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8 Quadratic Integer Rings

Our goal in this chapter is describe various properties of quadratic integer rings, which are essentially the rings
Z[
√
D] we have already encountered in our study of Pell's equation, along with some of their applications to number

theory.

We begin with an overview of some properties of integral domains related to division algorithms, common divisors,
and unique factorization; these topics are of independent number-theoretic interest since they will allow us to
generalize many of the arithmetic properties of Z. We then narrow our attention on the quadratic integer rings OD
with a goal of studying factorization in these rings. Although many of these rings do not have unique factorization
of elements, we will prove that these rings do possess unique factorization of ideals (in the sense that every nonzero
ideal is a unique product of prime ideals). We will then give some applications of these facts to classical problems
in number theory.
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8.1 Arithmetic in Rings and Domains

• In this section we will discuss some basic results from ring theory about Euclidean domains, ideals, and unique
factorization.

8.1.1 Ideals of Commutative Rings

• We start by introducing ideals of commutative rings, which (in the study of general rings) are primarily
motivated by their use in constructing quotient rings.

• De�nition: If R is a commutative ring with 1, a subset I is called a (two-sided) ideal of R if it contains 0, is
closed under subtraction, and is closed under arbitrary multiplication by elements of R. Explicitly, I is an
ideal if I contains 0 and for any x, y ∈ I and any r ∈ R, the elements x− y and rx are in I.

◦ We will mention that if R is a noncommutative ring, there are various other �avors of ideals (left ideals,
right ideals, and two-sided ideals) that are not generally equivalent to one another. We will not deal
with these since we are only interested in commutative rings.

◦ There are various other ways to describe ideals. For example, I is an ideal of R if and only if I is a
subgroup of R under addition that is also closed under arbitrary multiplication by elements of R.

• Here are a few basic examples of ideals:

◦ Example: The subrings nZ are ideals of Z, since they are clearly closed under arbitrary multiplication
by elements of Z.
◦ Example: If R = F [x] and p is any polynomial, the subring pR of multiples of p is an ideal of F [x], since
it is closed under arbitrary multiplication by polynomials in F [x].

◦ Non-example: The subring Z of Q is not an ideal of Q, since it is not closed under arbitrary multiplication

by elements of Q. For example if we take r =
1

3
∈ Q and x = 4 ∈ Z, the element rx =

4

3
is not in Z.

◦ Example: For any ring R, the subrings {0} and R are ideals of R. We refer to {0} as the trivial ideal
(or the �zero ideal�) and refer to any ideal I 6= R as a proper ideal (since it is a proper subset of R).

• Here are a few more examples (and non-examples) of ideals.

• Example: In the polynomial ring Z[x], determine whether the set S of polynomials with even constant term
(i.e., the polynomials of the form 2a0 + a1x+ a2x

2 + · · ·+ anx
n for integers ai) forms an ideal.

◦ It is easy to see that 0 ∈ S and that S is closed under subtraction.

◦ Furthermore, if q(x) is any other polynomial, and p(x) ∈ S, then p(x)q(x) also has even constant term,
so it is also in S.

◦ Thus, S is closed under multiplication by elements of Z[x], so it is an ideal .

• Example: Determine whether the set S = {0, 2, 4, 6} of �even� residue classes is an ideal of Z/8Z.

◦ We have 0 ∈ S, and it is a straightforward calculation to see that S is closed under subtraction, since
the sum of two �even� residue classes modulo 8 will still be even.

◦ Furthermore, the product of any residue class with an even residue class will again be an even residue class

(since 8 is even), so S is closed under multiplication by arbitrary elements of R. Thus, S is an ideal .

• Example: Determine whether the set S = {(2a, 3a) : a ∈ Z} is an ideal of Z× Z.

◦ We have 0 ∈ S, and (2a, 3a)− (2b, 3b) = (2(a− b), 3(a− b)) so S is closed under subtraction.

◦ But, for example, we can see that (1, 2) · (2, 3) = (2, 6) is not in S, even though (2, 3) is, so S is not

closed under arbitrary multiplication by elements of Z× Z. Thus, S is not an ideal .

• In order to study the structure of ideals, we would like a simpler way to describe them. A convenient way is
to describe ideals as being �generated� by subsets of a ring:
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◦ If R is a ring with 1 and A is a subset of R, we would like to de�ne �the ideal generated by A� to be the
smallest ideal containing A.

◦ A priori, it is not obvious that there is such a smallest ideal. However, since the intersection of any
nonempty collection of ideals is also an ideal, and since A is contained in at least one ideal (namely the
whole ring R), we can equivalently de�ne (A) to be the intersection of all ideals containing A.

◦ However, although the above analysis clearly indicates that these de�nitions are well-posed, we have not
actually described what these ideals are.

◦ If I is the ideal generated by A, then if a1, a2, . . . , an are any elements of A, we see that I must contain
the elements r1a1, r2a2, ... , rnan for any ri ∈ R and hence also contain their sum.

◦ On the other hand, if we let S be the set of elements of the form r1a1 + r2a2 + · · ·+ rnan for any ai ∈ A
and ri ∈ R (and some n ≥ 0), then it is easy to see that S is a subring that is closed under multiplication
by elements of R, so S is an ideal.

◦ Furthermore, since R contains 1, S contains A, so S is an containing A hence must actually be the ideal
generated by A.

• Our discussion above establishes the following proposition:

• Proposition (Generation of Ideals): Let R be a commutative ring with 1 and A be a subset of R. Then the
set (A) = {r1a1 + r2a2 + · · ·+ rnan : ri ∈ R and ai ∈ A} is the smallest ideal containing A.

• The simplest class of ideals are those generated by a �nite set, and (in particular) those generated by a single
element:

• De�nition: If R is a ring with 1, we say an ideal I is �nitely generated if I is generated by a �nite set, and
we say I is principal if I is generated by a single element. Thus, a �nitely generated ideal has the form
I = (a1, a2, . . . , an), while a principal ideal has the form I = (a).

◦ We emphasize here that the principal ideal (a) is simply the set of R-multiples of a: (a) = {ra : r ∈ R}.
◦ Example: If R is any commutative ring with 1, then R = (1) is principal. Likewise, the zero ideal 0 = (0)
is also principal.

◦ Example: In Z, for any integer n we have (n) = nZ. Since every ideal of Z is of the form nZ, we see that
every ideal of Z is principal. We remark that the notation nZ we have already used is consistent with
the de�nition above.

◦ Remark: If a and b are integers with greatest common divisor d, then (a, b) = (d): this follows from the
pair of observations that a and b are both contained in (d) so that (a, b) ⊆ (d), and that d = xa+ yb for
some integers x and y by the Euclidean algorithm, so that d is contained in (a, b). Indeed, as a re�ection
of this fact, many authors write (a, b) to denote the greatest common divisor of a and b.

• Since principal ideals are the easiest to describe, it is often useful to try to determine whether a particular
ideal is principal, though this task is not always so easy! We give a few examples illustrating that this can
often be a tricky question.

• Example: Show that the ideal I = (2, x) in Z[x] is not principal.

◦ Note that I = {2p(x) + xq(x) : p, q ∈ Z[x]} is the collection of polynomials in Z[x] with even constant
term.

◦ If I were principal and generated by some polynomial r(x), then every polynomial in I would be divisible
by r(x). Hence, in particular, r(x) would divide 2, so since 2 is a constant polynomial and a prime number,
r(x) would have to be one of {±1,±2}.
◦ However, since r(x) must also divide x, the only possibility is that r(x) would be either 1 or −1. But
it is easy to see that the ideal generated by 1 (or −1) is all of Z[x], so r(x) cannot be 1 or −1, since
I 6= Z[x].

◦ Thus, there is no possible choice for r, so I is not principal . (Of course, it is still �nitely generated!)

• Example: Determine whether or not the ideal I = (2, 1 +
√
−5) in Z[

√
−5] is principal.
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◦ Suppose this ideal were principal with generator r = a+ b
√
−5 in Z[

√
−5].

◦ Then r would necessarily divide 2, meaning that 2 = rs for some s ∈ Z[
√
−5]. By taking norms, we see

that 4 = N(2) = N(r)N(s).

◦ Likewise, since r divides 1+
√
−5, we would have 1+

√
−5 = rt for some t ∈ Z[

√
−5], so by taking norms

we would have 6 = N(1 +
√
−5) = N(r)N(t).

◦ Since N(r) = a2 + 5b2 is a nonnegative integer, we see that N(r) must divide both 4 and 6, hence is
either 1 or 2. However, it is easy to see that there are no integer solutions to a2 + 5b2 = 2, and the only
elements of norm 1 are 1 and −1.

◦ As in the examples above, the ideal generated by 1 (or −1) is all of Z[
√
−5], but (2, 1 +

√
−5) 6= Z[

√
−5]

since every element a+ b
√
−5 in the ideal has a+ b even.

◦ Thus, I is not principal .

• As we noted above, we always have (1) = R. We can in fact generalize this statement somewhat:

• Proposition (Ideals and Units): If I is an ideal of the ring R with 1, then I = R if and only if I contains a
unit.

◦ Proof: If I = R then certainly I contains a unit (namely, 1).

◦ Conversely, if u ∈ I is a unit with ur = 1, then since I is an ideal we have 1 = ur ∈ I.
◦ Then for any s ∈ R, the element s = 1s is also in I, and so I = R.

• Since every nonzero element in a �eld is a unit, we immediately see that the only nonzero ideal of a �eld is
the full ring. The converse is also true:

• Corollary (Ideals of Fields): A commutative ring R with 1 is a �eld if and only if the only ideals of R are 0
and R.

◦ Proof: If F is a �eld and I is any nonzero ideal, then I contains some nonzero element r. Since F is a
�eld, r is a unit, and so by the proposition above, I = R.

◦ Conversely, if the only ideals of R are 0 and R, let r ∈ R be any nonzero element. Then (r) contains
r 6= 0 so it cannot be the zero ideal, so we must have (r) = R.

◦ By the previous proposition, this means (r) contains 1: then rs = 1 for some s ∈ R, so r is a unit. Hence
every nonzero element of R is a unit, so R is a �eld as claimed.

8.1.2 Quotient Rings

• Now that we have discussed ideals, we can use them to study residue classes, and thereby discuss construct
quotient rings.

• De�nition: If I is an ideal of the ring R, then we say a is congruent to b modulo I, written a ≡ b (mod I), if
a− b ∈ I.

◦ As in Z and F [x], congruence modulo I is an equivalence relation that respects addition and multi-
plication. The proofs are the same as in Z and F [x], once we make the appropriate translations from
�divisibility� to �containment in I�.

• Proposition (Ideal Congruences): Let I be an ideal of R and a, b, c, d ∈ R. Then the following are true:

1. a ≡ a (mod I).

◦ Proof: Since a− a = 0 ∈ I, the statement is immediate.

2. a ≡ b (mod I) if and only if b ≡ a (mod I).

◦ Proof: If a− b ∈ I then −(a− b) = b−a ∈ I since I is closed under additive inverses, and conversely
if b− a ∈ I then so is −(b− a) = a− b.

3. If a ≡ b (mod I) and b ≡ c (mod I), then a ≡ c (mod I).
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◦ Proof: We are given a−b ∈ I and b−c ∈ I, so since I is closed under addition, we see (a−b)+(b−c) =
a− c ∈ I.

4. If a ≡ b (mod I) and c ≡ d (mod I), then a+ c ≡ b+ d (mod I).

◦ Proof: We are given a−b ∈ I and c−d ∈ I, so since I is closed under addition, we see (a−b)+(c−d) =
(a+ c)− (b+ d) ∈ I.

5. If a ≡ b (mod I) and c ≡ d (mod I), then ac ≡ bd (mod I).

◦ Proof: We are given a − b ∈ I and c − d ∈ I. Then since I is closed under arbitrary left and right
multiplication, we see that (a− b)c and b(c− d) are also in I. Hence ac− bd = (a− b)c+ b(c− d) is
also in I since I is closed under addition.

• Now we can de�ne residue classes:

• De�nition: If I is an ideal of the ring R, then for any a ∈ R we de�ne the residue class of a modulo I to be
the set a = a+ I = {a+ x : x ∈ I}. This set is also called the coset of I represented by a.

◦ We will use the notation a and a+I interchangeably. (The latter is intended to evoke the idea of �adding�
a to the set I.)

◦ We observe, as with our previous examples of residue classes, that any two residue classes are either
disjoint or identical and that they partition R: speci�cally, a = b if and only if a ≡ b (mod I) if and only
if a− b ∈ I.

• All that remains is to verify that the residue classes form a ring, in the same way as in Z and F [x]:

• Theorem (Quotient Rings): Let I be an ideal of the ring R. Then the collection of residue classes modulo I
forms a ring, denoted R/I (read as �R mod I�), under the operations a+ b = a+ b and a · b = ab. (This ring
is called the quotient ring of R by I.) If R is commutative then so is R/I, and likewise if R has a 1 then so
does R/I.

◦ Remark: The notation R/I is intended to emphasize the idea that I represents a single element (namely,
0) in the quotient ring R/I, and the other elements in R/I are �translates� of I. In this way, R/I is the
ring obtained from R by �collapsing� or �dividing out� by I, whence the name �quotient ring�.

◦ The proof of this fact is exactly the same as in the cases of Z and F [x], and only requires showing that
the operations are well-de�ned.

◦ Proof: First we must show that the addition and multiplication operations are well-de�ned: that is, if
we choose di�erent elements a′ ∈ ā and b′ ∈ b̄, the residue class of a′ + b′ is the same as that of a + b,
and similarly for the product.

◦ To see this, if a′ ∈ ā then a′ ≡ a (mod I), and similarly if b′ ∈ b then b′ ≡ b (mod I).

◦ Then a′ + b′ ≡ a+ b (mod I), so a′ + b′ = a+ b. Likewise, a′b′ ≡ ab (mod I), so a′b′ = ab.

◦ Thus, the operations are well-de�ned.

◦ For the ring axioms [R1]-[R6], we observe that associativity, commutativity, and the distributive laws
follow immediately from the corresponding properties in R: the additive identity in R/I is 0̄ and the
additive inverse of a is −a.
◦ Finally, if R is commutative then so will be the multiplication of the residue classes, and if R has a 1
then the residue class 1 is easily seen to be a multiplicative identity in R/I.

• This general description of �quotient rings� generalizes the two examples we have previously discussed: Z/mZ
and R/pR where R = F [x].

◦ To be explicit, Z/mZ is the quotient of Z by the ideal mZ, while F [x]/p is the quotient of the polynomial
ring F [x] by the principal ideal (p) consisting of all multiples of p.

◦ It is not hard to see that the integer congruence a ≡ b (mod m), which we originally de�ned as being
equivalent to the statement m|(b− a), is the same as the congruence a ≡ b (mod I) where I is the ideal
mZ, since b− a ∈ mZ precisely when b− a is a multiple of m.
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• Here are some additional examples of quotient rings:

• Example: If R is any ring, the quotient ring of R by the zero ideal, namely R/0, is (isomorphic to) R itself,
while the quotient ring of R by itself, namely R/R, is (isomorphic to) the trivial ring {0}.

• Example: In R = Z[x], with I consisting of all multiples of x2 + 1, describe the structure of the quotient ring
R/I.

◦ It is easy to see that I is an ideal of R, since it is a subring that is closed under arbitrary multiplication
by elements of R.

◦ From our discussion of polynomial rings, we know that the residue classes in R/I are represented uniquely
by residue classes of the form a+ bx where a, b ∈ Z. Note that in this quotient ring, we have x2 + 1 = 0,
which is to say, x2 = −1.

◦ The addition in this quotient ring is given by a+ bx+c+ dx = (a+ c) + (b+ d)x while the multiplication
is given by a+ bx · c+ dx = (ac− bd) + (ad+ bc)x, which follows from the distributive law and the fact
that x2 = −1.

◦ In this case, the quotient ring is isomorphic to the ring of Gaussian integers Z[i], with the isomorphism
ϕ : R/I → Z[i] given by ϕ(a+ bx) = a+ bi.

• Example: In R = Z/8Z, with I = {0, 4}, describe the structure of the quotient ring R/I.

◦ It is easy to see that I is an ideal of R, since it is a subring that is closed under arbitrary multiplication
by elements of R. (Indeed, it is the principal ideal generated by 4.)

◦ Since each residue class contains 2 elements, and R has 8 elements in total, there are four residue classes.
With this observation in hand, it is not hard to give a list: 0 = I = {0, 4}, 1 = 1 + I = {1, 5},
2 = 2 + I = {2, 6}, and 3 = 3 + I = {3, 7}.
◦ Notice, for example, that in the quotient ring R/I, we have 1 + 3 = 0, 2 · 2 = 0, and 2 · 3 = 2: indeed,
we can see that the structure of R/I is exactly the same as Z/4Z (the labelings of the elements are even
the same).

• We will also occasionally want to mention structure-preserving maps from one ring to another, which are
called homomorphisms:

• De�nition: A function ϕ : R → S is a ring homomorphism if ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1 · r2) =
ϕ(r1) · ϕ(r2) for all elements r1 and r2 in R. A homomorphism ϕ : R → S that is a bijection is called a
ring isomorphism.

◦ Example: The map ϕ : Z→ Z/mZ de�ned by ϕ(a) = a is a ring homomorphism.

◦ Example: If R is any ring, the map ϕ : R→ R×R given by ϕ(r) = (r, r) is a ring homomorphism.

◦ Example: The map ϕ : Z/6Z → (Z/2Z) × (Z/3Z) given by ϕ(a) = (a mod 2, a mod 3) is a ring
isomorphism.

• Associated to a homomorphism are two fundamental objects: the kernel and image.

• De�nition: If ϕ : R → S is a ring homomorphism, the kernel of ϕ, denoted kerϕ, is the set of elements in R
mapped to 0S by ϕ. In other words, kerϕ = {r ∈ R : ϕ(r) = 0}.

◦ Intuitively, the kernel measures how close ϕ is to being the zero map: if the kernel is large, then ϕ sends
many elements to zero, while if the kernel is small, ϕ sends fewer elements to zero.

◦ Example: The kernel of the reduction homomorphism ϕ : Z→ Z/mZ with ϕ(a) = a is mZ.

• De�nition: If ϕ : R → S is a ring homomorphism, the image of ϕ, denoted imϕ, is the set of elements in S
of the form ϕ(r) for some r ∈ R.

◦ In the context of general functions, the image is often called the range of ϕ.

◦ Intuitively, the image measures how close ϕ is to being surjective: indeed (by de�nition) ϕ is surjective
if and only if imϕ = S.

6



• One of the fundamental results about quotient rings is a relationship between homomorphisms and quotients:

• Theorem (First Isomorphism Theorem): If ϕ : R→ S is a homomorphism of rings, then R/ kerϕ is isomorphic
to imϕ.

◦ Intuitively, ϕ is a surjective homomorphism ϕ : R → imϕ. To turn it into an isomorphism, we must
�collapse� its kernel to a single element: this is precisely what the quotient ring R/ kerϕ represents.

◦ Proof: Let I = kerϕ. We use ϕ to construct a map ψ : R/I → imϕ, and then show that it is injective
and surjective.

◦ The map is de�ned as follows: for any residue class r ∈ R/I, we de�ne ψ(r) = ϕ(r).

◦ We must verify that this map ψ is well-de�ned, so suppose that r′ is some other representative of the
residue class r: then r′ − r ∈ I, so ϕ(r′ − r) = 0 and thus ϕ(r′) = ϕ(r).

◦ Thus, ψ(r′) = ϕ(r′) = ϕ(r) = ψ(r), so the map ψ is well-de�ned.

◦ It is then easy to see ψ is a homomorphism, since ψ(r + s) = ϕ(r + s) = ϕ(r) + ϕ(s) = ψ(r) + ψ(s) and
likewise ψ(r · s) = ϕ(r · s) = ϕ(r) · ϕ(s) = ψ(r) · ψ(s).

◦ Next, we see that ψ(r) = 0 precisely when ϕ(r) = 0, which is to say r ∈ ker(ϕ), so that r = 0. Thus, the
only element in kerψ is 0, so ψ is injective.

◦ Finally, if s is any element of imϕ, then by de�nition there is some r ∈ R with ϕ(r) = s: then ψ(r) = s,
meaning that ψ is surjective.

◦ Since ψ is a homomorphism that is both injective and surjective, it is an isomorphism.

8.1.3 Maximal and Prime Ideals

• An important class of ideals are those that are �maximal� under inclusion (i.e., which are not contained in
any other ideal except the full ring):

• De�nition: If R is a ring, a maximal ideal of R is an ideal M 6= R with the property that the only ideals of
R containing M are M and R.

◦ Example: If F is a �eld, then since the only ideals of F are 0 and F , the zero ideal is a maximal ideal
of F .

◦ Example: In Z, the ideal mZ is contained in nZ precisely when n divides m. Accordingly, the maximal
ideals of Z are precisely the ideals of the form pZ, where p is a prime.

◦ Non-example: The ideal (x) is not a maximal ideal of Z[x] because it is contained in the proper ideal
(2, x).

• A commutative ring with 1 must have maximal ideals:

• Theorem (Existence of Maximal Ideals): If R is a commutative ring with 1, then any proper ideal of R is
contained in a maximal ideal.

◦ Like a number of other general existence theorems (e.g., the proof that every vector space has a basis),
this proof requires the (in)famous �axiom of choice� from set theory. The version of the axiom of choice
typically used in algebra is known as Zorn's lemma: if S is a nonempty partially ordered set with the
property that every chain in S has an upper bound, then S contains a maximal element1.

◦ Proof: Suppose R is a ring with 1 and I is a proper ideal of R.

◦ Let S be the set of all proper ideals of R containing I, partially ordered under inclusion. Since I ∈ S, S
is nonempty.

◦ If C is any nonempty chain in S, let J be the union of all ideals in C: then 0 ∈ J since 0 is contained in
any ideal in C.

1A partial ordering on a set S a relation ≤ such that for any x, y, z ∈ S, (i) x ≤ x (ii) x ≤ y and y ≤ x implies x = y, and (iii) x ≤ y
and y ≤ z implies x ≤ z. If S is a partially-ordered set, a subset C is a chain if for any x, y ∈ C, either x ≤ y or y ≤ x, an upper bound
for a subset B is an element w ∈ B such that b ≤ w for all b ∈ B, and a maximal element of a subset B is an element m ∈ B such that
if x ∈ B has m ≤ x then m = x.
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◦ Furthermore, if x, y ∈ J and r ∈ R, then by de�nition x ∈ Ii and y ∈ Ij for some Ii and Ij in C. Since
Ii ⊆ Ij or Ij ⊆ Ii since C is a chain, it follows that x− y, rx, and xr are all in one of Ii or Ij , hence in
J . Thus, J is an ideal.

◦ Also, if it were true that J = R, then the element 1 would be in J . But this is impossible, since by
de�nition J is the union of a collection of proper ideals of R, none of which therefore contains 1.

◦ Therefore, J is an upper bound for S. Hence, by Zorn's lemma, J contains a maximal element, which is
therefore a maximal ideal of R that contains I.

• It might initially appear to be di�cult to detect whether a particular ideal is maximal. However, by using
quotient rings, we can easily detect whether a given ideal is maximal:

• Proposition (Maximal Ideals and Quotients): If R is a commutative ring with 1, then the ideal M is maximal
if and only if R/M is a �eld.

◦ We will remark that this result is not true if we drop either of the assumptions on R (i.e., that it is
commutative and has a 1).

◦ Proof: It can be veri�ed that there is a correspondence between ideals of R containing I and the ideals
of R/I: if J is an ideal of R, then J̃ = {j + I : j ∈ J} is easily seen to be an ideal of R/I. Conversely,
if we have any ideal J/I = {j + I : j ∈ J} of R/I, it is straightforward to check that the collection of
all elements j ∈ R such that j + I ∈ J̃ is an ideal of R.

◦ This means the ideals of R/M are in bijection with the ideals of R containingM : therefore,M is maximal
precisely when the only ideals of R/M are 0 and R/M .

◦ Furthermore, if R is commutative with 1, then R/M is also a commutative ring with 1, so R/M is a �eld
if and only if the only ideals of R/M are 0 and R/M . Putting these two statements together yields the
proposition.

• Corollary: If F is a �eld, the maximal ideals of F [x] are precisely the principal ideals (p) where p is irreducible.

◦ Proof: Every ideal of F [x] is principal, and the quotient ring F [x]/(p) is a �eld if and only if p is
irreducible.

• Example: Determine whether the ideal I = (2, x) is a maximal ideal of R = Z[x].

◦ As we have already shown, the quotient ring R/(2, x) is isomorphic to Z/2Z, which is a �eld. Thus, I is
a maximal ideal of R.

• Example: Determine whether the ideal I = (2) is maximal in R = Z[
√

2].

◦ In the quotient ring R/I, the residue class
√

2 + I is nonzero, but has the property that (
√

2 + I)2 =
2 + I = 0 + I is equal to zero.

◦ Thus, the quotient ring R/I has zero divisors hence is not a �eld, meaning that I is not a maximal ideal
of R.

• In addition to maximal ideals, we have another important class of ideals in commutative rings:

• De�nition: If R is a commutative ring with 1, a prime ideal of R is an ideal P 6= R with the property that for
any a, b ∈ R with ab in P , at least one of a and b is in P .

◦ As naturally suggested by the name, prime ideals are a generalization of the idea of a prime number
in Z: for n > 1, the ideal nZ is a prime ideal of Z precisely when ab ∈ nZ implies a ∈ nZ or b ∈ nZ.
Equivalently (in the language of divisibility) this means n|ab implies n|a or n|b, and this is precisely the
condition that n is either a prime number (or zero).

◦ Example: The prime ideals of Z are (0) and the ideals pZ where p is a prime number.

◦ A similar statement holds in R = F [x]: the ideal (p) is prime precisely when p is not a unit and p|ab
implies p|a or p|b, and the latter condition is equivalent to saying that p is either irreducible or zero.

◦ Example: The prime ideals of F [x] are (0) and the ideals (p) where p is an irreducible polynomial of
positive degree.
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• Like with maximal ideals, there is an easy way to test whether an ideal is prime using quotient rings:

• Proposition (Prime Ideals and Quotients): If R is a commutative ring with 1, then the ideal P is prime if and
only if R/P is an integral domain.

◦ This proof is essentially just a restatement of the de�nition of a prime ideal using residue classes in the
quotient ring using the observation that r ∈ P if and only if r = 0 in R/P .

◦ Proof: If R is commutative with 1 and P 6= R, then R/P is also commutative with 1, so we need only
test for zero divisors.

◦ If P is a prime ideal, then ab ∈ P implies a ∈ P or b ∈ P . In the quotient ring, this says that ab = 0
implies a = 0 or b = 0, which is precisely the statement that R/P has no zero divisors.

◦ Conversely, if R/P has no zero divisors, then ab = 0 implies a = 0 or b = 0, which is to say, ab ∈ P
implies a ∈ P or b ∈ P . Furthermore, since R/P is not the zero ring (since this possibility is excluded
by the de�nition of integral domain), we see P 6= R, and therefore P is a prime ideal of R.

• Corollary: A commutative ring with 1 is an integral domain if and only if 0 is a prime ideal.

◦ Proof: 0 is prime if and only if the quotient R/0 ∼= R is an integral domain.

• Corollary: In a commutative ring with 1, every maximal ideal is prime.

◦ Proof: If M is a maximal ideal, then R/M is a �eld. Every �eld is an integral domain, so M is a prime
ideal.

• Example: Determine whether the ideals (x) and (x2) in Z[x] are prime ideals.

◦ By the division algorithm, the residue classes in Z[x]/(x) are of the form a for a ∈ Z. Clearly, a+b = a+ b
and a · b = ab, so the arithmetic of the residue classes is the same as the arithmetic of Z. This means
Z[x]/(x) is an integral domain, so (x) is a prime ideal.

◦ On the other hand, also by the division algorithm, we see that the residue classes in Z[x]/(x2) are of the
form a+ bx where a, b ∈ Z. Since x · x = 0 but x 6= 0, we see that Z[x]/(x2) has zero divisors, and so
(x2) is not a prime ideal.

8.1.4 Arithmetic in Integral Domains

• We now discuss some properties of arithmetic in integral domains.

• De�nition: Suppose that R is an integral domain and a, b, d ∈ R.

1. We say that d divides a, written d|a, if there exists some r ∈ R such that a = rd.

2. We say d is a common divisor of a and b if d|a and d|b.
3. We say that a common divisor d ∈ R is a greatest common divisor of a and b if d 6= 0 and for any other

common divisor d′, it is true that d′|d.
4. If 1 is a greatest common divisor of a and b, then we say a and b are relatively prime.

5. If a = ub for some unit u, then we say a and b are associates.

◦ Observe that every ring element divides each of its associates, and that �being associate� is an equivalence
relation.

◦ Two elements in an integral domain may not possess a greatest common divisor. If a and b do have a
greatest common divisor d, then the collection of greatest common divisors of a and b is precisely the set
of associates of d.

• Here is an explicit example of elements in an integral domain that do not possess a greatest common divisor:

• Example: Show that 2 + 2
√
−5 and 6 do not possess a greatest common divisor in Z[

√
−5].

◦ First, observe that 2 and 1 +
√
−5 are both common divisors of 2 + 2

√
−5 and 6.
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◦ Now suppose that 2 + 2
√
−5 and 6 had a gcd d: then d would divide 2(1 +

√
−5) and 6, and also be

divisible by 2 and 1 +
√
−5.

◦ By taking norms, we see that N(d) divides both N(2 + 2
√
−5) = 24 and N(6) = 36, hence divides 12.

◦ Also, N(d) would also necessarily be a multiple of N(2) = 4 and N(1 +
√
−5) = 6, hence be a multiple

of 12.

◦ The only possibility is N(d) = 12, but there are no elements of norm 12 in Z[
√
−5], since there are no

integer solutions to a2 + 5b2 = 12. This is a contradiction, so 2 + 2
√
−5 and 6 do not possess a greatest

common divisor in Z[
√
−5].

• Proposition (Properties of Divisibility): Let R be an integral domain. Then for any elements a, b, d ∈ R, the
following are true:

1. The element d divides a if and only if the principal ideal (a) is contained in the principal ideal (d).

◦ Proof: Note (a) ⊆ (d) if and only if a ∈ (d) if and only if a = dk for some k ∈ R.
2. The elements a and b are associate if and only if a|b and b|a, if and only if (a) = (b).

◦ Proof: Note (a) = (b) if and only if (a) ⊆ (b) and (b) ⊆ (a), which is equivalent to a|b and b|a by
(1). Furthermore, a = ub for some unit u clearly implies a|b and b|a. Conversely, if a|b and b|a,
then a = rb and b = sa for some r, s, and then a = rsa. If a = 0 then b = 0 also and we are done;
otherwise we may cancel to see rs = 1 and so r is a unit.

3. If a and b have a gcd d, then the collection of greatest common divisors of a and b is precisely the set of
associates of d.

◦ Proof: If d is a gcd of a and b and u is any unit, then (ud)|a and (ud)|b, and also if d′|d then d′|(ud)
so ud is also a gcd. Furthermore, if d and e are both gcds of a and b, then d|e and e|d so that d and
e are associates by (2).

4. The element d is a gcd of a and b if and only if (d) is the smallest principal ideal containing (a, b). In
particular, if (a, b) is a principal ideal, then any generator is a gcd of a and b.

◦ Proof: By (1) above, d is a common divisor of a and b if and only if (d) contains both (a) and (b),
which is equivalent to saying (a, b) ⊆ (d).

◦ Then by (1) again, if d is a gcd of a and b and d′ is any other common divisor, we must have
(d) ⊆ (d′): thus, d is a gcd of a and b if and only if (d) is the smallest principal ideal containing
(a, b).

◦ Finally, if (a, b) = (d) is itself principal, then clearly (d) is the smallest principal ideal containing
(a, b).

◦ Remark: The fact that (a, b) = (d) if d is a gcd of a and b is the reason that the greatest common
divisor is often denoted by the symbol (a, b).

• Now that we have established some basic properties of divisibility, we can talk about factorizations.

• De�nition: Let R be an integral domain. A nonzero element r ∈ R is irreducible if it is not a unit and, for
any �factorization� r = bc with b, c ∈ R, one of b and c must be a unit. A ring element that is not irreducible
and not a unit is called reducible: it can be written as r = ab where neither a nor b is a unit.

◦ Example: The irreducible elements of Z are precisely the prime numbers (and their negatives).

◦ Example: The irreducible elements of F [x] are the irreducible polynomials of positive degree.

◦ Example: The element 5 is reducible in Z[i], since we can write 5 = (2 + i)(2− i) and neither 2 + i nor
2− i is a unit in Z[i]. However, the element 2 + i is irreducible: if 2 + i = bc for some z, w ∈ Z[i], then
taking norms yields 5 = N(2 + i) = N(b)N(c), and since 5 is a prime number, one of N(b) and N(c)
would necessarily be ±1, and then b or c would be a unit. Likewise, 2− i is also irreducible.

◦ Example: The element 2 is irreducible in Z[
√
−5]: if 2 = bc then taking norms yields 4 = N(2) =

N(b)N(c), and since there are no elements of norm 2 in Z[
√
−5], one of N(b) and N(c) would necessarily

be ±1, and then b or c would be a unit.

• Inside Z, the irreducible elements are the prime numbers. However, we have a di�erent notion of a prime
element in an arbitrary integral domain:

10



• De�nition: Let R be an integral domain. A nonzero element p ∈ R is prime if p is nonzero and not a unit,
and for any a, b ∈ R, if p|ab then p|a or p|b. Equivalently, p is prime if p is nonzero and the ideal (p) is a
prime ideal of R.

◦ Example: The prime elements of Z are precisely the prime numbers (and their negatives).

◦ Example: The prime elements of F [x] are the irreducible polynomials of positive degree.

◦ Example: The element 2 + i is prime in Z[i]: by the calculation above, if ab ∈ (2 + i) then 2 + i = bc for
some z, w ∈ Z[i], then taking norms yields 5 = N(2 + i) = N(b)N(c), and since 5 is a prime number, one
of N(b) and N(c) would necessarily be ±1, and then b or c would be a unit.

◦ Non-Example: The element 2 is not prime in Z[
√
−5]: note that 6 = (1 +

√
−5)(1−

√
−5) is divisible by

2, but neither 1 +
√
−5 nor 1−

√
−5 is divisible by 2.

• As suggested by the examples above, prime elements are always irreducible, but irreducible elements are not
necessarily prime (we will later discuss under what conditions irreducible elements will be prime):

• Proposition (Primes are Irreducible): In an integral domain, prime elements are always irreducible.

◦ Proof: Suppose p ∈ R is a prime element. If p = bc then since p|bc, we conclude that p|b or p|c; without
loss of generality suppose b = pr.

◦ Then p = prc, so since p 6= 0 we may cancel to conclude rc = 1, so that c is a unit. Thus, p is irreducible.

8.1.5 Quadratic Fields and Quadratic Integer Rings

• We can now discuss some facts about the rings that we will be analyzing in this chapter. First, we need to
mention quadratic �elds:

• De�nition: Let D be a squarefree integer not equal to 1. The quadratic �eld Q(
√
D) is the set of complex

numbers of the form a+ b
√
D, where a and b are rational numbers.

◦ Remark: An integer is squarefree if it is not divisible by the square of any prime, and not equal to 1. We
lose nothing here by assuming that D is a squarefree integer, since two di�erent integers di�ering by a
square factor would generate the same set of complex numbers a+ b

√
D.

◦ The arithmetic in Q(
√
D) is as follows: (a+b

√
D)+(c+d

√
D) = (a+c)+(b+d)

√
D, and (a+b

√
D)(c+

d
√
D) = (ac+Dbd) + (ad+ bc)

√
D.

◦ Since Q(
√
D) is clearly closed under subtraction and multiplication, and contains 0 = 0 + 0

√
D, it is a

subring of C and hence an integral domain, since it contains 1.

◦ It is in fact a �eld (justifying the name �quadratic �eld�) because we can write (a+ b
√
D)−1 =

a− b
√
D

a2 −Db2
,

and a2 −Db2 6= 0 provided that a and b are not both zero because
√
D is irrational by the assumption

that D is squarefree and not equal to 1.

◦ We will also remark that Q(
√
D) is isomorphic to the quotient ring Q[x] modulo the principal ideal

(x2 −D), with the isomorphism given explicitly by mapping p(x) ∈ Q[x] to p(
√
D) ∈ Q(

√
D).

• De�nition: The �eld norm N : Q(
√
D) → Q is de�ned to be the function N(a + b

√
D) = a2 − Db2 =

(a+ b
√
D)(a− b

√
D).

◦ The fundamental property of this �eld norm is that it is multiplicative: N(xy) = N(x)N(y) for two
elements x and y in Q(

√
D), as can be veri�ed by writing out both sides explicitly and comparing the

results.

◦ The �eld norm provides a measure of �size� of an element of Q(
√
D), in much the same way that the

complex absolute value measures the �size� of a complex number. In fact, if D < 0, then the �eld norm
of an element a+ b

√
D is the same as the square of its complex absolute value.

• A fundamental subring of the quadratic �eld Q(
√
D) is its associated �quadratic integer ring�.

11



◦ The most obvious choice for an analogy of the integers Z inside Q(
√
D) would be the set Z[

√
D] =

{a+ b
√
D : a, b ∈ Z}.

◦ However, notice that if D ≡ 1 (mod 4), then the slightly larger subset Z[
1 +
√
D

2
] = {a + b

1 +
√
D

2
:

a, b ∈ Z} is actually also a subring: closure under subtraction is obvious, and for multiplication we can

write (a+ b
1 +
√
D

2
)(c+ d

1 +
√
D

2
) = (ac+

D − 1

4
bd) + (ad+ bc+ bd)

1 +
√
D

2
.

◦ One reason that this slightly larger set turns out to give a slightly better analogy for the integers Z when

D ≡ 1 (mod 4) is that the number
1 +
√
D

2
satis�es a polynomial with integer coe�cients and leading

coe�cient 1: explicitly, it is a root of x2 − x+
1−D

4
= 0.

• De�nition: The ring of integers OQ(
√
D) in the quadratic �eld Q(

√
D) is de�ned as Z[

√
D] if D ≡ 2 or 3 (mod

4) and as Z[
1 +
√
D

2
] if D ≡ 1 (mod 4). Each of these rings is an integral domain.

◦ For D ≡ 2, 3 (mod 4), observe that N(a+ b
√
D) = a2 −Db2 is an integer for every a+ b

√
D ∈ O√D.

◦ Likewise, if D ≡ 1 (mod 4), we have N(a + b
1 +
√
D

2
) = a2 + ab +

1−D
4

b2 is also an integer for every

a+ b
1 +
√
D

2
∈ OQ(

√
D).

◦ Thus, the �eld norm N is always integer-valued on OQ(
√
D). We can in fact use it to determine whether

a given element is a unit:

• The units in the quadratic integer rings are the elements of norm ±1:

• Proposition (Characterizing Units in OQ(
√
D)): An element r in the ring OQ(

√
D) is a unit if and only if

N(r) = ±1.

◦ Proof: Suppose r = a + b
√
D and let r = a − b

√
D, so that N(r) = rr. (Note that r = 2a − r, so that

even when D ≡ 1 (mod 4), so that a and b are possibly half-integers, we see that r is still in OQ(
√
D).)

◦ If N(r) = ±1, then we see that rr = ±1, so (by multiplying by −1 if necessary) we obtain a multiplicative
inverse for r.

◦ Conversely, suppose r is a unit and rs = 1. Taking norms yields N(r)N(s) = N(rs) = 1. Since N(r)
and N(s) are both integers, we see that N(r) must either be 1 or −1.

• Example: Find the units in Z[i] and Z[(1 +
√
−3)/2].

◦ For Z[i], we have D = −1, so if r = a + bi we see N(r) = a2 + b2. We must therefore solve a2 + b2 = 1

in Z: there are clearly four solutions, corresponding to r = 1, i, −1, −i .

◦ For Z[(1 +
√
−3)/2], we have D = −3, so if r = a + b

1 +
√
−3

2
we see N(r) = a2 + ab + b2. We must

therefore solve a2 + ab + b2 = 1 in Z: by multiplying by 4 and completing the square, this equation is

equivalent to (2a+ b)2 + 3b2 = 4, which has six solutions corresponding to r = 1, −1, ω, −ω, ω2, −ω2 ,

where ω =
1 +
√
−3

2
is seen to be a sixth root of unity satisfying ω6 = 1.

• In general, determining the full set of units in OQ(
√
D) is a nontrivial computation that essentially reduces to

solving Pell's equation.

◦ When D < 0 it is not too di�cult to see (by completing the square in a similar way to above when D ≡ 1
(mod 4)) that if D 6= −1,−3, then the only units in OQ(

√
D) are ±1.

◦ When D > 0 and D ≡ 2, 3 (mod 4), solving N(α) = ±1 is equivalent to solving Pell's equation x2−Dy2 =
±1, which we have already described at length.
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◦ For D > 0 with D ≡ 1 (mod 4), we see N(
a+ b

√
D

2
) = ±1 is equivalent to the Pell's equation a2−Db2 =

±4, whose solutions (per our analysis) can also be found using continued fractions.

◦ In particular, the same sort of analysis we gave for x2 − Dy2 = ±1 will show that the solutions are of
the form ±un where u is the fundamental unit.

• By using norms, we can also study possible factorizations and establish the irreducibility of elements. The
following special case is often helpful:

• Proposition (Some Irreducibles in OQ(
√
D)): If r ∈ OQ(

√
D) has N(r) = ±p where p is a prime number, then

r is irreducible in OQ(
√
D).

◦ Proof: Suppose N(r) = ±p and we had a factorization r = s1s2. Taking norms yields ±p = N(s1s2) =
N(s1)N(s2).

◦ But since p is prime and N(s1) and N(s2) are integers, the only possibility is to have one of N(s1) and
N(s2) equal to ±1, which by our result earlier means that s1 or s2 is a unit. Then r is indeed irreducible,
as claimed.

• Here are some examples of how we can establish irreducibility by computing norms:

◦ Example: The elements 1 + i and 2 + i in Z[i] are irreducible, since their norms are 2 and 5 respectively.

◦ Example: The elements
5 +
√

5

2
and 4 +

√
5 in OQ(

√
5) are irreducible since their norms are 5 and 11

respectively.

◦ We remark that the proposition is not an if-and-only-if, as there can exist irreducible elements of non-
prime norm as well.

◦ Example: The element 3 ∈ Z[i] has N(3) = 9, but 3 is irreducible because any factorization 3 = z1z2
would require 9 = N(3) = N(z1)N(z2), but since there are no elements of norm 3 in Z[i], the only
possible factorizations require N(z1) or N(z2) to equal 1.

◦ Example: The element 1 +
√
−5 ∈ OQ(

√
−5) has N(1 +

√
−5) = 6, but 1 +

√
−5 is irreducible because

any factorization would have to be into a product of an element of norm 2 and an element of norm 3,
but there are no such elements in OQ(

√
−5).

• We will discuss more about factorization in these rings after we have developed some additional results about
ideals and factorizations in general rings. For notational convenience, we will often write O√D as shorthand
for OQ(

√
D).

8.1.6 Euclidean Domains

• Our next goal is to discuss what it means for an integral domain to possess a �division algorithm�:

• De�nition: If R is an integral domain, any function N : R → {0, 1, 2, . . . } such that N(0) = 0 is called a
norm on R.

◦ Observe that this is a rather weak property, and that any given domain may possess many di�erent
norms.

• De�nition: A Euclidean domain (or domain with a division algorithm) is an integral domain R that possesses
a norm N with the property that, for every a and b in R with b 6= 0, there exist some q and r in R such that
a = qb+ r and either r = 0 or N(r) < N(b).

◦ The purpose of the norm function is to allow us to compare the size of the remainder to the size of the
original element. Note that the quotient and remainder are not required to be unique!

◦ Example: Any �eld is a Euclidean domain, because any norm will satisfy the de�ning condition. This
follows because for every a and b with b 6= 0, we can write a = qb+ 0 with q = a · b−1.
◦ Example: The integers Z are a Euclidean domain with N(n) = |n|.
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◦ Example: If F is a �eld, then the polynomial ring F [x] is a Euclidean domain with norm given by
N(p) = deg(p) for p 6= 0.

• Before we give additional examples, we will remark that the reason Euclidean domains have that name is that
we can perform the Euclidean algorithm in such a ring, in precisely the same manner as in Z and F [x]:

• De�nition: If R is a Euclidean domain, then for any a, b ∈ R with b 6= 0, the Euclidean algorithm in R consists
of repeatedly applying the division algorithm to a and b as follows, until a remainder of zero is obtained:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qkrk + rk+1

rk = qk+1rk+1.

◦ By the construction of the division algorithm, we know that N(r1) > N(r2) > · · · , and since N(ri) is a
nonnegative integer for each i, this sequence must eventually terminate with the last remainder equalling
zero (else we would have an in�nite decreasing sequence of nonnegative integers).

• The Gaussian integers provide another important example of a Euclidean domain:

• Proposition (Z[i] is Euclidean): The Gaussian integers Z[i] are a Euclidean domain, under the normN(a+bi) =
a2 + b2.

◦ Explicitly, given a+ bi and c+ di in Z[i], we will describe how to produce q, r ∈ Z[i] such that a+ bi =

q(c+ di) + r, and N(r) ≤ 1

2
N(c+ di). This is even stronger than is needed (once we note that the only

element of norm 0 is 0).

◦ Proof: We need to describe the algorithm for producing q and r when dividing an element a+ bi by an
element c+ di.

◦ If c+di 6= 0, then we can write
a+ bi

c+ di
= x+ iy where x = (ac+ bd)/(c2 +d2) and y = (bc−ad)/(c2 +d2)

are real numbers.

◦ Now we de�ne q = s + ti where s is the integer closest to x and t is the integer closest to y, and set
r = (a+ bi)− q(c+ di). Clearly, (a+ bi) = q(c+ di) + r.

◦ All we need to do now is showN(r) ≤ 1

2
N(c+di): �rst observe that

r

c+ di
=
a+ bi

c+ di
−q = (x−s)+(y−t)i.

Then because |x− s| ≤ 1

2
and |y − t| ≤ 1

2
by construction, the triangle inequality implies

∣∣∣∣ r

c+ di

∣∣∣∣ ≤ √2

2
.

Squaring both sides and rearranging yields N(r) ≤ 1

2
N(c+ di), as desired.

◦ Remark: For other quadratic integer rings O√D, the function N(a+ b
√
D) =

∣∣a2 −Db2∣∣ is a norm, but
it does not in general give a division algorithm. The proof given above can, however, be adapted fairly
easily to show that O√D is a Euclidean domain for certain other small values of D, such as D = −7, −3,
−2, and 2.

• As in Z and F [x], we may also use the Euclidean algorithm to compute gcds:

• Theorem (Bézout): If R is a Euclidean domain and a and b are arbitrary elements with b 6= 0, then the last
nonzero remainder d arising from the Euclidean Algorithm applied to a and b is a greatest common divisor of a
and b. (In particular, any two elements in a Euclidean domain always possess at least one gcd.) Furthermore,
there exist elements x, y ∈ R such that d = ax+ by.

◦ The ideas in the proof are the same as for the proofs over Z and F [x].

◦ Proof: By an easy induction (starting with rk = qk+1rk+1), d = rk+1 divides ri for each 1 ≤ i ≤ k. Thus
we see d|a and d|b, so the last nonzero remainder is a common divisor.
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◦ Suppose d′ is some other common divisor of a and b. By another easy induction (starting with d′|(a −
q1b) = r1), it is easy to see that d′ divides ri for each 1 ≤ i ≤ k + 1, and therefore d′|d. Hence d is a
greatest common divisor.

◦ For the existence of x and y with d = ax+ by, we simply observe (by yet another easy induction starting
with r1 = a− q1b) that each remainder can be written in the form ri = xia+ yib for some xi, yi ∈ R.

• Example: Find a greatest common divisor of 50 − 50i and 43 − i in Z[i], and write it in the form d =
(50− 50i)x+ (43− i)y for some x, y ∈ Z[i].

◦ We use the Euclidean algorithm. Dividing 43− i into 50−50i yields
50− 50i

43− i
=

44

37
− 42

37
i, so rounding to

the nearest Gaussian integer yields the quotient q = 1−i. The remainder is then 50−50i−(1−i)(43−i) =
(8− 6i).

◦ Next, dividing 8 − 6i into 43 − i yields 43− i
8− 6i

=
7

2
+

5

2
i, so rounding to the nearest Gaussian integer

(there are four possibilities so we just choose one) yields the quotient q = 3 + 2i. The remainder is then
43− i− (3 + 2i)(8− 6i) = (7 + i).

◦ Finally, dividing 7 + i into 8− 6i yields
8− 6i

7 + i
= 1− i, so the quotient is 1− i and the remainder is 0.

◦ The last nonzero remainder is 7 + i so it is a gcd. To express the gcd as a linear combination, we solve
for the remainders:

8− 6i = 1 · (50− 50i)− (1− i) · (43− i)
7 + i = (43− i)− (3 + 2i)(8− 6i)

= (43− i)− (3 + 2i) · (50− 50i) + (3 + 2i)(1− i) · (43− i)
= (−3− 2i) · (50− 50i) + (6− i) · (43− i)

and so we have 7 + i = (−3− 2i) · (50− 50i) + (6− i) · (43− i) .

• The ideals of Euclidean domains are particularly simple:

• Theorem (Ideals of Euclidean Domains): Every ideal of a Euclidean domain is principal.

◦ Proof: Clearly the zero ideal is principal, so suppose I is a nonzero ideal of the Euclidean domain R
and let d be a nonzero element of I of smallest possible norm. (Such an element must exist by the
well-ordering axiom.)

◦ Since d ∈ I we have (d) ⊆ I. If a ∈ I is any other element, by the division algorithm we can write
a = qd+ r for some r where either r = 0 or N(r) < N(d).

◦ However, since r = a − qd ∈ I since both a and qd are in I, and N(d) is minimal, we must have r = 0.
Therefore, a = qd and thus a ∈ (d), so I ⊆ (d). Hence I = (d) is principal, as claimed.

• Corollary: Every ideal of Z, F [x], and Z[i] is principal, for any �eld F .

◦ Proof: Each of these rings is a Euclidean domain.

• By the result above, we can deduce that any ring containing a non-principal ideal is not Euclidean (with
respect to any norm):

◦ Example: The ring Z[x] is not a Euclidean domain, since the ideal (2, x) is not principal.

◦ Example: The ring Z[
√
−5] is not a Euclidean domain, since the ideal (2, 1 +

√
−5) is not principal.
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8.1.7 Principal Ideal Domains

• We have seen that every ideal in a Euclidean domain is principal. We now expand our attention to the more
general class of rings in which every ideal is principal.

• De�nition: A principal ideal domain (PID) is an integral domain in which every ideal is principal.

◦ Example: As we have shown, every Euclidean domain is a principal ideal domain, so Z, Z[i], and F [x]
are principal ideal domains.

◦ Non-Example: The ring Z[x] is not a principal ideal domain, since the ideal (2, x) is not principal.

◦ Non-Example: The ring Z[
√
−5] is not a principal ideal domain, since the ideal (2, 1 +

√
−5) is not

principal.

◦ There exist principal ideal domains that are not Euclidean domains (although this is not so easy to
prove). One example is the quadratic ring O√−19 = Z[(1 +

√
−19)/2].

• Like in Euclidean domains, we can show that any two elements in a PID have a greatest common divisor.

◦ The substantial advantage of a Euclidean domain over a general PID is that we have an algorithm for
computing greatest common divisors in Euclidean domains, rather than merely knowing that they exist.

• Proposition (Divisibility in PIDs): If R is a principal ideal domain and a, b ∈ R are nonzero, then any generator
d of the principal ideal (a, b) is a greatest common divisor of a and b. (In particular, any two elements in a
principal ideal domain always possess at least one gcd.) Furthermore, there exist elements x, y ∈ R such that
d = ax+ by.

◦ Proof: We showed already that if (a, b) is principal, then any generator is a gcd of a and b. Furthermore,
if (a, b) = (d) then d ∈ (a, b) implies that d = ax+ by for some x, y ∈ R.

• Our ultimate goal is to show that these rings (like the prototypical examples Z and F [x]) have the property
that every nonzero element can be written as a �nite product of irreducible elements, up to associates and
reordering.

◦ To show this, we will use essentially the same argument as in Z and F [x]: �rst we will prove that every
element can be factored into a product of irreducibles, and then we will prove that the factorization is
unique.

◦ For the existence, if r is a reducible element then we can write r = r1r2 where neither r1 nor r2 is a unit.
If both r1 and r2 are irreducible, we are done: otherwise, we can continue factoring (say) r1 = r1,1r1,2
with neither term a unit. If r1,1 and r1,2 are both irreducible, we are done: otherwise, we factor again.

◦ We need to ensure that this process will always terminate: if not, we would obtain an in�nite ascending
chain of ideals (r) ⊂ (r1) ⊂ (r1,1) ⊂ · · · , so �rst we will prove that this cannot occur.

◦ Then to establish uniqueness, we use the same argument as in Z and F [x]: this requires showing that if
p is irreducible, then p|ab implies p|a or p|b: in other words, that p is prime.

• First we establish the necessary result about ascending chains of ideals:

• Theorem (Ascending Chains in PIDs): If R is a principal ideal domain and the ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆
In ⊆ · · · form an ascending chain, then there exists some positive integer N after which the chain is stationary:
In = IN for all n ≥ N .

◦ Remark: A ring satisfying this �ascending chain condition� is called Noetherian.

◦ Proof: Let J be the union of the ideals in the chain. We have shown already (in the course of proving
that a ring with 1 always possesses maximal ideals) that the union of an ascending chain of ideals is also
an ideal, so J is an ideal.

◦ Since R is a PID, we see J = (a) for some a ∈ R. But since J is a union, this means a ∈ IN for some
N . But then for each n ≥ N we see (a) = IN ⊆ In ⊆ J = (a): we must have equality everywhere, so
In = IN for all n ≥ N .
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• Next, we show that irreducible elements are prime:

• Proposition (Irreducibles are Prime in a PID): Every irreducible element in a principal ideal domain is prime.

◦ Proof: Suppose that p is an irreducible element of R: to show that p is prime, we may equivalently show
that the ideal (p) is a prime ideal.

◦ So suppose (a) is an ideal containing (p): then p ∈ (a) so p = ra for some r ∈ R. But since p is
irreducible, we either have p|r or p|a, which is to say, either r ∈ (p) or a ∈ (p).

◦ If a ∈ (p) then (a) ⊆ (p) and so (a) = (p). Otherwise, if r ∈ (p) then r = sp for some s ∈ R, and then
p = ra implies p = spa, so since p 6= 0 we see sa = 1 and therefore a is a unit, and so (a) = R.

◦ Thus, (a) is either (p) or R, meaning that (p) is a maximal hence prime ideal.

• In the proposition above, notice that we actually established that the prime element p generated a maximal
ideal. This argument in fact shows that nonzero prime ideals are maximal in PIDs:

• Proposition (Prime Implies Maximal in a PID): Every nonzero prime ideal in a principal ideal domain is
maximal.

◦ Proof: Suppose that I = (p) is a nonzero prime ideal of R, and suppose that (a) is an ideal containing I.

◦ Since p ∈ (a), we see that p = ra for some r ∈ R. But then ra ∈ (p), so since (p) is a prime ideal we
either have r ∈ (p) or a ∈ (p).

◦ By the same argument as in the proposition above, we conclude that (a) is either (p) or R, meaning that
(p) is a maximal ideal.

• Now we can establish that principal ideal domains have unique factorization:

• Theorem (Unique Factorization in PIDs): If R is a principal ideal domain, then every nonzero nonunit r ∈ R
can be written as a �nite product of irreducible elements. Furthermore, this factorization is unique up to
associates: if r = p1p2 · · · pd = q1q2 · · · qk for irreducibles pi and qj , then d = k and there is some reordering
of the factors such that pi is associate to qi for each 1 ≤ i ≤ k.

◦ Proof: Suppose r ∈ R is not zero and not a unit.

◦ If r is irreducible, we already have the required factorization. Otherwise, r = r1r2 for some nonunits
r1 and r2. If both r1 and r2 are irreducible, we are done: otherwise, we can continue factoring (say)
r1 = r1,1r1,2 with neither term a unit. If r1,1 and r1,2 are both irreducible, we are done: otherwise, we
factor again.

◦ We claim that this process must terminate eventually: otherwise (as follows by the axiom of choice), we
would have an in�nite chain of elements x1, x2, x3, ... , such that x1|r, x2|x1, x3|x2, and so forth, where
no two elements are associates, yielding an in�nite chain of ideals (r) ⊂ (x1) ⊂ (x2) ⊂ · · · with each
ideal properly contained in the next. But this is impossible, since every ascending chain of ideals in R
must become stationary.

◦ Thus, the factoring process must terminate, and so r can be written as a product of irreducibles.

◦ We establish uniqueness by induction on the number of irreducible factors of r = p1p2 · · · pn.
◦ If n = 1, then r is irreducible. If r had some other nontrivial factorization r = qc with q irreducible, then
q would divide r hence be associate to r (since irreducibles are prime). But this would mean that c is a
unit, which is impossible.

◦ Now suppose n ≥ 2 and that r = p1p2 · · · pd = q1q2 · · · qk has two factorizations into irreducibles.

◦ Since p1|(q1 · · · qk) and p1 is irreducible hence prime, repeatedly applying the fact that p irreducible and
p|ab implies p|a or p|b shows that p1 must divide qi for some i.

◦ By rearranging we may assume q1 = p1u for some u: then since q1 is irreducible (and p1 is not a unit),
u must be a unit, so p1 and q1 are associates.

◦ Cancelling then yields the equation p2 · · · pd = (uq2) · · · qk, which is a product of fewer irreducibles. By
the induction hypothesis, such a factorization is unique up to associates. This immediately yields the
desired uniqueness result for r as well.
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8.1.8 Unique Factorization Domains

• We have shown that principal ideal domains have unique factorization. We now study the more general class
of integral domains having unique factorization:

• De�nition: An integral domain R is a unique factorization domain (UFD) if every nonzero nonunit r ∈ R can
be written as a �nite product r = p1p2 · · · pd of irreducible elements, and this factorization is unique up to
associates: if r = p1p2 · · · pd = q1q2 · · · qk for irreducibles pi and qj , then d = k and there is some reordering
of the factors such that pi is associate to qi for each 1 ≤ i ≤ k.

◦ Example: As we proved in the previous section, every principal ideal domain is a unique factorization
domain: thus Z, F [x], and Z[i] are unique factorization domains.

◦ Example: As we essentially proved already (and will formally prove later) the polynomial ring Z[x] is a
unique factorization domain, even though it is not a principal ideal domain.

◦ There are two ways an integral domain can fail to be a unique factorization domain: one way is for some
element to have two inequivalent factorizations, and the other way is for some element not to have any
factorization.

◦ Non-Example: The ring Z[
√
−5] is not a unique factorization domain because we can write 6 = (1 +√

−5)(1−
√
−5) = 2 ·3. Note that each of 1±

√
−5, 2, and 3 is irreducible in Z[

√
−5] since their norms are

6, 4, and 9 respectively and there are no elements in Z[
√
−5] of norm 2 or 3, and none of these elements

are associate to one another. Thus, 6 has two inequivalent factorizations into irreducibles in Z[
√
−5].

◦ Non-Example: The ring Z[2i] is not a unique factorization domain because we can write 4 = 2 · 2 =
(2i)·(2i). Note that both 2 and 2i are irreducible since their norms are both 4 and there are no elements in
Z[2i] of norm 2, and 2 and 2i are not associate since i 6∈ Z[2i]. Thus, 4 has two inequivalent factorizations
into irreducibles in Z[2i].

◦ Non-Example: The ring Z+xQ[x] of polynomials with rational coe�cients and integral constant term is
not a unique factorization domain because not every element has a factorization. Explicitly, the element

x is not irreducible since x = 2 · 1

2
x and neither 2 nor

1

2
x is a unit, but x cannot be written as a �nite

product of irreducible elements: any such factorization would necessarily consist of a product of constants
times a rational multiple of x, but no rational multiple of x is irreducible in Z + xQ[x].

• Like in principal ideal domains, irreducible elements are the same as prime elements in unique factorization
domains (and thus, we may interchangeably refer to �prime factorizations� or �irreducible factorizations� in a
UFD):

• Proposition (Irreducibles are Prime in a UFD): Every irreducible element in a unique factorization domain is
prime.

◦ Proof: Suppose that p is an irreducible element of R and that p|ab for some elements a, b ∈ R: we must
show that p|a or p|b.
◦ Since R is a unique factorization domain, we may write a = q1q2 · · · qd and b = r1r2 · · · rk for some
irreducibles qi and rj : then q1q2 · · · qdr1r2 · · · rk = ab. But since the factorization of ab into irreducibles
is unique, p must be associate to one of the irreducibles qi or rj .

◦ If p is associate to one of the qi then p|a, while if p is associate to one of the rj then p|b. Since at least
one of these two must occur, p|a or p|b, as required.

• Like in Z, we can also describe greatest common divisors in terms of prime factorizations:

• Proposition (Divisibility in UFDs): If a and b are nonzero elements in a unique factorization domain R,
then there exist units u and v and prime elements p1, p2, . . . , pk no two of which are associate so that a =
upa11 p

a2
2 · · · p

ak
k and b = vpb11 p

b2
2 · · · p

bk
k for some nonnegative integers ai and bi. Furthermore, a divides b if and

only if ai ≤ bi for all 1 ≤ i ≤ k, and the element d = p
min(a1,b1)
1 · · · pmin(ak,bk)

k is a greatest common divisor of
a and b.

◦ Proof: Since R is a UFD, we can write a as a product of irreducibles. As follows from a trivial induction,
we can then �collapse� these factorizations by grouping together associates and factoring out the resulting
units to obtain a factorization of the form a = upa11 p

a2
2 · · · p

ad
d .
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◦ We can repeat the process with b, and then add any further irreducibles that appear in its factorization
to the end of the list, to obtain the desired factorizations a = upa11 p

a2
2 · · · p

ak
k and b = vpb11 p

b2
2 · · · p

bk
k for

nonnegative integers ai and bi.

◦ For the statement about divisibility, if a|b then we have b = ar for some r ∈ R, so that vpb11 p
b2
2 · · · p

bk
k =

upa11 p
a2
2 · · · p

ak
k r. But since pi divides the right-hand side at least ai times, we see that pi must also divide

the left-hand side at least ai times: furthermore, since each of the terms excluding pi is not associate to
pi, by a trivial induction we conclude that bi must be at least as large as ai, for each i.

◦ For the statement about the gcd, it is easy to see by the above that d divides both a and b. If d′ is any other
common divisor, then since d′ divides a we see that any irreducible occurring in the prime factorization
of d′ must be associate to those appearing in the prime factorization of a, hence (by collapsing the
factorization as above) we can write d′ = wpd11 p

d2
2 · · · p

dk
k for some nonnegative integers di and some unit

w.

◦ Then since d′ is a common divisor of both a and b we see that di ≤ ai and di ≤ bi, whence di ≤ min(ai, bi)
for each i: then d′ divides d, so d is a greatest common divisor as claimed.

• We also recover one of the other fundamental properties of relatively prime elements and gcds:

• Corollary (Relatively Prime Elements and GCDs): In any unique factorization domain, d is a gcd of a and b
if and only if a/d and b/d are relatively prime. Furthermore, if a and b are relatively prime and a|bc, then a|c.

◦ Proof: Apply the previous proposition to write a = upa11 p
a2
2 · · · p

ak
k and b = vpb11 p

b2
2 · · · p

bk
k for some

nonnegative integers ai and bi, irreducibles pi, and units u and v.

◦ Then d = p
min(a1,b1)
1 · · · pmin(ak,bk)

k is a gcd of a and b, and it is easy to see that the exponent of pi in a/d
or b/d is zero for each i: thus, the only common divisors of a/d and b/d are units, so a/d and b/d are
relatively prime.

◦ Inversely, if d′ = wpd11 p
d2
2 · · · p

dk
k is any other common divisor of a and b, and di < min(ai, bi) for some i,

then pi is a common divisor of a/d′ and b/d′ and thus the latter are not relatively prime.

◦ For the second statement, consider the irreducible factors of bc: since a and b have no irreducible factors
in common, every irreducible factor of c must divide a.

8.1.9 The Chinese Remainder Theorem

• As a last preliminary result, we give a general formulation of the Chinese remainder theorem. We �rst require
a few preliminary de�nitions:

• De�nition: If R is commutative with 1 and I and J are ideals of R, then the sum I+J = {a+b : a ∈ I, b ∈ J}
is de�ned to be the set of all sums of elements of I and J , and the product IJ = {a1b1 + · · · + anbn, : ai ∈
I, bi ∈ J} is the set of �nite sums of products of an element of I with an element of J .

◦ It is not di�cult to verify that I + J and IJ are both ideals of R, and that IJ contains the intersection
I ∩ J .
◦ If I and J are �nitely generated, with I = (a1, a2, . . . , an) and J = (b1, b2, . . . , bm), it is also not hard to
see that I +J = (a1, a2, . . . , an, b1, b2, . . . , bm) and IJ = (a1b1, a1b2, . . . , a1bm, a2b1, . . . , a2bm, . . . , anbm).

◦ Example: If I = (a) and J = (b) inside Z, then I + J = (a, b) = (d) where d = gcd(a, b) and IJ = (ab).

◦ We can also speak of the product I1I2 · · · In of more than two ideals, de�ned as the set of �nite sums of
products of an element from each of I1, I2, . . . , In.

• De�nition: If R is commutative with 1, the ideals I and J are comaximal if I + J = R.

◦ Note that aZ + bZ = Z precisely when a and b are relatively prime. (The appropriate notion in general
rings is not �primality� but �maximality�, so we use the term comaximal rather than coprime.)

• We can now state the general Chinese remainder theorem:
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• Theorem (Chinese Remainder Theorem): Let R be commutative with 1 and I1, I2, . . . , In be ideals of R. Then
the map ϕ : R → (R/I1) × (R/I2) × · · · × (R/In) de�ned by ϕ(r) = (r + I1, r + I2, . . . , r + In) is a ring
homomorphism with kernel I1 ∩ I2 ∩ · · · ∩ In. If all of the ideals I1, I2, . . . , In are pairwise comaximal, then ϕ
is surjective and I1 ∩ I2 ∩ · · · ∩ In = I1I2 · · · In, and thus R/(I1I2 · · · In) ∼= (R/I1)× (R/I2)× · · · × (R/In).

◦ Proof: First, ϕ is a homomorphism since ϕ(a+ b) = (a+ b+ I1, . . . , a+ b+ In) = (a+ I1, . . . , a+ In) +
(b+ I1, . . . , b+ In) = ϕ(a) +ϕ(b) and similarly ϕ(ab) = (ab+ I1, . . . , ab+ In) = (a+ I1, . . . , a+ In) · (b+
I1, . . . , b+ In) = ϕ(a)ϕ(b).

◦ The kernel of ϕ is the set of elements r ∈ R such that ϕ(r) = (0 + I1, . . . , 0 + In), which is equivalent to
requiring r ∈ I1, r ∈ I2, ... , and r ∈ In: thus, kerϕ = I1 ∩ I2 ∩ · · · ∩ In.
◦ For the second statement, we will prove the results for two ideals and then deduce the general statement
via induction.

◦ So suppose I and J are ideals of R and ϕ : R→ (R/I)× (R/J) has ϕ(r) = (r+ I, r+ J). We must show
that if I + J = R, then I ∩ J = IJ and ϕ is surjective.

◦ If I + J = R then by de�nition there exist elements x ∈ I and y ∈ J with x+ y = 1.

◦ Then for any r ∈ I ∩ J , we can write r = r(x + y) = rx + yr, and both rx and yr are in IJ : hence
I ∩ J ⊆ IJ , and since IJ ⊆ I ∩ J we conclude IJ = I ∩ J .
◦ Furthermore, for any a, b ∈ R we can write ay + bx = a(1 − x) + bx = a + (b − a)x so ay + bx ∈ a + I,
and likewise ay + bx = ay + b(1− y) = b+ (a− b)y ∈ b+ J .

◦ Then ϕ(ay + bx) = (ay + bx+ I, ay + bx+ J) = (a+ I, b+ J), and therefore ϕ is surjective as claimed.

◦ Finally, the statement that R/IJ ∼= (R/I) × (R/J) then follows immediately by the �rst isomorphism
theorem. This establishes all of the results for two ideals.

◦ For the general statement, we use induction on n: the base case n = 2 was done above, and for the
inductive step, it is enough to show that the ideals I1 and I2 · · · In are comaximal, since then we may
write R/(I1I2 · · · In) ∼= (R/I1)× (R/I2 · · · In) and apply the induction hypothesis to R/I2 · · · In.
◦ If I1 and Ii are comaximal for 2 ≤ i ≤ n, then there exist elements xi ∈ I1 and yi ∈ Ii such that
xi + yi = 1. Then 1 = (x2 + y2)(x3 + y3) · · · (xn + yn) ≡ y2y3 · · · yn modulo I1. But since y2y3 · · · yn is
in I2I3 · · · In, this means that I1 + I2I3 · · · In contains 1 and is therefore all of R, as required.

• The name of this theorem comes from its application inside Z to solving simultaneous modular congruences.

◦ Explicitly, if m1,m2, . . .mn are relatively prime positive integers, then ϕ : Z → (Z/m1Z) × (Z/m2Z) ×
· · · × (Z/mnZ) given by ϕ(a) = (a mod m1, a mod m2, . . . , a mod mn) is a surjective homomorphism
with kernel m1m2 · · ·mnZ.

◦ The fact that this map is surjective says that the system of simultaneous congruences x ≡ a1 mod m1,
x ≡ a2 mod m2, ... , x ≡ an mod mn always has a solution in Z. Furthermore, the characterization of
the kernel says that the solution is unique modulo m1m2 · · ·mn.

◦ Systems of congruences of this form were studied by the ancient Chinese, whence the theorem's name.

• A useful application of the Chinese remainder theorem is to decompose Z/mZ as the direct product of other
rings when m is composite. This particular application is the generalization of the classical version of the
Chinese remainder theorem as applied to integer congruences:

• Corollary (Chinese Remainder Theorem for Z): If m is a positive integer with prime factorization m =
pa11 p

a2
2 · · · pann , then Z/mZ ∼= (Z/pa11 Z)× · · · × (Z/pann Z).

◦ Remark: By counting the number of units in the Cartesian product, we see that the number of units in
Z/mZ is m(1− 1/p1)(1− 1/p2) · · · (1− 1/pn): this gives us an alternate derivation of the formula for the
Euler ϕ-function ϕ(m).

◦ Proof: This statement follows from the Chinese remainder theorem along with the observation that if p
and q are distinct primes, then the ideals paZ and qbZ are comaximal in Z.

20



8.2 Factorization In Quadratic Integer Rings2

• We now turn our attention to the question of factorization in quadratic integer rings.

8.2.1 Unique Factorization of Elements in OD

• As we have seen, some of the quadratic integer rings (like Z[i]) are unique factorization domains, while others
(like Z[

√
−5]) are not.

◦ More speci�cally, by extending the argument used for Z[i], it can be shown that the quadratic integer

ring OD = OQ(
√
D) =

{
Z[
√
D] for D ≡ 2, 3 (mod 4)

Z[(1 +
√
D)/2] for D ≡ 1 (mod 4)

is Euclidean (with norm given by the

�eld norm) for a known list of negative D = −1,−2,−3,−7,−11 and for various positive D, including
D = 2, 3, 5, 6, 7, 11, . . . .

◦ We would like to know whether it is possible to recover some sort of �unique factorization� property in
the quadratic integer rings, even when they are not unique factorization domains.

• The question of when OD is a UFD was (and is) of substantial interest in applications to solving equations in
number theory, since we may use properties of integer rings (e.g., Z[i]) to characterize the solutions to such
equations, as we saw earlier in the case of the equation a2 + b2 = c2.

◦ For example, if p is an odd prime, we may study the Fermat equation xp + yp = zp in the ring Z[ζp] =
{a0 + a1ζp + · · ·+ ap−1ζ

p−1
p : ai ∈ Z} where ζp = e2πi/p = cos(2π/p) + i sin(2π/p) is a nonreal pth root

of unity (satisfying ζpp = 1).

◦ We may rearrange the equation as zp − yp = xp and then factor the left-hand side as the product
(z − y)(z − ζpy)(z − ζ2py) · · · (z − ζp−1p y) of linear terms inside Z[ζp].

◦ If Z[ζp] were a unique factorization domain, then since the terms on the left-hand side are essentially
relatively prime, each of them would have to be a pth power in Z[ζp], up to some small factors. But
this can be shown not to be possible unless y = 0, and so we would be able to conclude that Fermat's
equation xp + yp = zp has no nontrivial integer solutions.

◦ Unfortunately, the ring Z[ζp] is not always a unique factorization domain. But the study of Diophan-
tine equations in number theory, and associated questions about unique factorization, were (historically
speaking) the impetus for much of the development of modern algebra, including ring theory.

• We will restrict our attention to quadratic integer rings, since we can give concrete arguments in these cases.
For example, we can show that every element does possess at least one factorization (and thus, the failure to
be a UFD lies entirely with non-uniqueness):

• Proposition (Element Factorizations in OD): If R = OD is a quadratic integer ring, then every nonzero
nonunit in R has at least one factorization as a product of irreducible elements.

◦ Proof: We show the result by (strong) induction on the absolute value of the norm N(r). If N(r) = 0
then r = 0, while if N(r) = ±1 then r is a unit.

◦ For the base case we take |N(r)| = 2: then r is irreducible, since the absolute value of its norm is a
prime. (This follows by the same argument used in Z[i].)

◦ For the inductive step, suppose that |N(r)| = n for n ≥ 3. If r is irreducible we are done: otherwise we
have r = ab for some a, b with 1 < |N(a)| , |N(b)| < n.

◦ By the inductive hypothesis, both a and b have factorizations as a product of irreducibles, so r does too.

• It would appear that we are essentially at an impasse regarding factorization of elements. However, if we shift
our focus instead to ideals, it turns out that these rings do possess unique prime factorizations on the level of
ideals, rather than elements.

2The treatment of some of the material in this section is adapted from notes of Keith Conrad: http://www.math.uconn.edu/~kconrad/
blurbs/gradnumthy/quadraticgrad.pdf.
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◦ In fact, this is where the name �ideal� originally arose: in Kummer's study of unique factorization, he
constructed �ideal numbers� (essentially as sets of linear combinations of elements of OD) and proved that
they did possess unique prime factorization. These �ideal numbers� were the prototype of the modern
de�nition of an ideal.

◦ To illustrate using an example we have already discussed, the element 6 ∈ Z[
√
−5] has two di�erent

factorizations into irreducibles, as 2 · 3 = 6 = (1 +
√
−5) · (1−

√
−5).

◦ This yields the equivalent ideal factorization (6) = (2) · (3) = (1 +
√
−5) · (1−

√
−5).

◦ However, as ideals, we can factor further: explicitly, one can verify that (2) = (2, 1 +
√
−5)2, that

(1±
√
−5) = (2, 1 +

√
−5) · (3, 1±

√
−5), and that (3) = (3, 1 +

√
−5) · (3, 1−

√
−5).

◦ For an example of one of these calculations: we have (2, 1 +
√
−5) · (3, 1 +

√
−5) = (6, 2 + 2

√
−5, 3 +

3
√
−5,−4+2

√
−5). We can reduce the generating set by observing that this ideal contains (3+3

√
−5)−

(2+2
√
−5) = 1+

√
−5, and that each of the four generators of the product ideal is a multiple of 1+

√
−5:

thus, in fact, (2, 1 +
√
−5) · (3, 1 +

√
−5) = (1 +

√
−5), as claimed. The other calculations are similar.

◦ On the level of ideals, therefore, we see that these two factorizations are really �the same�: both of them
reduce to the factorization (6) = (2, 1 +

√
−5)2 · (3, 1 +

√
−5) · (3, 1−

√
−5).

◦ Furthermore, each of the ideals (2, 1 +
√
−5), (3, 1 +

√
−5), and (3, 1−

√
−5) can be shown to be prime

(the quotient ring of Z[
√
−5] by each is isomorphic to Z/2Z, Z/3Z, and Z/3Z respectively).

◦ Thus, we have found a factorization of the ideal (6) as a product of prime ideals of Z[
√
−5].

• Our goal is to show that the behavior in the example above holds in general: namely, that we can write any
nonzero ideal in a quadratic integer ring as a product of prime ideals, and that this factorization is unique up
to rearrangement.

◦ After �rst establishing some important properties of prime ideals, our model will be similar to our proofs
that Z and F [x] have unique factorization: we will discuss some properties of divisibility, show that every
nonzero ideal can be written as a product of prime ideals, and then show that the factorization is unique.

◦ We will then give some applications of unique factorization into prime ideals, and in particular describe
how to compute the prime ideals of OD.

8.2.2 Ideals in OD

• To begin, we show that every ideal in OD is generated by at most 2 elements:

• Proposition (Ideal Generators in OD): If R = OD is a quadratic integer ring, then every ideal in R is of the

form (n, a+ b · 1 +
√
D

2
) for some a, b, n ∈ Z.

◦ Proof: Let I be an ideal of OD, and de�ne I0 = I ∩Z and I1 to be the set of r ∈ Z such that there exists

some s ∈ Z with s+ r · 1 +
√
D

2
∈ I.

◦ Observe that I0 and I1 are both ideals of Z since they clearly contain 0, are closed under subtraction,
and are closed under arbitrary Z-multiplication. So suppose I0 = (n) and I1 = (b): then n ∈ I, and by

de�nition of I1, there exists a ∈ Z such that a+ b · 1 +
√
D

2
∈ I.

◦ We claim that n and a+ b · 1 +
√
D

2
generate I, so suppose s+ r · 1 +

√
D

2
is an arbitrary element of I.

By de�nition of I1 we see that r ∈ I1, whence r = yb for some y ∈ Z.

◦ Then

[(
s+ r · 1 +

√
D

2

)
− y ·

(
a+ b · 1 +

√
D

2

)]
= s − ay is in I ∩ Z = I0, so this quantity is equal

to xn for some x ∈ Z.

◦ Thus, s+ r · 1 +
√
D

2
= xn+ y

(
a+ b · 1 +

√
D

2

)
, and so n and a+ b · 1 +

√
D

2
generate I as claimed.
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• As a corollary, we can deduce that nonzero prime ideals of OD are maximal:

• Corollary (Quotients of OD): If R = OD is a quadratic integer ring and I is a nonzero ideal, then OD/I is
�nite. In particular, every nonzero prime ideal of OD is maximal.

◦ Proof: For the �rst statement, if I is a nonzero ideal in OD, then I ∩ Z is nonzero (since if r ∈ I is any

nonzero element, N(r) ∈ I is a nonzero integer) and so by the proposition above, I = (n, a+ b · 1 +
√
D

2
)

where n 6= 0 is a generator of I ∩ Z.
◦ There are �nitely many residue classes inOD/(n), since each residue class has (exactly) one representative

by an element of the form s+t· 1 +
√
D

2
for some integers 0 ≤ s, t ≤ n−1. Then by the third isomorphism

theorem, we know that OD/I ∼= [OD/(n)]/[I/(n)] is a quotient of a �nite ring, hence also �nite.

◦ For the second statement, if P is a nonzero prime ideal of OD, then OD/P is a �nite integral domain,
hence is a �eld.

• We also require a few additional properties about the �conjugation� map in OD:

• De�nition: If a+ b
√
D is an element of OD, its conjugate is a+ b

√
D = a− b

√
D. For any r ∈ OD, we have

N(r) = r · r, and we also de�ne the trace of r as tr(r) = r + r.

◦ It is not hard to see that both N(r) and tr(r) are elements of Z for any r ∈ OD.
◦ Conversely, the elements r ∈ Q(

√
D) with the property that N(r) and tr(r) are both in Z are precisely

the elements of OD.
◦ To see this, if r = a+ b

√
D ∈ Q(

√
D), then N(r) = a2 −Db2 and tr(r) = 2a. If both of these values are

integers, then 2a is an integer, and then 4N(r)− (2a)2 = −4Db2 is also an integer. Since D is squarefree,
this means 4b2 hence 2b is an integer as well.

◦ Finally, if D ≡ 2, 3 (mod 4) then N(r) will only be an integer when a and b are themselves integers,
while if D ≡ 1 (mod 4) then N(r) will be an integer when 2a and 2b are integers of the same parity. In
both cases, we see r ∈ OD as claimed.

• De�nition: If I is an ideal of OD, then its conjugate is the ideal I = {r : r ∈ I}.

◦ It is easy to see that if I = (r, s), then I = (r, s), so for example in Z[
√
−5] we have (3, 1 +

√
−5) =

(3, 1−
√
−5).

◦ Likewise, it is a straightforward calculation that for any ideals I and J , we have IJ = I · J and I = I.

• Our �rst key result is that the product of an ideal with its conjugate is always principal:

• Theorem (Ideals and Conjugates in OD): If I is any ideal of OD, then I · I is always principal.

◦ Proof: If I = 0 we are done. Otherwise, suppose that I = (r, s) for some nonzero r, s ∈ OD: then
I = (r, s) and I · I = (rr, rs, rs, ss).

◦ We claim in fact that I · I = (rr, rs+ rs, ss) = (N(r), tr(rs), N(s)).

◦ To see this, observe that N(r), tr(rs), and N(s) are each in Z, so let their greatest common divisor be
d. Then d = xN(r) + ytr(rs) + zN(s) for some x, y, z ∈ Z, and so (N(r), tr(rs), N(s)) = (d) in OD.
◦ In order to show that I · I = (rr, rs+ rs, ss), we must show that rs is in the ideal (rr, rs+ rs, ss) = (d).

◦ Observe that tr(rs/d) =
rs+ rs

d
=

tr(rs)

d
is an integer, as is N(rs/d) =

rs

d
· rs
d

=
N(r)

d
· N(s)

d
, since d

divides each of N(r), tr(rs), and N(s).

◦ Then, by our characterization of the elements in OD, we conclude that rs/d is in OD, so that rs ∈ (d).

◦ Therefore, I · I = (rr, rs+ rs, ss) = (N(r), tr(rs), N(s)) = (d) is principal, as claimed.
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8.2.3 Divisibility and Unique Factorization of Ideals in OD

• Next, we discuss divisibility of ideals.

• De�nition: If I and J are ideals of OD, we say that I divides J , written I|J , if there is some ideal K such
that J = IK.

• Proposition (Properties of Ideal Divisibility): Suppose I and J are ideals of OD and r ∈ OD.

1. If I divides J , then I contains J .

◦ Proof: If J = IK then every element in J is a sum of multiples of elements in I, hence is in I.

2. We have I|J and J |I if and only if I = J .

◦ Proof: Since I = IR, I = J implies I|J and J |I. Conversely, if I|J and J |I, then I ⊆ J and J ⊆ I
so I = J .

3. The principal ideal (r) divides I if and only if (r) contains I.

◦ Proof: The forward direction follows from (1). For the reverse, if (r) contains I = (s, t) then r|s and
r|t, and then I = (r) · (s/r, t/r).

4. If (r)J = (r)K and r 6= 0, then J = K.

◦ Proof: If s ∈ J , then rs ∈ (r)J : then rs ∈ (r)K and so s ∈ K. Thus, J ⊆ K, and by the same
argument in reverse, K ⊆ J , so J = K.

5. If IJ = IK and I 6= 0, then J = K.

◦ Proof: If I 6= 0 then I · I = (r) is a nonzero principal ideal as we proved above. Then IJ = IK
implies (II)J = (II)K so that (r)J = (r)K, whence J = K by (4).

6. The ideal I divides J if and only if I contains J .

◦ Proof: The forward direction is given by (1), and it is easy to see that the result also holds if I is
zero (since every ideal divides the zero ideal, but the zero ideal only divides itself).

◦ If I and J are nonzero ideals and I contains J , then I · I = (r) contains J · I.
◦ Then by (3) we see that (r) = I · I divides J · I, so J · I = I · I ·K for some K. Then since I 6= 0
(whence I 6= 0), by (5) we may cancel to conclude that J = IK, meaning that I divides J .

• The upshot of the previous proposition is that dividing is the same as containment, on the level of ideals.

◦ From this description and the fact that nonzero prime ideals are maximal, we can immediately conclude
that the �irreducible� ideals (namely, ideals that have no nontrivial factorization, which is to say I = JK
implies J = OD or K = OD) are the same as the maximal ideals, which are in turn the same as the
nonzero prime ideals.

• It remains for us to establish that every nonzero ideal has a factorization into prime ideals, and that the
factorization is unique.

◦ To show that nonzero ideals have a factorization, we will mimic the proof we gave earlier for elements
by de�ning an �ideal norm�.

◦ For elements we use the norm N(r) = |r ·r|, so a natural guess for ideals would be to use I ·I: conveniently
enough, we have proven that this ideal is principal and generated by an integer.

• De�nition: If I is an ideal of OD, then the norm N(I) of I is the nonnegative integer generator of the principal
ideal I · I.

◦ Observe that the norm is multiplicative: (N(IJ)) = IJ · IJ = II · JJ = (N(I)N(J)).

◦ Also notice that the only ideal with norm 0 is the zero ideal, while the only ideal with norm 1 is OD
(since II = (1) implies that I contains a unit).

◦ Thus, in particular, if N(I) is a prime integer then I has no nontrivial factorization, and thus I is a
prime ideal.
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• We can now establish that every ideal has a factorization as a product of prime ideals:

• Proposition (Prime Factorization of Ideals in OD): Every nonzero ideal in OD can be written as the product
of prime ideals of OD.

◦ As usual, we take the convention that the empty product represents OD.
◦ Proof: We use (strong) induction on the norm of the ideal. Since I 6= 0 we have N(I) ≥ 1.

◦ For the base case N(I) = 1, we have I = OD so we may take the empty product of prime ideals.

◦ For the inductive step, suppose the result holds for every ideal of norm less than n and suppose N(I) = n.

◦ If I is a prime ideal we are done, so assume I is not prime (hence not maximal). Then I is properly
contained in some other proper ideal J , so by our results on divisibility we may write I = JK where J
and K are both proper.

◦ Then N(I) = N(J) ·N(K) and 1 < N(J), N(K) < n. By the inductive hypothesis, both J and K are
the product of some number of prime ideals, so I is as well.

• As our �nal step, we show that the factorization is unique. To do this we require the prime divisibility property
of prime ideals:

• Proposition (Divisibility and Prime Ideals in OD): If P is a prime ideal of OD and I and J are any ideals
with P |IJ , then P |I or P |J .

◦ Proof: By the equivalence of divisibility and containment in OD, we need to show that if P is a prime
ideal with P containing IJ , then P contains I or P contains J .

◦ Suppose that P contains neither I nor J : then there is some x ∈ I that is not in P and some y ∈ J that
is not in P . But then xy ∈ IJ is contained in P , contradicting the assumption that P was prime. Thus,
P contains I or P contains J , as required.

• Theorem (Uniqueness of Prime Ideal Factorization in OD): Every nonzero ideal in OD can be written as
the product of prime ideals of OD. Furthermore, this representation is unique up to rearrangement: if
I = P1P2 · · ·Pn = Q1Q2 · · ·Qk, then n = k and there is some rearrangement of the Qi so that Pi = Qi.

◦ Proof: We proved above that every nonzero ideal can be written as a product of prime ideals.

◦ For the uniqueness, we induct on the minimal number of terms n in the prime factorization.

◦ For the base case n = 0, we have I = OD: since every prime ideal is proper, we cannot write I as a
nonempty product of prime ideals.

◦ For the inductive step, suppose that every representation with fewer than n terms is unique, and suppose
I = P1P2 · · ·Pn = Q1Q2 · · ·Qk. Since P1 is prime and divides Q1Q2 · · ·Qk, we see that P1 must divide
one of the Qi; without loss of generality, rearrange so that P1 divides Q1.

◦ But since P1 and Q1 are both nonzero prime ideals, they are maximal. Since P1 divides Q1 we see that
P1 contains Q1, hence since Q1 is maximal and P1 6= OD, we must have P1 = Q1.

◦ Then by our ideal divisibility properties, we may cancel to obtain P2 · · ·Pn = Q2 · · ·Qk, which by the
inductive hypothesis has a unique factorization. Thus, the factorization of I is unique as claimed.

8.2.4 Calculating Factorizations in OD

• As a corollary of the unique factorization of ideals, we can give a characterization of when OD is a unique
factorization domain:

• Theorem (Unique Factorization in OD): The ring OD is a unique factorization domain if and only if it is a
principal ideal domain.

◦ Inversely, this says that every example of non-unique factorization of elements in OD ultimately arises
from the presence of nonprincipal ideals.

◦ Proof: Every PID is a UFD, so we need only prove the forward direction, so suppose OD is a unique
factorization domain.
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◦ First suppose that P is a prime ideal: then P divides the principal ideal (N(P )). By the unique factoriza-
tion of elements in OD, we can write N(P ) = π1π2 · · ·πn for some irreducible elements π1, . . . , πn ∈ OD.
◦ Therefore, P divides the ideal product (N(P )) = (π1) · · · (πn), and hence P divides one of the ideals (πi).

◦ But since irreducibles are prime in UFDs, the ideal (πi) is also prime, and so we must have P = (πi),
and so in particular P is principal.

◦ Then any nonzero ideal in OD is a product of prime (hence principal) ideals hence is also principal. Since
the zero ideal is also principal, every ideal in OD is principal, so it is a PID.

• We can also describe how prime ideals in OD arise in a more concrete way:

• Proposition (Prime Ideals in OD): If P is a nonzero prime ideal of OD, then P ∩ Z = pZ for a unique prime
p ∈ Z (we say P �lies above� the prime ideal pZ of Z). Furthermore, every prime ideal in OD lying above pZ
divides the ideal (p) in OD, and the norm of any prime ideal is either p or p2.

◦ Proof: Let ϕ : Z → OD be the inclusion homomorphism, and observe that ϕ−1(P ) = P ∩ Z is then an
ideal of Z, since the inverse image contains 0 and is closed under subtraction and arbitrary multiplication.

◦ Furthermore, if ab ∈ ϕ−1(P ) then ϕ(a)ϕ(b) = ϕ(ab) ∈ P , so since P is prime we see ϕ(a) ∈ P or
ϕ(b) ∈ P : thus, either a or b is in ϕ−1(P ). Furthermore, since ϕ maps 1Z to 1OD , ϕ

−1(P ) does not
contain 1, and since P contains the nonzero integer N(P ), we conclude that ϕ−1(P ) = P ∩Z is a nonzero
prime ideal of Z.
◦ Then P ∩ Z = pZ for a unique prime p ∈ Z. Thus, P contains p ∈ Z hence P contains (p), so by the
equivalence of divisibility and containment, we see that P divides (p).

◦ For the last statement, since P divides (p) we see that N(P ) divides N((p)) = N(p) = p2, so since
N(P ) > 1 we must have N(p) = p or N(p) = p2.

• The result above tells us that we can �nd all the prime ideals in OD by studying the factorization of the ideal
(p) in OD.

◦ Indeed, we have already seen how this works when OD = Z[i]: there is a unique prime ideal (1 + i) above
2, with (2) = (1 + i)2 decomposing as a product with repeated factors, if p ≡ 3 mod 4 then the ideal (p)
remains prime in Z[i], and if p ≡ 1 mod 4 then (p) = (π)(π) factors as the product of distinct ideals.

◦ We can recast this characterization as follows: if the polynomial x2 + 1 has a repeated root modulo p
(which only happens with p = 2) then the ideal (p) decomposes as a product with repeated factors, if
x2 + 1 remains irreducible modulo p (which is equivalent to saying that −1 is not a square modulo p,
which occurs when p ≡ 3 mod 4) then (p) remains prime in Z[i], and if x2 + 1 factors with distinct terms
modulo p (which is equivalent to saying that −1 is a square modulo p, which occurs when p ≡ 1 mod 4)
then (p) factors as the product of two distinct conjugate ideals.

• We can establish a similar characterization for the prime ideals of OD, which is a special case of a general
result known as the Dedekind-Kummer factorization theorem:

• Theorem (Factorization of (p) inOD): Let p be a prime and let q(x) =

{
x2 −D for D ≡ 2, 3 mod 4

x2 − x− (D − 1)/4 for D ≡ 1 mod 4
,

where ω =

{√
D for D ≡ 2, 3 mod 4

(1 +
√
D)/2 for D ≡ 1 mod 4

is a root of q(x). If the polynomial q(x) has a repeated root r

modulo p then the ideal (p) = (p, ω− r)2 is the square of a prime ideal of norm p in OD, if q(x) is irreducible
modulo p then the ideal (p) is prime in OD of norm p2, and if q(x) is reducible with distinct roots r, r′ modulo
p, then (p) = (p, ω − r) · (p, ω − r′) factors as the product of two distinct ideals in OD each of norm p.

◦ We note that q(x) has a root modulo p if and only if D is a square modulo p. Also, q(x) has a repeated
root when p|D (for any D) or when p = 2 and D ≡ 3 mod 4.

◦ Proof: First observe that OD ∼= Z[x]/(q(x)), so by the isomorphism theorems we see that OD/(p) ∼=
[Z[x]/(q(x))] /(p) ∼= Z[x]/(p, q(x)) ∼= [Z[x]/(p)] /(q(x)) ∼= Fp[x]/(q(x)). Thus, the ring structure of
OD/(p) is the same as the ring structure of Fp[x]/(q(x)).
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◦ The ideal (p) is prime (equivalently, maximal) in OD precisely when the quotient ring is a �eld, and this
occurs exactly when q(x) is irreducible in Fp[x]. In this case, N((p)) = p2 so (p) is prime of norm p2.

◦ If (p) is not prime, then since N((p)) = p2, we see that (p) must factor as the product of two prime
ideals I and I ′ each of norm p. Furthermore, since I · I = (N(I)) = (p), by uniqueness of the prime ideal
factorization we see that I ′ = I, so the ideals in the factorization are conjugates.

◦ If I 6= I then I + I = OD, so I and I are comaximal: then by the Chinese remainder theorem see that
OD/(p) ∼= OD/I ×OD/I is the direct product of two �elds, and has no nonzero nilpotent elements.

◦ On the other hand, if I = I, then OD/(p) = OD/I2 has a nonzero nilpotent element (namely, the class
of any element in I but not in I2).

◦ For the other side, if q(x) = (x − r)(x − r′) in Fp[x], then the quotient ring OD/(p) ∼= Fp[x]/(q(x)) ∼=
Fp[x]/(x − r) × Fp[x]/(x − r′) ∼= Fp × Fp is a direct product of two �elds by the Chinese remainder
theorem, and has no nonzero nilpotent elements.

◦ If q(x) = (x− r)2 in Fp[x], then OD/(p) ∼= Fp[x]/(x− r)2 does have a nonzero nilpotent element (namely
x− r).

◦ Thus, comparing the ring structures in the two cases immediately shows that the case where I = I
corresponds to the case where q(x) has a repeated root, and I 6= I corresponds to the case where q(x)
has distinct roots.

◦ For the remaining statements, if r is a root of q(x) in Fp, then (p, ω− r) divides (p) since it contains (p),
and since ω − r 6∈ (p) we see that (p, ω − r) is a proper divisor of (p).

◦ Furthermore, N((p, ω − r)) is the greatest common divisor of N(p) = p2, tr(p(ω − r)) = ptr(ω − r), and
N(ω− r) = q(r) ≡ 0 mod p. Since each of the terms is divisible by p, the gcd cannot be 1, and therefore
(p, ω−r) is a proper ideal. By the uniqueness of the prime ideal factorization, we conclude that (p, ω−r)
must be a prime ideal dividing (p).

◦ If (p) is the square of a prime ideal, we then see (p) = (p, ω − r)2, while if (p) is the product of distinct
ideals, we see that (p) is divisible by both (p, ω− r) and (p, ω− r′), and since these ideals are comaximal
we conclude (p) = (p, ω − r) · (p, ω − r′). This establishes everything, so we are done.

• Example: Find the prime ideal factorizations of (2), (3), (5), and (7) in O7 = Z[
√

7].

◦ For (2) we consider x2 − 7 modulo 2: since it has a repeated root 1, we see (2) = (2,
√

7− 1)2 in Z[
√

7].

◦ For (3) we consider x2 − 7 modulo 3: since its roots are 1 and 2, we get (3) = (3,
√

7− 1) · (3,
√

7− 2).

◦ For (5) we consider x2 − 7 modulo 5: since it has no roots, we see that (5) remains prime in Z[
√

7].

◦ For (7) we consider x2 − 7 modulo 7: since it has a repeated root 0, we see (7) = (7,
√

7)2 = (
√

7)2.

• To �nish our discussion here, we will note that almost all of our analysis of the quadratic integer rings OD
can be extended to general rings of integers of algebraic number �elds, as pioneered by Kummer, Dedekind,
and Noether in their original development of the theory of rings and modules as applied to number theory.

◦ Explicitly, an algebraic number is a complex number that satis�es a polynomial with rational coe�cients
(such as i/2, 3

√
2, and the roots of x5−x− 1 = 0), while an algebraic integer is an algebraic number that

satis�es a monic polynomial with integer coe�cients (such as i and 3
√

2, but not i/2).

◦ An algebraic number �eld is a sub�eld of C that is a �nite-dimensional vector space over Q (examples
include Q(

√
D) and Q( 3

√
2)); all its elements are algebraic numbers.

◦ It can be shown that the set of algebraic integers in an algebraic number �eld K is a subring of K, which
is called the ring of integers of the number �eld. (For example, the ring of integers of Q(

√
D) is OD.)

◦ Essentially all of the results we have proven then carry over to general rings of integers: ideal divisibility
is equivalent to containment, nonzero prime ideals are maximal, nonzero ideals factor as a unique product
of prime ideals, and nonzero prime ideals are precisely the ideal factors of (p).

◦ In number-theoretic language, if a prime ideal (p) remains prime in a ring of integers, we say (p) is
inert. If (p) factors as a product of distinct prime ideals, we say (p) splits, while if (p) has repeated
prime factors, we say that p rami�es. The question of when primes split, remain inert, or ramify is a
fundamental object of study in algebraic number theory.
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8.3 Applications of Factorization In Quadratic Integer Rings

• In this section, we discuss some applications of unique factorization in the quadratic rings OD.

8.3.1 Factorization in Z[i] and Sums of Two Squares

• We �rst discuss factorization in Z[i], which we have already shown to be a Euclidean domain, a principal ideal
domain, and a unique factorization domain.

◦ We need only analyze the factorization of primes p, which is fully determined by the ideal factorization
of (p) inside Z[i].

◦ Because N(a+ bi) = a2 + b2, factorization in Z[i] is closely related to the question of writing an integer
as the sum of two squares, and so by analyzing prime factorizations in Z[i], we can classify the integers
that can be written as the sum of two squares.

• Our �rst task is to write down the irreducible elements in Z[i]:

• Theorem (Irreducibles in Z[i]): Up to associates, the irreducible elements in Z[i] are as follows:

1. The element 1 + i (of norm 2).

2. The primes p ∈ Z congruent to 3 modulo 4 (of norm p2).

3. The distinct irreducible factors a+ bi and a− bi (each of norm p) of p = a2 + b2 where p ∈ Z is congruent
to 1 modulo 4.

◦ There are various ways to prove this result using modular arithmetic, but we can establish this result
directly from our theorem on factoring the ideal (p).

◦ Proof: Since Z[i] is a Euclidean domain, the irreducible (equivalently, prime) elements in Z[i] are the
generators of its nonzero prime ideals, and these are the ideal factors of the ideals (p) for integer primes
p.

◦ To �nd the factorization of (p) in Z[i], we write down the minimal polynomial q(x) = x2 + 1 of ω = i
and then determine its factorization modulo p.

◦ For p = 2 we have x2 + 1 ≡ (x − 1)2 mod 2, so we get the ideal factorization (2) = (2, i + 1)2, yielding
the element factorization 2 = −(i+ 1)2.

◦ For p ≡ 3 mod 4, the polynomial x2 + 1 is irreducible modulo p: we have

(
−1

p

)
≡ (−1)(p−1)/2 ≡ −1

(mod p) by Euler's criterion, so −1 is not a square mod p. Thus, (p) is prime in Z[i], so the element p is
irreducible and its norm is p2.

◦ With p ≡ 1 mod 4, the polynomial x2 + 1 factors modulo p because

(
−1

p

)
≡ (−1)(p−1)/2 ≡ 1 (mod p)

by Euler's criterion, so 1 is a square mod p. With factorization x2 + 1 ≡ (x − r)(x + r) (mod p), we
obtain the ideal factorization (p) = (p, i− r) · (p, i+ r).

◦ Since Z[i] is a principal ideal domain, the ideal (p, i + r) = (a + bi) for some a, b that we can compute
by applying the Euclidean algorithm to p and i+ r, and then its conjugate ideal (p, r − i) = (p, i− r) is
equal to (a− bi).
◦ This yields the ideal factorization (p) = (a + bi)(a − bi) and so we get the element factorization p =

(a+bi)(a−bi) up to a unit factor, which by rescaling we may assume is 1. This means p = (a+bi)(a−bi) =
a2 + b2, and we have N(a + bi) = a2 + b2 = p = N(a − bi), so both irreducible factors have norm p as
claimed.

• We can now give a method for �nding the prime factorization of an arbitrary Gaussian integer:

◦ First, �nd the prime factorization of N(a+ bi) = a2 + b2 over the integers Z, and write down a list of all
(rational) primes p ∈ Z dividing N(a+ bi).

◦ Second, for each p on the list, �nd the factorization of p over the Gaussian integers Z[i].
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◦ Finally, use trial division to determine which of these irreducible elements divide a + bi in Z[i], and to
which powers. (The factorization of N(a+ bi) can be used to determine the expected number of powers.)

• Example: Find the factorization of 4 + 22i into irreducibles in Z[i].

◦ We compute N(4 + 22i) = 42 + 222 = 22 · 53. The primes dividing N(4 + 22i) are 2 and 5.

◦ Over Z[i], we �nd the factorizations 2 = −i(1 + i)2 and 5 = (2 + i)(2− i).
◦ Now we just do trial division to �nd the correct powers of each of these elements dividing 4 + 22i.

◦ Since N(4 + 22i) = 22 · 53, we should get two copies of (1 + i) and three elements from {2 + i, 2− i}.

◦ Doing the trial division yields the factorization 4 + 22i = −i · (1 + i)2 · (2 + i)3 . (Note that in order to

have powers of the same irreducible element, we left the unit −i in front of the factorization.)

• The primes appearing in the example above were small enough to factor over Z[i] by inspection, but if p ≡ 1
(mod 4) is large then it is not so obvious how to factor p in Z[i]. We brie�y explain how to �nd this expression
algorithmically.

◦ We have the ideal factorization (p) = (p, i+ r) · (p, i− r) and then use the Euclidean algorithm to write
(p, i+ r) = (a+ bi). Thus, all we need to do is �nd a root r of the polynomial x2 + 1 (mod p), which is
equivalent to �nding a square root of −1 modulo p.

◦ We can do this using Euler's criterion: for any quadratic nonresidue u modulo p, Euler's criterion tells
us that u(p−1)/2 ≡ −1 (mod p), and so u(p−1)/4 will be a square root of −1.

◦ There is no general formula for identifying a quadratic nonresidue modulo an arbitrary prime p, but we
can just search small residue classes (or random residue classes) until we �nd one. Indeed, we don't even
need to test whether u is a quadratic residue: we can just try calculating u(p−1)/4, which will either be
a square root of −1 or a square root of +1, but in the latter case we will get ±1 and thus know we need
to try a di�erent u.

◦ Then, as noted above, to compute the solution to p = a2 + b2 we can use the Euclidean algorithm in Z[i]
to �nd a greatest common divisor of p and r + i in Z[i]: the result will be an element π = a + bi with
a2 + b2 = p.

• Example: Express the prime p = 3329 as the sum of two squares.

◦ Using modular exponentiation, we can verify that 3(p−1)/4 ≡ 1729 (mod p). Thus, our discussion above
tells us that 1729 is a square root of −1 modulo p, and indeed, 17292 + 1 = 898 · 3329.

◦ Now we compute the gcd of 1729 + i and 3329 in Z[i] using the Euclidean algorithm:

3329 = 2(1729 + i) + (−129− 2i)

1729 + i = −13(−129− 2i) + (52− 25i)

−129− 2i = (−2− i)(52− 25i)

◦ The last nonzero remainder is 52− 25i, and indeed we can see that 3329 = 522 + 252 .

• As a corollary to our characterization of the irreducible elements in Z[i], we can deduce the following theorem
of Fermat on when an integer is the sum of two squares:

• Theorem (Fermat): Let n be a positive integer, and write n = 2kpn1
1 · · · p

nk
k qm1

1 · · · qmdd , where p1, · · · , pk are
distinct primes congruent to 1 modulo 4 and q1, · · · , qd are distinct primes congruent to 3 modulo 4. Then n
can be written as a sum of two squares in Z if and only if all the mi are even. Furthermore, in this case, the
number of ordered pairs of integers (A,B) such that n = A2 +B2 is equal to 4(n1 + 1)(n2 + 1) · · · (nk + 1).

◦ Proof: Observe that the question of whether n can be written as the sum of two squares n = A2 +B2 is
equivalent to the question of whether n is the norm of a Gaussian integer A+Bi.

◦ Write A + Bi = ρ1ρ2 · · · ρr as a product of irreducibles (unique up to units), and take norms to obtain
n = N(ρ1) ·N(ρ2) · · · · ·N(ρr).
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◦ By the classi�cation above, if ρ is irreducible in Z[i], then N(ρ) is either 2, a prime congruent to 1
modulo 4, or the square of a prime congruent to 3 modulo 4. Hence there exists such a choice of ρi with
n =

∏
N(ρi) if and only if all the mi are even.

◦ Furthermore, since the factorization of A+Bi is unique, to �nd the number of possible pairs (A,B), we
need only count the number of ways to select terms for A + Bi and A − Bi from the factorization of n
over Z[i], which is n = i−k(1 + i)2k(π1π1)n1 · · · (πkπk)nkqm1

1 · · · qmdd .

◦ Up to associates, we must choose A+Bi = (1+i)k(πa11 π1
b1) · · · (πakk πk

bk)q
m1/2
1 · · · qmd/2d , where ai+bi = ni

for each 1 ≤ i ≤ k.
◦ Since there are ni + 1 ways to choose the pair (ai, bi), and 4 ways to multiply A+Bi by a unit, the total
number of ways is 4(n1 + 1) · · · (nk + 1), as claimed.

• Example: Find all ways of writing n = 6649 as the sum of two squares.

◦ We factor 6649 = 61 · 109. This is the product of two primes each congruent to 1 modulo 4, so it can be
written as the sum of two squares in 16 di�erent ways.

◦ We compute 61 = 52 + 62 and 109 = 102 + 32 (either by the algorithm above or by inspection), so the
16 ways can be found from the di�erent ways of choosing one of 5± 6i and multiplying it with 10± 3i.

◦ Explicitly: (5 + 6i)(10 + 3i) = 32 + 75i, and (5 + 6i)(10− 3i) = 68 + 45i, so we obtain the sixteen ways
of writing 6649 as the sum of two squares as (±32)2 + (±75)2, (±68)2 + (±45)2, and the eight other
decompositions with the terms interchanged.

8.3.2 Factorization in O√−2 and O√−3

• We can use a similar approach to the one we used in Z[i] to study factorization in O√−2 = Z[
√

2] and

O√−3 = Z[ 1+
√
−3

2 ], which in turn allows us to characterize the integers that can be written in the form

a2 + 2b2 and a2 + 3b2.

◦ As we noted earlier, by using a similar proof to the one we used for Z[i], we can establish that both O√−2
and O√−3 are Euclidean domains, hence also principal ideal domains and unique factorization domains.

◦ We will note that the units in O√−2 are simply ±1, while the units in O√−3 are the sixth roots of unity:

namely, the elements ±1±
√
−3

2 and ±1.

• Our �rst task is to write down the irreducible elements in these two quadratic integer rings:

• Theorem (Irreducibles in O√−2): Up to associates, the irreducible elements in O√−2 are as follows:

1. The element
√
−2 (of norm 2).

2. The primes p ∈ Z congruent to 5 or 7 modulo 8 (of norm p2).

3. The distinct irreducible factors a+ b
√
−2 and a− b

√
−2 (each of norm p) of p = a2 + 2b2 where p ∈ Z is

congruent to 1 or 3 modulo 8.

◦ Proof: Since O√−2 is a Euclidean domain, the irreducible (equivalently, prime) elements in O√−2 are the
generators of its nonzero prime ideals, and these are the ideal factors of the ideals (p) for integer primes
p.

◦ To �nd the factorization of (p) in O√−2, we write down the minimal polynomial q(x) = x2+2 of ω =
√
−2

and then determine its factorization modulo p.

◦ For p = 2 we have x2 + 2 ≡ x2 mod 2, so we get the ideal factorization (2) = (ω)2, yielding the element
factorization 2 = −(

√
−2)2.

◦ For p ≡ 5 or 7 mod 8, the polynomial x2+2 is irreducible modulo p: from one of the �secondary� relations
from quadratic reciprocity, we know that −2 is a square modulo p if and only if p is congruent to 1 or 3
mod 8. Thus, for p ≡ 5 or 7 mod 8, the ideal (p) is prime, so the element p is also prime.

◦ With p ≡ 1 or 3 mod 8, the polynomial x2+2 factors modulo p. If the factorization is x2+2 ≡ (x−r)(x+r)
(mod p), we obtain the ideal factorization (p) = (p,

√
−2− r) · (p,

√
−2 + r).
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◦ Since Z[
√
−2] is a principal ideal domain, the ideal (p,

√
−2 + r) = (a + b

√
−2) for some a, b that

we can compute by applying the Euclidean algorithm to p and
√
−2 + r, and then its conjugate ideal

(p, r −
√
−2) = (p,

√
−2− r) is equal to (a− b

√
−2).

◦ This yields the ideal factorization (p) = (a+ b
√
−2)(a− b

√
−2) and so we get the element factorization

p = (a + b
√
−2)(a − b

√
−2) up to a unit factor, which by rescaling we may assume is 1. This means

p = (a + b
√
−2)(a − b

√
−2) = a2 + 2b2, and we have N(a + b

√
−2) = a2 + 2b2 = p = N(a − b

√
−2), so

both irreducible factors have norm p as claimed.

• Theorem (Irreducibles in O√−3): Up to associates, the irreducible elements in O√−3 are as follows:

1. The element
√
−3 (of norm 3).

2. The primes p ∈ Z congruent to 2 modulo 3 (of norm p2).

3. The distinct irreducible factors a+ b
√
−3 and a− b

√
−3 (each of norm p) of p = a2 + 3b2 where p ∈ Z is

congruent to 1 modulo 3.

◦ Proof: Since O√−3 is a Euclidean domain, the irreducible (equivalently, prime) elements in O√−3 are the
generators of its nonzero prime ideals, and these are the ideal factors of the ideals (p) for integer primes
p.

◦ To �nd the factorization of (p) in O√−3, we write down the minimal polynomial q(x) = x2 − x + 1 of

ω =
1 +
√
−3

2
and then determine its factorization modulo p.

◦ For p = 3, we have x2 − x+ 1 ≡ (x− 2)2 (mod p), so we obtain the ideal factorization (3) = (ω − 2)2 =
(
√
−3)2, yielding the element factorization 3 = −(

√
−3)2.

◦ For p ≡ 2 mod 3, the polynomial x2−x+1 is irreducible modulo p. For p = 2 this can be checked directly,

and for odd p, by quadratic reciprocity we have

(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)(p−1)/2

(p
3

)
(−1)−(p−1)/2 =(p

3

)
. When p ≡ 2 mod 3, this last Legendre symbol is −1, and so −3 is not a square modulo p. Since

the roots of x2 − x+ 1 are
1±
√
−3

2
, this means x2 − x+ 1 has no roots hence is irreducible modulo p.

Thus, the ideal (p) is prime, as is the element p.

◦ For p ≡ 1 mod 3, we compute instead

(
−3

p

)
=
(p

3

)
= 1 and so −3 is a square modulo p. Since 2 6= 0

mod p, this means x2 − x + 1 factors modulo p. If the factorization is x2 − x + 1 ≡ (x − r)(x − 1 + r)
(mod p), we obtain the ideal factorization (p) = (p, ω − r) · (p, ω − 1 + r).

◦ Since O√−3 is a principal ideal domain, the ideal (p, ω − r) = (a + b
√
−3) for some a, b that we can

compute by applying the Euclidean algorithm to p and ω − r, and then its conjugate ideal will be
(p, ω − 1 + r) = (a− b

√
−3).

◦ This yields the ideal factorization (p) = (a+ b
√
−3)(a− b

√
−3) and so we get the element factorization

p = (a + b
√
−3)(a − b

√
−3) up to a unit factor, which by rescaling we may assume is 1. This means

p = (a + b
√
−3)(a − b

√
−3) = a2 + 3b2, and we have N(a + b

√
−3) = a2 + 3b2 = p = N(a − b

√
−3), so

both irreducible factors have norm p as claimed.

◦ As a �nal remark, we note that a and b are not necessarily integers, but if both are half-integers, then
we can rescale by a unit factor of ω · ω−1 to make them integers.

• In both of these rings, we can then use the same general factorization procedure as in Z[i] to compute element
factorizations.

◦ First, �nd the prime factorization of N(a + b
√
−D) = a2 + Db2 over the integers Z, and write down a

list of all (rational) primes p ∈ Z dividing N(a+ b
√
−D).

◦ Second, for each p on the list, �nd the factorization of p in the ring O√−D, which we can do by referring

to the lists above, and then solving p = a2 +Db2 in integers a, b whenever this equation has a solution.

◦ We can �nd this factorization by inspection for small p, and for large p we can �nd a solution by solving
the quadratic r2 ≡ −D (mod p) and then using the Euclidean algorithm to compute the gcd a+ b

√
−D

of p and
√
−D + r in O√−D.
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◦ Finally, use trial division to determine which of these irreducible elements divide a + b
√
−D in O√−D

and to which powers. (The factorization of N(a+b
√
−D) can be used to determine the expected number

of powers.)

• Example: Find the factorization of 47 + 32
√
−2 into irreducibles in Z[

√
−2].

◦ We compute N(47 + 32
√
−2) = 472 + 2 · 322 = 32 · 11 · 43, so the primes dividing the norm are 3, 11, and

43.

◦ Over Z[
√
−2], we �nd the factorizations 3 = 12 + 2 · 12 = (1 +

√
−2)(1 −

√
−2), 11 = 32 + 2 · 12 =

(3 +
√
−2)(3−

√
−2) and 43 = 52 + 2 · 32 = (5 + 3

√
−2)(5− 3

√
−2).

◦ Now we just do trial division to �nd the correct powers of each of these elements dividing 47 + 32
√
−2:

we will get two of 1±
√
−2 and one each of 3±

√
−2 and 5± 3

√
−2.

◦ Doing the trial division yields the factorization 47 + 32
√
−2 = (1 +

√
−2)2(3−

√
−2)(5− 3

√
−2) .

• Example: Find the factorization of 27−
√
−3 into irreducibles in O√−3.

◦ We compute N(27−
√
−3) = 272 + 3 · 12 = 22 · 3 · 61, so the primes dividing the norm are 2, 3, and 61.

◦ Over O√−3, the element 2 is prime, and we also can �nd the factorizations 3 = 0 + 3 · 12 = −
√
−3

2
and

61 = 72 + 3 · 22 = (7 + 2
√
−3)(7− 2

√
−3).

◦ Now we just do trial division to �nd the correct powers of each of these elements dividing 47 + 32
√
−2:

we get one factor of 2, one factor of
√
−3, and one of 7± 2

√
−3.

◦ Doing the trial division yields the factorization 27 −
√
−3 =

−1−
√
−3

2
· 2 ·
√
−3 · (7 + 2

√
−3) . Note

that the unit factor
−1−

√
−3

2
is required to make the product come out correctly. We could, of

course, absorb it into any one of the terms, such as by writing instead the factorization 27 −
√
−3 =

(−1−
√
−3) ·

√
−3 · (7 + 2

√
−3).

• Using these characterizations of irreducible elements in Z[
√
−2] and O√−3, we can describe the integers that

can be represented by the two quadratic forms a2 + 2b2 and a2 − ab+ b2 (or equivalently, a2 + 3b2):

• Theorem (Integers of the Form a2 + 2b2): Let n be a positive integer, and write n = 2kpn1
1 · · · p

nk
k qm1

1 · · · qmdd ,
where p1, · · · , pk are distinct primes congruent to 1 or 3 modulo 8 and q1, · · · , qd are distinct primes congruent
to 5 or 7 modulo 8. Then n can be written in the form a2 + 2b2 for integers a, b if and only if all the mi are
even. Furthermore, in this case, the number of ordered pairs of integers (A,B) such that n = A2 + 2B2 is
equal to 2(n1 + 1)(n2 + 1) · · · (nk + 1).

◦ Proof: The question of whether n can be written as n = A2+2B2 is equivalent to the question of whether
n is the norm of an element A+B

√
−2 ∈ Z[

√
−2].

◦ Write A + B
√
−2 = ρ1ρ2 · · · ρr as a product of irreducibles (unique up to units), and take norms to

obtain n = N(ρ1) ·N(ρ2) · · · · ·N(ρr).

◦ By the classi�cation above, if ρ is irreducible in Z[
√
−2], then N(ρ) is either 2, a prime congruent to 1

or 3 modulo 8, or the square of a prime congruent to 5 or 7 modulo 8. Hence there exists such a choice
of ρi with n =

∏
N(ρi) if and only if all the mi are even.

◦ Furthermore, since the factorization of A+B
√
−2 is unique, to �nd the number of possible pairs (A,B),

we need only count the number of ways to select terms for A+B
√
−2 and A−B

√
−2 from the factorization

of n over Z[
√
−2], which is n = (−1)k(

√
−2)2k(π1π1)n1 · · · (πkπk)nkqm1

1 · · · qmdd .

◦ Up to associates, we must choose A + B
√
−2 = (

√
−2)k(πa11 π1

b1) · · · (πakk πk
bk)q

m1/2
1 · · · qmd/2d , where

ai + bi = ni for each 1 ≤ i ≤ k.
◦ Since there are ni + 1 ways to choose the pair (ai, bi), and 2 ways to multiply A+B

√
−2 by a unit, the

total number of ways is 2(n1 + 1) · · · (nk + 1), as claimed.
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• Theorem (Integers of the Form a2+ab+b2): Let n be a positive integer, and write n = 3kpn1
1 · · · p

nk
k qm1

1 · · · qmdd ,
where p1, · · · , pk are distinct primes congruent to 1 modulo 3 and q1, · · · , qd are distinct primes congruent to
2 modulo 3. Then n can be written in the form a2 + ab+ b2 for integers a, b if and only if it can be written in
the form a2 + 3b2, if and only if all the mi are even. Furthermore, in this case, the number of ordered pairs
of integers (A,B) such that n = A2 +AB +B2 is equal to 6(n1 + 1)(n2 + 1) · · · (nk + 1).

◦ Proof: The question of whether n can be written as n = A2 + AB +B2 is equivalent to the question of

whether n is the norm of an element A+Bω ∈ O√−3 where ω =
1 +
√
−3

2
◦ Write A+ Bω = ρ1ρ2 · · · ρr as a product of irreducibles (unique up to units), and take norms to obtain
n = N(ρ1) ·N(ρ2) · · · · ·N(ρr).

◦ By the classi�cation above, if ρ is irreducible in O√−3, then N(ρ) is either 3, a prime congruent to 1
modulo 3, or the square of a prime congruent to 2 modulo 3. Hence there exists such a choice of ρi with
n =

∏
N(ρi) if and only if all the mi are even.

◦ Furthermore, since the factorization of A+Bω is unique, to �nd the number of possible pairs (A,B), we
need only count the number of ways to select terms for A+Bω and A+Bω from the factorization of n
over O√−3, which is n = (−1)k(

√
−3)2k(π1π1)n1 · · · (πkπk)nkqm1

1 · · · qmdd .

◦ Up to associates, we must choose A+Bω = (
√
−3)k(πa11 π1

b1) · · · (πakk πk
bk)q

m1/2
1 · · · qmd/2d , where ai+bi =

ni for each 1 ≤ i ≤ k.
◦ Since there are ni + 1 ways to choose the pair (ai, bi), and 6 ways to multiply A + Bω by a unit, the
total number of ways is 6(n1 + 1) · · · (nk + 1), as claimed.

◦ Finally, for the statement about representations in the form a2 + 3b2, as we have noted, every irreducible
element in O√−3 is associate to one in Z[

√
−3], so all statements about representability also hold for the

norm a2 + 3b2 in this ring.

• Example: Determine whether 21, 101, and 292 can be written in the form a2 + 2b2 and whether they can be
written in the form a2 + 3b2 for integers a and b.

◦ We have 21 = 3 · 7. Since there is a prime congruent to 7 mod 8 that occurs to an odd power, 21 is not
of the form a2 + 2b2. But since all of the primes are either 3 or congruent to 1 modulo 3, 21 is of the
form a2 + 3b2.

◦ The integer 101 is prime, and it is congruent to 2 modulo 3 and to 5 modulo 8. Therefore, it cannot be
written in the form a2 + 2b2 or in the form a2 + 3b2.

◦ We have 292 = 22 ·73. Since 73 is congruent to 1 modulo 3 and 1 modulo 8, each odd prime is congruent
to 1 or 3 modulo 8, so 292 can be written in the form a2 + 2b2. Likewise, since 2 occurs to an even power
and 73 is congruent to 1 modulo 3, 292 is also of the form a2 + 3b2.

8.3.3 Some Diophantine Equations

• We can exploit unique factorization in various quadratic integer rings to solve Diophantine equations. Here
are a few examples of problems of this type:

• Example: Find all integer solutions to the Diophantine equation x2 + y2 = z5 where x and y are relatively
prime.

◦ Since squares are 0 or 1 modulo 4, one of x, y must be odd and the other is even, and also z is odd.

◦ Now factor the equation inside Z[i], which as we have shown is a unique factorization domain, as (x +
iy)(x− iy) = z5.

◦ We now claim that x+ iy and x− iy are relatively prime inside Z[i].

◦ To see this, observe that any common divisor must necessarily divide the sum 2x and the di�erence 2iy,
but since x and y are relatively prime integers, this means that the gcd must divide 2 = −i(1 + i)2.

◦ Then the only possible Gaussian prime divisor of the gcd is 1+ i, but 1+ i does not divide x+ iy because
x and y have opposite parity.
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◦ Thus, x+ iy and x− iy are relatively prime inside Z[i]. Since their product is a �fth power (namely, z5)
and Z[i] is a UFD, this means that each term must be a �fth power up to a unit factor.

◦ But since the only units are ±1,±i and these are all �fth powers (of themselves), we must have x+ iy =
(a + bi)5 = (a5 − 10a3b2 + 5b4) + (5a4b − 10a2b3 + b5)i. Then the conjugate x − iy is (a − bi)5, and
z5 = (x+ iy)(x− iy) = (a2 + b2)5.

◦ Since all such tuples work, the solutions are of the form (x, y, z) = (a5 − 10a3b2 + 5b4, 5a4b − 10a2b3 +
b5, a2 + b2) for relatively prime integers a and b.

• Example: Show that the only integer solutions to the Diophantine equation y2 = x3 − 2 are (3,±5).

◦ First, observe that y must be odd, for if y were even then we would x3 ≡ 2 (mod 4), which is impossible.

◦ We can rearrange this equation and then factor it inside Z[
√
−2], which as we have shown is a unique

factorization domain, as (y +
√
−2)(y −

√
−2) = x3.

◦ We now claim that y +
√
−2 and y −

√
−2 are relatively prime inside Z[

√
−2].

◦ To see this, observe that any common divisor must necessarily divide their di�erence (y +
√
−2)− (y −√

−2) = 2
√
−2 = −(

√
−2)3, and since

√
−2 is irreducible in Z[

√
−2], the only possible irreducible factor

of their di�erence is
√
−2.

◦ But y +
√
−2 cannot be divisible by

√
−2, since this would require y to be even.

◦ Thus, y+
√
−2 and y−

√
−2 are relatively prime. Since their product is a cube (namely, x3) and Z[

√
−2]

is a UFD, this means that each term must be a cube up to a unit factor.

◦ But since the only units are ±1 and these are both cubes, we must have y +
√
−2 = (a + b

√
−2)3 =

(a3 − 6ab2) + (3a2b− 2b3)
√
−2, which requires 3a2b− 2b3 = 1.

◦ Factoring yields b(3a2− 2b2) = 1 and so since a, b are integers, we see that b = ±1 and then 3a2 = 2± 1,
which has the two solutions (a, b) = (±1,−1). Then y = a3 − 6ab2 = ±5 and then x = 3, and so we
obtain the solutions (3,±5) as claimed.

◦ Remark: By extending this analysis to the equations of the form y2 = x3 − 2u6 for positive integers u
with a suitable level of care, we can in fact show that the elliptic curve y2 = x3 − 2 has rank 1.

• Example: Show that the Diophantine equation 4y2 = x3 − 3 has no integer solutions.

◦ First note that y cannot be divisible by 3, since then x would also have to be divisible by 3, but in that
case 3 = x3 − 4y2 would be divisible by 9, impossible.

◦ Now rearrange the equation and factor it inside the UFD O√−3 as (2y +
√
−3)(2y −

√
−3) = x3.

◦ Any common divisor of 2y+
√
−3 and 2y−

√
−3 must divide their di�erence 2

√
−3, which is the product

of the irreducible elements
√
−3 and 2. Clearly 2 cannot divide 2y +

√
−3, and

√
−3 cannot divide it

either because y is not divisible by 3.

◦ Therefore, 2y +
√
−3 and 2y −

√
−3 are relatively prime. Since their product is a cube and O√−3 is a

UFD, this means that each term must be a cube up to a unit factor.

◦ By rescaling and conjugating if necessary, we either have 2y +
√
−3 = (a + b

√
−3)3 or (2y +

√
−3) ·

−1 +
√
−3

2
= (a + b

√
−3)3 for some a, b ∈ Z. However, the second case cannot occur, because the

coe�cients of the product on the left-hand side are not integers.

◦ So we must have 2y +
√
−3 = (a + b

√
−3)3, so expanding and comparing coe�cients of

√
−3 yields

1 = 3a2b− 3b3, which is impossible since the right-hand side is a multiple of 3.

◦ Thus, there are no integer solutions, as claimed.

• We can, with a nontrivial amount of work, also establish the n = 3 case of Fermat's conjecture, which was �rst
settled by Euler. For convenience in organizing the proof, we �rst establish a lemma (which is itself another
example of solving a Diophantine equation):

• Lemma (Cubes of the Form m2 + 3n2): Suppose that m,n are relatively prime integers of opposite parity. If
m2 + 3n2 = r3, then there exist positive integers a and b with m = a3 − 9ab2 and n = 3a2b− 3b3.
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◦ Proof: First observe that if 3|m so that m = 3k, then we obtain 9k2 + 3n2 = r3: this forces 3|r, but then
dividing by 3 shows that n3 = (r/3)3 − 3k2 so that 3 would also divide n, which is impossible. Thus,
3 - m.

◦ Now factor the equation m2 + 3n2 = r3 in O√−3 as (m+ n
√
−3)(m− n

√
−3) = r3.

◦ Any common divisor of m+ n
√
−3 and m− n

√
−3 must also divide 2m and 2n

√
−3, and since m,n are

relatively prime, this means the common divisor must divide 2
√
−3.

◦ Since 2 and
√
−3 are irreducible in O√−3, we can see 2 does not divide m + n

√
−3 because m,n have

opposite parities, and
√
−3 does not divide m+ n

√
−3 because 3 - m.

◦ Then since O√−3 is a UFD, we see that m + n
√
−3 must be a unit times a cube: say m + n

√
−3 =

u · (a + b
√
−3)3. By negating, conjugating, and replacing a + b

√
−3 with an associate as necessary, we

may assume a, b ∈ Z and that the unit u is either 1 or
−1 +

√
−3

2
.

◦ However, if m + n
√
−3 =

−1 +
√
−3

2
· (a + b

√
−3)3 then since m,n are integers, both a and b must be

odd. But then (−1 +
√
−3)(a + b

√
−3) has integer coe�cients that are even, as does (a + b

√
−3)2, so

the product m+ n
√
−3 would have both m and n even, contrary to assumption.

◦ Therefore, we must have m+n
√
−3 = (a+b

√
−3)3 = (a3−9ab2)+(3a2b−3b3)

√
−3 and so m = a3−9ab2

and n = 3a2b− 3b3, as claimed.

• We can now essentially give Euler's treatment of the n = 3 case of Fermat's equation:

• Theorem (Euler): There are no solutions to the Diophantine equation x3 + y3 = z3 with xyz 6= 0.

◦ Proof: Assume x, y, z 6= 0 and suppose we have a solution to the equation with |z| minimal.

◦ If two of x, y, z are divisible by a prime p then the third must be also, in which case we could divide
x, y, z by p and obtain a smaller solution. Thus, without loss of generality, we may assume x, y, z are
relatively prime, and so two are odd and the other is even.

◦ By rearranging and negating, suppose that x and y are odd and relatively prime. Set x + y = 2p and
x− y = 2q, so that x = p+ q and y = p− q, where p, q are necessarily relatively prime of opposite parity.

◦ We then obtain a factorization z3 = x3 + y3 = (x+ y)(x2 − xy + y2) = 2p · (p2 + 3q2).

◦ First suppose that 3 - p.
◦ Since p2 + 3q2 is odd, any common divisor of 2p and p2 + 3q2 necessarily divides p and p2 + 3q2, hence
also divides p and 3q2. Furthermore, since 3 - p this means any common divisor of p and 3q2 divides
both p and q2, but these elements are relatively prime.

◦ Thus, 2p and p2 + 3q2 are relatively prime, so since their product is a cube, each must be a cube up to
a unit factor in Z. But since units are cubes in Z, each term is actually a cube.

◦ By the lemma, we then have p = a3 − 9ab2 and q = 3a2b − 3b3 for some a, b ∈ Z, and we also know
2p = 2a(a− 3b)(a+ 3b) is a cube.

◦ We see that 2a, a − 3b, a + 3b must be pairwise relatively prime, since any common divisor would
necessarily divide 2a and 6b hence divide 6, but a cannot be divisible by 3 (since then p, q would both
be divisible by 3) and a, b cannot have the same parity (since then both p, q would be even).

◦ Therefore, since their product is a cube in Z, each of 2a, a − 3b, and a + 3b must be a cube in Z.
But then if 2a = z31 , a − 3b = x31, and a + 3b = y31 , we have x31 + y31 = z31 , and clearly we also have
0 < |z1| < |a| < |r| < |z|. We have therefore found a solution to the equation with a smaller value of z,
which is a contradiction.

◦ It remains to consider the case where 3|p, which is quite similar.

◦ If we write p = 3s then q, s are relatively prime of opposite parity, and we have z3 = 18s · (3s2 + q2).
Since q cannot be divisible by 3 and 3s2 + q2 is odd, any common divisor of 18s and 3s2 + q2 must divide
s and 3s2 +q2 hence divides s and q2, but these are relatively prime. Thus 18s and 3s2 +q2 are relatively
prime, so they are each cubes.
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◦ By the lemma again, we have q = a3 − 9ab2 and s = 3a2b − 3b3, where 18s = 33 · 2b(a − b)(a + b) is a
perfect cube. Like before, we see that any common divisor of any pair of 2b, a− b, a+ b must divide 2a
and 2b hence divide 2, but a, b must have opposite parity since otherwise q, s would both be even.

◦ Thus, 2b, a− b, and a+ b are all perfect cubes. But then if a+ b = z31 , a− b = x31, and 2b = y31 , we have
x31 + y31 = z31 , and clearly we also have 0 < |z1| = |a+ b| < |s| < |z|. We have again found a solution to
the equation with a smaller value of z, which is a contradiction.

◦ Since we have reached a contradiction in both cases, we are done.

8.3.4 Cubic Reciprocity

• As our next application of our study of the quadratic integer rings, we can develop cubic reciprocity using
properties of the ring O√−3.

• Proposition (Arithmetic in O√−3): Let π be a prime of R = O√−3 and let ω =
−1 +

√
−3

2
denote a nonreal

cube root of unity. Then the following are true:

1. The quotient ring R/(π) is a �nite �eld with N(π) elements.

◦ Proof: If π lies over the prime p, then as we have shown, π|p. Then (π) contains p, and so there are
at most p2 residue classes modulo π, since any residue class a + bω is equivalent to a′ + b′ω where
a′, b′ are the remainders upon dividing a, b by p.

◦ Thus, R/(π) is a �nite ring. Since π is prime, (π) is maximal (since we showed nonzero prime ideals
are maximal inside the quadratic integer rings) and so R/(π) is in fact a �eld.

◦ Finally, for the statement about the cardinality, if π is associate to
√
−3 then clearly R/(π) has 3

residue classes (represented by 0, 1, and 2) and N(π) = 3.

◦ If π is associate to a rational prime p ≡ 2 (mod 3) then R/(p) has p2 elements (per the calculation
above) and N(π) = p2.

◦ Finally, if π is one of the two conjugate factors of a rational prime p ≡ 1 (mod 3), then R/(p) ∼=
R/(π) × R/(π) and since both R/(π) and R/(π) are �elds (and thus have cardinality greater than
1) and R/(p) has cardinality p2, we must have #(R/(π)) = #(R/(π)) = p = N(π).

2. For any nonzero residue class α modulo π, we have αN(π)−1 ≡ 1 (mod π).

◦ Note that this is a generalization of Euler's theorem for Z/mZ to quotients of the quadratic integer
ring.

◦ Proof: As shown in (1), the quotient ring R/(π) is a �nite �eld with N(π) elements.

◦ The multiplicative group of this �nite �eld then hasN(π)−1 elements. Hence by Lagrange's theorem,
any element in this group (i.e., any nonzero residue class) αN(π)−1 ≡ 1 (mod π), as claimed.

3. If π is not associate to
√
−3, the elements 1, ω, and ω2 are distinct modulo π, and N(π)− 1 is divisible

by 3.

◦ Proof: Suppose that 1 ≡ ω, 1 ≡ ω2, or ω ≡ ω2 (mod π).

◦ Then π necessarily has a nontrivial gcd with (1 − ω)(1 − ω2) = 3, so since π is irreducible, it must
be an irreducible factor of 3, hence associate to

√
−3.

◦ Taking the contrapositive shows that π is not associate to
√
−3, the elements 1, ω, and ω2 are

distinct modulo π.

◦ The second statement then follows by Lagrange's theorem, since {1, ω, ω2} is a subgroup of order 3
of the multiplicative group of residues modulo π. Alternatively, we could verify it directly using our
characterization of the primes: if π is an integer prime p ≡ 2 (mod 3) then N(π) − 1 = p2 − 1 ≡ 0
(mod 3), and if ππ is a prime congruent to 1 modulo 3 then N(π)− 1 = p− 1 ≡ 0 (mod 3).

• The idea now is that we can de�ne a cubic residue symbol, which will detect cubes modulo π, in a similar
way to how we de�ne the quadratic residue symbol modulo p that detects squares.

◦ For the quadratic residue symbol, the idea is to observe that ap−1 − 1 ≡ 0 (mod p) by Euler's theorem.
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◦ Thus, when p is odd, we may use the factorization z2 − 1 = (z − 1)(z + 1) to factor this expression as
(a(p−1)/2 − 1)(a(p−1)/2 + 1) ≡ 0 (mod p), which tells us that a(p−1)/2 ≡ 1 or −1 (mod p).

◦ Furthermore, the elements with a(p−1)/2 ≡ 1 (mod p) will precisely be the squares modulo p: this is
Euler's criterion.

◦ It is easy to see that we can follow an analogous procedure inside O√−3/(π).

◦ From the proposition above, if π is not associate to
√
−3, then N(π)−1 is divisible by 3 and αN(π)−1−1 ≡

0 (mod π).

◦ Then we may use the factorization z3−1 = (z−1)(z−ω)(z−ω2) to factor the expression as (α(N(π)−1)/3−
1)(α(N(π)−1)/3−ω)(α(N(π)−1)/3−ω2) ≡ 0 (mod π), and so by unique factorization, this means α(N(π)−1)/3

is congruent to one of 1, ω, ω2 modulo π.

◦ Furthermore (as we will show in a moment) the cubes modulo π are precisely the elements with
α(N(π)−1)/3 ≡ 1 (mod π).

• We take this calculation as the de�nition of our cubic residue symbol:

• De�nition: If π is a prime element of O√−3 and N(π) 6= 3, we de�ne the cubic residue symbol
[α
π

]
3
∈

{0, 1, ω, ω2} to be 0 if π|α, and otherwise to be the unique value among {1, ω, ω2} satisfying
[α
π

]
3
≡ α(N(π)−1)/3

(mod π).

◦ We showed in the proposition that 1, ω, ω2 are distinct modulo π, and we showed above that α(N(π)−1)/3

is always congruent to one of 1, ω, ω2 whenever π does not divide α, so the cubic residue symbol is
well-de�ned.

• The cubic residue symbol also detects cubes, similarly to how the quadratic residue symbol detects squares:

• Proposition (Properties of Cubic Residues): Let π be a prime element of O√−3 with N(π) 6= 3, and let
α, β ∈ O√−3. Then the following hold:

1. If α ≡ β (mod π) then
[α
π

]
3

=

[
β

π

]
3

.

◦ Proof: By de�nition we have
[α
π

]
3
≡ α(N(π)−1)/3 ≡ β(N(π)−1)/3 ≡

[
β

π

]
3

(mod π). But since

the elements 0, 1, ω, ω2 are distinct modulo π, this congruence actually implies equality:

[
αβ

π

]
3

=[α
π

]
3

[
β

π

]
3

.

2. The cubic residue symbol is multiplicative:

[
αβ

π

]
3

=
[α
π

]
3

[
β

π

]
3

.

◦ Proof: By de�nition we have

[
αβ

π

]
3

≡ (αβ)(N(π)−1)/3 ≡ α(N(π)−1)/3β(N(π)−1)/3 ≡
[α
π

]
3

[
β

π

]
3

(mod

π), and in the same way as above, this congruence implies equality.

3. We have

[
α

π

]
3

=
[α
π

]
3

=
[α
π

]2
3

=

[
α2

π

]
3

.

◦ Proof: For the �rst equality we have

[
α

π

]
3

≡ α(N(π)−1)/3 ≡ α(N(π)−1)/3 ≡
[α
π

]
3
(mod π) and again

as above this congruence implies equality.

◦ For the second equality we note that each of the possible values 0, 1, ω, ω2 has the property that its
square equals its complex conjugate.

◦ The third equality follows from multiplicativity of the cubic residue symbol.

4. If n is an integer not divisible by π, then
[n
π

]
3

= 1.
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◦ Proof: By (3) we have
[n
π

]
3

=

[
n

π

]
3

=
[n
π

]
3
since n is real. Since

[n
π

]
3
6= 0 the only possibility is

that
[n
π

]
3

= 1.

5. If u is a primitive root modulo π (i.e., an element of order N(π)− 1 modulo π), then
[u
π

]
3
is either ω or

ω2 (i.e., it cannot equal 1).

◦ We remark that a primitive root u must always exist because the multiplicative group of a �nite
�eld is always cyclic3.

◦ Proof: Observe that
[u
π

]
3

= u(N(π)−1)/3 cannot be congruent to 1 modulo π since this would mean

that the order of u would be at most (N(π) − 1)/3, contradicting the assumption that its order is
N(π)− 1.

◦ Thus, since π cannot divide u,
[u
π

]
3
is either ω or ω2, as claimed.

6. The cubic residue symbol detects cubes: if α 6= 0 mod π, then
[α
π

]
3

= 1 if and only if α is a cubic residue

modulo π (which is to say, α ≡ β3 (mod π) for some β).

◦ Proof: Let u be a primitive root modulo π and write α = uk for some integer k. Then by (4), since[α
π

]
3

=

[
uk

π

]
3

=
[u
π

]k
3
, and

[u
π

]
3
is either ω or ω2, we see that that

[α
π

]
3

= 1 if and only if k is a

multiple of 3.

◦ But this condition is easily seen to be equivalent to saying that α is a cubic residue: if α ≡ β3 then
if β = ur we have α = u3r, and conversely if k is a multiple of 3 then α ≡ (uk/3)3.

• Example: Determine whether 2 +
√
−3 and 2

√
−3 are cubic residues modulo π = 5 inside O√−3.

◦ Since N(π) = 25, for 2 +
√
−3 we must calculate the cubic residue symbol

[
2 +
√
−3

5

]
3

≡ (2 +
√
−3)(25−1)/3 ≡ (2 +

√
−3)8 ≡ 2 + 3

√
−3 (mod 5).

◦ Since ω =
−1 +

√
3

2
≡ 2+3

√
−3 (mod 5), we see

[
2 +
√
−3

5

]
3

= ω, and so 2+
√
−3 is not a cubic residue

modulo 5.

◦ For 2
√
−3 we calculate

[
2
√
−3

5

]
3

≡ (2
√
−3)8 ≡ 1 (mod 5). Thus,

[
2
√
−3

5

]
3

= 1 and so 2
√
−3

is a cubic residue modulo 5.

• In order to handle the situation of associates in O√−3, we select a unique associate for each prime:

• De�nition: If π is a prime in O√−3, we say π is primary if π ≡ 2 (mod 3).

◦ If π = a+ bω then this de�nition is equivalent to saying that a ≡ 2 (mod 3) and b ≡ 0 (mod 3).

◦ Example: The primes 2 and
7 + 3

√
−3

2
= 5 + 3ω are primary, while 4 +

√
−3 = 5 + 2ω is not primary.

◦ It is straightforward to see that if π is not associate to
√
−3, then exactly one associate of π is primary:

explicitly, if π = a+bω then the associates of π are π = a+bω, −π = (−a)+(−b)ω, ωπ = (−b)+(a−b)ω,
−ωπ = b+ (b− a)ω, ω2π = (b− a) + (−a)ω, and −ω2π = (a− b) + aω.

◦ It is then straightforward to check that exactly one of b, a− b, a is divisible by 3, so two of the associates
will have ω-coe�cient divisible by 3, and then exactly one will have its coe�cient of 1 congruent to 2
modulo 3.

3Here is a proof that any �nite multiplicative subgroup G of a �eld F is cyclic: let M be the maximal order among all elements
in G; clearly M ≤ #G. If g has order M and h is any other element of order k, then if k does not divide M , there is some prime q
which occurs to a higher power qf in the factorization of k than the corresponding power qe dividing M . Then one may check that

gq
f · hk/qe has order M · qf−e, which is impossible because this value is greater than M . Therefore, the order of every element divides

M , so the polynomial p(x) = xM − 1 has #G roots in F [x]. But by unique factorization in F [x], this is impossible unless M ≥ #G,
since a polynomial of degree M can have at most M roots in F [x]. Thus, M = #G, so some element has order #G and G is cyclic.
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• We can now state cubic reciprocity in full:

• Theorem (Cubic Reciprocity in O√−3): If π and λ are both primary primes in O√−3 with di�erent norms

(i.e., with π, λ both congruent to 2 modulo 3, and with N(π) 6= N(λ)), then
[π
λ

]
3

=

[
λ

π

]
3

.

◦ Some aspects of this result were mentioned by Euler and Gauss, and results that are essentially equivalent
to this one are implied by some results in Gauss's papers, but the �rst proof is due to Eisenstein: indeed,
the ring O√−3 is occasionally known as the Eisenstein integers for this reason.

◦ The proof is relatively involved and is typically broken into three cases: when π and λ are both integer
primes, when one is an integer prime, and when both are complex.

◦ The �rst case is trivial, since if p is an integer then
[ p
λ

]
3

= 1 regardless of the value of λ, as we showed

earlier. The second case requires proving that

[
λ

p

]
3

= 1 if p is a prime integer and λ is a prime element,

since
[ p
λ

]
3

= 1 as noted above. The third case is the most di�cult.

• Example: Verify cubic reciprocity for π =
7 + 3

√
−3

2
= 5 + 3ω and λ = 2 + 3

√
−3 = 5 + 6ω in O√−3.

◦ We have N(π) = 19 and N(λ) = 31.

◦ By de�nition we have

[
λ

π

]
3

≡ λ(N(π)−1)/3 ≡ (5 + 6ω)6 ≡ ω2 (mod π), and we also have
[π
λ

]
3
≡

λ(N(λ)−1)/3 ≡ (5 + 3ω)10 ≡ ω2 (mod λ).

◦ Thus, we see

[
λ

π

]
3

=
[π
λ

]
3
, precisely as dictated by cubic reciprocity.

• The general approach to most proofs of cubic reciprocity involves manipulation of Gauss sums.

• De�nition: A multiplicative character on Fp is a function χ : F×p → C such that χ(ab) = χ(a)χ(b) for all

a, b ∈ F×p . If χ is a multiplicative character on Fp, we de�ne the Gauss sum ga(χ) =
∑p−1
t=1 χ(t)e2πiat/p ∈ C.

◦ We will remark that the values of the Gauss sum ga(χ) are the discrete Fourier transform of the function
χ(t), and thus we may convert back and forth between the values of ga(χ) and the values χ(t).

◦ For cubic reciprocity, the idea is then to consider the Gauss sums for the cubic character χπ(t) =

[
t

π

]
3

on Fp where p = ππ, which encodes all of the information of the cubic residue symbol modulo π.

◦ Using the de�nitions, one may prove various identities involving the Gauss sums for the cubic character
χπ: for example, one can show that ga(χ) = χ(a)−1g1(χ), g1(χπ)g1(χπ) = p, and g1(χπ)3 = pπ.

• By suitably manipulating these identities, we can then show that χλ(π) = χπ(λ) for all primary primes λ and
π, which establishes cubic reciprocity.

◦ We will illustrate by working through the second case of the proof (the third case is more di�cult but
can be done using a similar method).

◦ Proof (Second Case of Cubic Reciprocity): Suppose q ≡ 2 (mod 3) is an integer prime and π is a
non-integral prime of O√−3.

◦ Take the (q2−1)/3 power of the Gauss-sum identity g1(χπ)3 = pπ to obtain g1(χπ)q
2−1 ≡ (pπ)(q

2−1)/3 ≡
χq(pπ) = χq(π) (mod q) because χq is multiplicative and χq(p) = 1 as noted previously. Thus, g1(χπ)q

2 ≡
χq(π)g1(χπ) (mod q).

◦ From the de�nition, we have g1(χπ)q
2

=
[∑p−1

t=0 χπ(t)e2πit/p
]q2
≡
∑p−1
t=0 χπ(t)q

2

e2πiq
2t/p (mod q) since

the qth-power map is additive modulo q.

◦ Since q2 ≡ 1 (mod 3) and the value χπ(t) is zero or a cube root of unity, we have χπ(t)q
2

= χπ(t) for all
t.
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◦ Then we may write g1(χπ)q
2 ≡

∑p−1
t=0 χπ(t)e2πiq

2t/p = gq2(χπ) = χπ(q−2)g1(χπ) = χπ(q)g1(χπ) (mod q)
using the Gauss-sum identity ga(χ) = χ(a)−1g1(χ) and the fact that χπ(q−2) = χπ(q).

◦ Putting all of this together, we see that g1(χπ)q
2

is congruent modulo q to both χq(π)g1(χπ) and to

χπ(q)g1(χπ). Multiplying both sides by g1(χπ) and using the Gauss-sum identity g1(χπ)g1(χπ) = p then
yields χq(π)p ≡ χπ(q)p (mod q).

◦ So, since p is invertible modulo q, we get χq(π) ≡ χπ(q) (mod q), and, at last, this congruence implies
the equality χq(π) = χπ(q), which is exactly cubic reciprocity in this case.

• We can use cubic reciprocity to calculate the cubic residue symbol
[α
π

]
3
, after we �nd the prime factorization

of the element α, using the same ��ip-and-invert� procedure we use for evaluating Legendre symbols.

◦ Explicitly, if we write α = u · (1− ω)kλ1λ2 · · ·λn where the λi are primary primes, then we only need to

compute the cubic residue symbols
[u
π

]
3
,

[
1− ω
π

]
3

, and

[
λi
π

]
3

.

◦ The residue symbol
[u
π

]
3
we can compute using the de�nition since u = ±ωk and

[ω
π

]
3

= ω(N(π)−1)/3,

so
[ω
π

]
3

= 1, ω, or ω2 when N(π) ≡ 1, 4, or 7 modulo 9 (respectively), and

[
−1

π

]
3

= 1.

◦ The residue symbol

[
1− ω
π

]
3

is more di�cult to compute, but its value can be shown to be equal to

ω2(p+1)/3 if π = p is an integer prime, and it is equal to ω2(a+1)/3 if π = a+ bω is a primary prime.

8.3.5 Quartic Reciprocity

• We close with a brief discussion of quartic reciprocity, which (like cubic reciprocity) gives a reciprocity law
involving fourth powers.

◦ The values of the quartic residue symbol will be fourth roots of unity, just as the values of the cubic
residue symbol are cube roots of unity, so we will work in the ring Z[i].

• Proposition (Arithmetic in Z[i]): Let π be a prime of R = Z[i]. Then the following are true:

1. The quotient ring R/(π) is a �nite �eld with N(π) elements.

2. For any nonzero residue class α modulo π, we have αN(π)−1 ≡ 1 (mod π).

3. If π is not associate to 1+ i, the elements 1, i, −1, and −i are distinct modulo π, and N(π)−1 is divisible
by 4.

◦ Proofs: These follow in the same way as the results we showed for O√−3.

• Now we can de�ne the quartic residue symbol.

◦ If π is a prime element of odd norm in Z[i] and π - α, then since N(π) − 1 is divisible by 4, we can
factor the expression αN(π)−1 − 1 ≡ 0 in Z[i]/π as (α(N(π)−1)/4 − 1) · (α(N(π)−1)/4 + 1) · (α(N(π)−1)/4 +
i) · (α(N(π)−1)/4 − i) ≡ 0 (mod π).

◦ By unique factorization, this means α(N(π)−1)/4 is equivalent to one of 1, −1, i, −i modulo π.

• We take this calculation as the de�nition of our quartic residue symbol:

• De�nition: If π is a prime element of Z[i] and N(π) 6= 2, we de�ne the quartic residue symbol
[α
π

]
4
∈

{0, 1, i,−1,−i} to be 0 if π|α, and otherwise to be the unique value among {1, i,−1,−i} satisfying
[α
π

]
4
≡

α(N(π)−1)/4 (mod π).

◦ Example: For π = 3, we have

[
1 + i

π

]
4

≡ (1 + i)2 ≡ −i (mod 3), so

[
1 + i

3

]
4

= −i.
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• The quartic residue symbol has most of the same properties as the cubic residue symbol:

• Proposition (Properties of Quartic Residues): Let π be a prime element of Z[i] and N(π) 6= 2 and let
α, β ∈ Z[i]. Then the following hold:

1. If α ≡ β (mod π) then
[α
π

]
4

=

[
β

π

]
4

.

2. The quartic residue symbol is multiplicative:

[
αβ

π

]
4

=
[α
π

]
4

[
β

π

]
4

. Also,

[
α

π

]
4

=
[α
π

]
4

=
[α
π

]3
4

=[
α3

π

]
4

.

3. If n is an integer not divisible by π, then
[n
π

]
4

= 1 or −1.

4. If u is a primitive root modulo π (i.e., an element of order N(π)− 1 modulo π), then
[u
π

]
4
is either i or

−i.
5. The quartic residue symbol detects fourth powers and squares: if α 6= 0 mod π, then

[α
π

]
4

= 1 if and

only if α is a quartic residue modulo π (which is to say, α ≡ β4 (mod π) for some β), and
[α
π

]
4

= −1 if

and only if α is a quadratic residue that is not a quartic residue.

◦ Proofs: These follow in the same way as the results we showed for O√−3.

• Example: Find the quartic residues modulo 2 + 3i.

◦ The nonzero residue classes modulo π = 2 + 3i are represented by the elements 1, 2, 3, ... , 12. The
quartic residues are 1, 3 ≡ (2 + i)4, and 9 ≡ (1 + i)4. The other 9 classes are quartic nonresidues.

◦ We can compute, for example,

[
2

2 + 3i

]
4

≡ 23 ≡ i (mod π), and

[
7

2 + 3i

]
4

≡ 73 ≡ −i (mod π).

• Example: Determine whether 3 + 3i, 6− i, and 6 are quartic residues and whether they are quadratic residues
modulo π = 7 + 2i inside Z[i].

◦ Since N(π) = 53, for 3 + 3i we must calculate the quartic residue symbol

[
3 + 3i

7 + 2i

]
4

≡ (3 + 3i)(53−1)/4 ≡

(3 + 3i)13 ≡ −i (mod 7 + 2i). Thus,

[
3 + 3i

7 + 2i

]
4

= −i and so 3 + 3i is not a quartic or quadratic residue

modulo 7 + 2i.

◦ For 6 − i we calculate

[
6− i
7 + 2i

]
4

≡ (6 − i)13 ≡ 1 (mod 7 + 2i). Thus,

[
6− i
7 + 2i

]
4

= 1 and so 6 − i

is a quartic and quadratic residue modulo 7 + 2i.

◦ For 6 we calculate

[
6

7 + 2i

]
4

≡ (6)13 ≡ −1 (mod 7+2i). Thus,

[
6

7 + 2i

]
4

= −1 and so 6 is not a quartic residue

but is a quadratic residue modulo 7 + 2i.

• We can de�ne a similar notion of a primary prime for Z[i]:

• De�nition: A prime element π ∈ Z[i] is primary if it is congruent to 1 modulo 2 + 2i.

◦ Example: The primes −3, −7, and 3 + 2i are primary, while 11 and 2 + i are not.

◦ As with the primary elements in O√−3, for all primes except the primes associate to 1 + i of norm 2,
exactly one associate will be primary.

• We can now state quartic reciprocity:

• Theorem (Quartic Reciprocity in Z[i]): If π and λ are distinct primes in Z[i] congruent to 1 modulo 2 + 2i,

then
[π
λ

]
4

=

[
λ

π

]
4

· (−1)
N(π)−1

4 ·N(λ)−1
4 .
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◦ Some aspects of this result (like the other reciprocity laws) were conjectured by Euler, and most of it
was known to Gauss; a proof essentially appears in some of his unpublished papers. The �rst published
proof is due to Eisenstein.

◦ Like with cubic reciprocity, we can establish quartic reciprocity by manipulating the Gauss sums for the

quartic character χπ(t) =

[
t

π

]
4

.

◦ The proof is relatively involved and is typically broken into three cases: when π and λ are both integer
primes, when one is an integer prime, and when both are complex.

◦ We will establish the result in one special case, as an illustration, taking as given the Gauss-sum identities
ga(χ) = χ(a)−1g1(χ), g1(χπ)g1(χπ) = p, and g1(χπ)4 = π3π.

◦ Proof (Second Case): Let q be a prime congruent to 3 modulo 4 (so that −q is the primary element
associate to q) and π be a non-integral primary prime with ππ = p.

◦ First, taking the (q + 1)/4th power of the third Gauss-sum identity g1(χπ)4 = π3π yields g1(χπ)q+1 =
(π3π)(q+1)/4.

◦ Since πq ≡ π (mod q), as can be seen by taking the qth power of (a + bi)q, we see that g1(χπ)q+1 ≡
π(q+1)(q+3)/4 = π(q2−1)/4πq+1 ≡ χq(π)ππ ≡ χq(π)p (mod q) by the de�nition of the quartic residue
symbol.

◦ Also, we have g1(χπ)q ≡
[∑p−1

t=1 χπ(t)e2πit/p
]q
≡
∑p−1
t=1 χπ(t)qe2πiqt/p ≡

∑p−1
t=1 χπ(t)e2πiqt/p ≡ gq(χπ)

(mod q) because the qth-power map is additive mod q and because χπ(t) is a fourth root of unity, so
since q ≡ 3 (mod 4) the qth power is the same as the complex conjugate.

◦ But by the �rst Gauss-sum identity, we have gq(χπ) = χπ(q)−1g1(χπ) = χπ(−q)g1(χπ) since χπ(q) is a
root of unity.

◦ Putting all of this together yields χq(π)p ≡ g1(χπ)q+1 ≡ χπ(−q)g1(χπ)g1(χπ) ≡ χπ(−q)p (mod q) using
the second Gauss-sum identity. Finally, cancelling the factor of p yields χπ(−q) ≡ χq(π) (mod q), and
this congruence implies the equality χπ(−q) = χq(π), which is the statement of quartic reciprocity in
this case.

• Example: Verify quartic reciprocity for π = 3 + 2i and λ = 5− 4i in Z[i].

◦ We have N(π) = 13 and N(λ) = 41.

◦ Then we have

[
3 + 2i

5− 4i

]
4

≡ (3 + 2i)(41−1)/4 ≡ (3 + 2i)10 ≡ i (mod 5− 4i), so

[
3 + 2i

5− 4i

]
4

= i.

◦ Likewise,

[
5− 4i

3 + 2i

]
4

≡ (5− 4i)(13−1)/4 ≡ (5− 4i)3 ≡ i (mod 3 + 2i), so

[
5− 4i

3 + 2i

]
4

= i as well.

◦ Since
N(π)− 1

4
· N(λ)− 1

4
is even, the result

[π
λ

]
4

=

[
λ

π

]
4

is in accordance with quartic reciprocity.

• Example: Verify quartic reciprocity for π = 3 + 2i and λ = 7− 2i in Z[i].

◦ We have N(π) = 13 and N(λ) = 53.

◦ Then we have

[
3 + 2i

7− 2i

]
4

≡ (3 + 2i)(53−1)/4 ≡ (3 + 2i)13 ≡ 1 (mod 7− 2i), so

[
3 + 2i

7− 2i

]
4

= 1.

◦ Likewise,

[
7− 2i

3 + 2i

]
4

≡ (7− 2i)(13−1)/4 ≡ (7− 2i)3 ≡ −1 (mod 3 + 2i), so

[
7− 2i

3 + 2i

]
4

= −1.

◦ Since
N(π)− 1

4
· N(λ)− 1

4
is odd, the result

[π
λ

]
4

= −
[
λ

π

]
4

is in accordance with quartic reciprocity.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2021. You may not reproduce or distribute this
material without my express permission.
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