solution here also.
 - (e) We want to compute $\left(\frac{3}{p}\right)$. If $p \equiv 1 \pmod{4}$, then $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) = +1$ only when $p \equiv 1 \pmod{3}$ which together say $p \equiv 1 \pmod{12}$. Likewise, if $p \equiv 3 \pmod{4}$, then $\left(\frac{3}{p}\right) = -\left(\frac{p}{3}\right) = +1$ only when $p \equiv 2 \pmod{3}$, which together say $p \equiv 11 \pmod{12}$. If $p \equiv 5,7 \pmod{12}$ then the calculations show $\left(\frac{3}{p}\right) = -1$.
 - (f) We want to compute $\left(\frac{-3}{p}\right)$. If $p \equiv 1 \pmod{4}$, then $\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right) = +1 \cdot \left(\frac{p}{3}\right) = +1$ only when $p \equiv 1 \pmod{3}$. Likewise, if $p \equiv 3 \pmod{4}$, then $\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right) = -1 \cdot -\left(\frac{p}{3}\right) = \left(\frac{p}{3}\right) = +1$ only when $p \equiv 1 \pmod{3}$. So in either case, $\left(\frac{-3}{p}\right) = +1$ only when $p \equiv 1 \pmod{3}$.
 - (g) Completing the square gives $n^2 + 4n 1 = (n+2)^2 5$, so we want primes p such that there is a solution to $(n+2)^2 \equiv 5 \pmod{p}$, which is equivalent to solving $x^2 \equiv 5 \pmod{p}$. Clearly there is a solution for p = 2, 5. For other p we compute $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right)$ which is +1 for $p \equiv 1, 4 \pmod{5}$ and -1 for $p \equiv 2, 3 \pmod{5}$. So p divides some $n^2 + 4n 1$ iff p = 2, 5 or $p \equiv 1, 4 \pmod{5}$.
 - (h) Completing the square gives $n^2 + 6n + 11 = (n+3)^2 + 2$, so we want primes p such that there is a solution to $(n+3)^2 \equiv -2 \pmod{p}$, which is equivalent to solving $x^2 \equiv -2 \pmod{p}$. Clearly there is a solution for p = 2. For other p we know $\left(\frac{-2}{p}\right) = +1$ precisely when $p \equiv 1, 3 \pmod{8}$. So p divides some $n^2 + 6n + 11$ iff p = 2 or $p \equiv 1, 3 \pmod{8}$.