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This material represents §9.2.4 from the course notes.



Recall, I

Using reduced forms we showed that there were finitely many
equivalence classes and gave a method for calculating them all:

Theorem (Reduced Forms)

Let ∆ be a nonsquare integer congruent to 0 or 1 modulo 4 and
suppose f (x , y) = ax2 + bxy + cy 2 is a reduced form of
discriminant ∆. Then the following hold:

1. There are finitely many reduced forms of discriminant ∆.

2. Every equivalence class of quadratic forms of discriminant ∆
contains at least one reduced form.

3. There are finitely many equivalence classes of binary quadratic
forms of discriminant ∆.

4. Every equivalence class of binary quadratic forms of negative
discriminant ∆ is represented by a unique reduced form.



Composition 101: Spelling and Grammar

We also have a composition law for quadratic forms, due to
Dirichlet.

Definition

Let f (x , y) = ax2 + bxy + cy 2 and g(x , y) = a′x2 + b′xy + c ′y 2 be
positive-definite binary quadratic forms of discriminant ∆ < 0.
Suppose that gcd(a, a′, (b + b′)/2) = 1. Then the
Dirichlet composition of f (x , y) and g(x , y) is the binary quadratic
form h(x , y) = Ax2 + Bxy + Cy 2 where A = aa′, B is the unique
integer in (−A,A] satisfying B ≡ b (mod 2a), B ≡ b′ (mod 2a′),

and B2 ≡ ∆ (mod 4aa′), and C =
B2 −∆

4aa′
.

This composition law takes in two quadratic forms of discriminant
∆ and outputs a new one. It is well defined on equivalence classes
and yields composition identities.



Composition 102: Words

Dirichlet’s composition law makes the collection of equivalence
classes of forms of discriminant ∆ into an abelian group:

Theorem (Composition of Quadratic Forms)

Suppose ∆ is the discriminant of a quadratic integer ring and let F
be the set of equivalence classes of quadratic forms of discriminant
∆. Then F has the structure of an abelian group under Dirichlet
composition. The identity of F is the norm form on the quadratic
integer ring ∆ and the inverse of the class containing
ax2 + bxy + cy 2 is the class containing ax2 − bxy + cy 2.

Dirichlet composition is well-defined on equivalence classes, so we
need to show associativity, commutativity, and that the identity
and inverses are as claimed.



Composition 103: Sentences

Proof:

Associativity = tedious; we skip it.

Commutativity is immediate, because the definition of the
Dirichlet composition is symmetric in f and g .

For the identity, we want to compose the norm form on O√D
with a reduced form ax2 + bxy + cy 2. Clearly the gcd
condition is satisfied, since the norm form has leading
coefficient 1.

Then A = a and we require B to be the unique integer in
(−A,A] satisfying B ≡ b (mod 2a) with B2 ≡ ∆ (mod 4a),
but clearly B = b satisfies this condition so since
b ∈ (− |a| , |a|] is reduced, we simply have B = b.

Then C = B2−∆
4a = c , and so the result of the composition is

again just ax2 + bxy + cy 2.



Composition 104: Paragraphs

Proof (continued):

For inverses, we want to compose ax2 + bxy + cy 2 with
ax2 − bxy + cy 2, but the gcd condition might fail, so instead
we apply S to the second form to obtain cx2 + bxy + ay 2.

Then gcd(a, c , (b + b)/2) = gcd(a, b, c) = 1 because ∆ is
squarefree except for a factor of 4. Then the Dirichlet
composition of ax2 + bxy + cy 2 with cx2 + bxy + ay 2 has
A = ac, B ≡ b (mod 2a), B ≡ b (mod 2c), and B2 ≡ ∆
(mod 4ac), but clearly B = b satisfies this condition.

Then C = b2−(b2−4ac)
4ac = 1, so the resulting composition is

acx2 + bxy + y 2. Applying S and then a power of T reduces
this to a form x2 + (∆/4)y 2 if ∆ is even, or x2 + xy + 1−∆

4 y 2

if ∆ is odd, and this is precisely the norm form, as claimed.



Composition 105: Five-Paragraph Essays

In fact, the abelian group we obtain by composing binary quadratic
forms of discriminant ∆ is essentially just the ideal class group of
the quadratic integer ring O√D :

Theorem (Quadratic Forms and Ideal Class Groups)

Suppose ∆ < 0 is the discriminant of a quadratic integer ring
O√D . Then the group F of equivalence classes of binary quadratic
forms of discriminant ∆ under composition is isomorphic to the
group I × {±1} of equivalence classes of ideals of O√D under
ideal multiplication, together with a sign ±1.

The isomorphism is very explicit, but the whole statement wouldn’t
fit on this slide. But the point is, we have fairly natural ways to
convert between ideals and binary quadratic forms.



Composition 106: Persuasive Writing

Here is the explicit version:

Definition

Define the map ϕFI : F → I × {±1} sending a quadratic form

ax2 + bxy + cy 2 to the pair ((a,
−b +

√
∆

2
), sign(a)).

Definition

Define the map ϕIF : I × {±1} → F that takes an ideal I = (n, ω)
of norm n (with ω 6∈ Z) along with a sign s ∈ {±1} to the

quadratic form s · N(nx − sωy)

N(I )
.

Theorem (Quadratic Forms and Ideal Class Groups, Explicitly)

The map ϕFI is a group isomorphism with inverse given by ϕIF .



Composition 107: Pointless Literary Analysis Essays

What this result says is that, up to some minor business with ±
signs, we obtain an isomorphism between the group of binary
quadratic forms under composition with the ideal class group.

In particular, when ∆ < 0, the positive-definite forms have a
+ sign and the negative-definite forms have a − sign: thus,
the theorem gives an isomorphism between classes of
positive-definite forms (which are uniquely represented by
reduced positive-definite forms) and classes in the ideal class
group.

For positive ∆, the nonuniqueness of reduced forms in a given
equivalence class causes issues with the ±1. However, one can
essentially salvage this result by restricting the definition of
reduced forms and accounting for the sign ambiguity, which
depends on whether the fundamental unit of O√D has
positive or negative norm.



Composition 108: Sci-Fi Short Stories

Examples:

1. For D = −1, with ∆ = −4, we have two reduced binary
quadratic forms x2 + y 2 and −x2 − y 2.

Applying the map ϕFI to them yields the same ideal
(1, i) = Z[i ] along with a sign ±1.

Conversely, applying ϕIF to I = (1, i) and the sign +1

yields the quadratic form
N(x + iy)

N(1)
= x2 + y 2, while

applying ϕIF to I = (1, i) and the sign −1 yields the

quadratic form −N(x − iy)

N(1)
= −x2 − y 2.



Composition 109: Historical Nonfiction

Examples:

2. For D = −10, with ∆ = −40, we have two reduced
positive-definite forms x2 + 10y 2 and 2x2 + 5y 2.

Applying ϕFI to x2 + 10y 2 yields the ideal
(1,
√
−10) = (1) representing the trivial ideal class.

Applying ϕFI to 2x2 + 5y 2 yields the ideal (2,
√
−10)

which represents the nontrivial ideal class.

Conversely, applying ϕIF to I = (1,
√
−10) and the sign

+1 yields the form
N(x + y

√
−10)

1
= x2 + 10y 2.

Applying ϕIF to I = (2,
√
−10) and the sign +1 yields

the quadratic form
N(2x + y

√
−10)

2
= 2x2 + 5y 2.



Composition 110: Non-Ridiculous Poetry

Examples:

3. For D = ∆ = −31, we have three reduced positive-definite
forms x2 + xy + 8y 2, 2x2 + xy + 4y 2, and 2x2 − xy + 4y 2.

Applying the map ϕFI to x2 + xy + 8y 2 yields the ideal

(1, −1+
√
−31

2 ) = (1) representing the trivial ideal class.

Applying the map ϕFI to 2x2 + xy + 4y 2 yields the ideal

(2, −1+
√
−31

2 ) which is one of the two ideal factors of (2),

while applying it to 2x2 + xy + 4y 2 yields (2, 1+
√
−31

2 ),
which is the other ideal factor of (2).



Composition 111: Satire and Parody

Proof (of Theorem):

First we show that the maps are well defined.

If we start with a quadratic form ax2 + bxy + cy 2 of
discriminant ∆, then as we have observed numerous times,
b ≡ ∆ mod 2, and so −b+

√
∆

2 ∈ O√D . Then the result of

applying ϕFI to ax2 + bxy + cy 2 is indeed an ideal of O√D .

Furthermore, if we apply S or T to the quadratic form, the
resulting ideal class is not changed: applying T leaves the

ideal alone, while applying S changes (a,
−b +

√
∆

2
) to

(c ,
b +
√

∆

2
), and these are the same ideal class because

b +
√

∆

2
· (a,
−b +

√
∆

2
) = a · (c ,

b +
√

∆

2
).

So ϕFI is well defined.



Composition 112: Getting That Screenplay Written

Proof (deuxième parti):

For ϕIF , suppose that (n, ω) is an ideal of O√D and
s ∈ {±1}. Then N(nx + sωy) = (nx + sωy)(nx + sωy) =
n2x2 + sn(ω + ω)xy + s2ωωy 2 is a quadratic form.
Furthermore, all of its coefficients are divisible by the norm of
I since (N(I )) = I · I = (n2, n(ω + ω), ωω), so the quotient

s N(nx−sωy)
N(I ) = snx2 + (ω + ω)xy + s ωωn y 2 is still a quadratic

form with integer coefficients. Its discriminant is
n2(ω+ω)2−4n2ωω

N(I )2 = (ω − ω)2 = ∆ since we may assume ω is of

the form −b+
√

∆
2 by changing basis for I .

Furthermore, if we scale the ideal I by a principal factor, the
resulting quadratic form is not changed, since the ratio
s N(nx−sωy)

N(I ) if we scale n, ω by the same constant.

So ϕIF is well defined.



Composition 113: Steampunk Urban Fantasy

Proof (continué):

Now we check that the maps are inverses. If we apply ϕIF to

ϕFI (ax2 + bxy + cy 2) = ((a, −b+
√

∆
2 ), s) where s = sign(a),

we obtain the quadratic form

s · 1
|a|(ax − s −b+

√
∆

2 y)(ax − s −b−
√

∆
2 y) =

1
a (a2x2 − sabxy + s2acy 2) = ax2 + bxy + cy 2.
Thus, ϕIF ◦ ϕFI is the identity.

Oppositely, if we apply ϕFI to the ideal I = (n, ω) and sign s,
we obtain snx2 + (ω + ω)xy + s ωωn y 2 as noted above. Then
since n > 0, we see sign(sn) = s, and the underlying ideal is

generated by sn and
−(ω + ω) +

√
∆

2
= ω, hence is simply

I = (n, ω). Thus, ϕFI ◦ϕIF is the identity as well, so the maps
ϕFI and ϕIF are inverses.



Composition 114: Legalese and Bureaucracy

Proof (fin):

Finally, ϕIF is multiplicative on ideals, since both the
numerator and denominator are multiplicative.

Thus, ϕIF is a group isomorphism and its inverse is ϕFI , which
is the desired result.

We will remark that it is harder to check directly that ϕFI is an
isomorphism since the description of Dirichlet composition is more
complicated, but this fact is embedded in the results we have
already shown.



Applications, I: College Applications

We will remark that in some situations, it is easier to compute the
ideal class group by finding factorizations of prime ideals and using
the Minkowski bound, and in other situations it is easier to
compute reduced forms.

As an application of computing the class group, we can give
characterizations (in certain cases) of the primes, and
sometimes of the integers, represented by a quadratic form.

The idea is first to analyze primes represented by all the forms
of the given discriminant, and then to use the structure of the
class group to multiply all of the results together.



Applications, II: Co-Op Applications

Example: Classify the integers represented by the two quadratic
forms x2 + 10y 2 and 2x2 + 5y 2.

We have shown already that these are the two inequivalent
positive-definite forms with discriminant ∆ = −40.

From our results earlier, we see that a prime p is represented
by one of these forms if and only if −40 is a quadratic residue
modulo p.

We can ignore p = 2, 5 for the moment, since they are both
clearly represented by the second form and not the first.



Applications, III: REU Applications

Example: Classify the integers represented by the two quadratic
forms x2 + 10y 2 and 2x2 + 5y 2.

For p 6= 2, 5 by quadratic reciprocity we have(
−40

p

)
=

(
−10

p

)
=

(
−2

p

)(
5

p

)
=

(
−2

p

)(p

5

)
.

Since

(
−2

p

)
= +1 for p ≡ 1, 3 (mod 8) and

(p

5

)
= +1 for

p ≡ 1, 4 (mod 5), we see that

(
−40

p

)
= +1 for

p ≡ 1, 9, 11, 19 (mod 40) (both symbols are +1) and for
p ≡ 7, 13, 23, 37 (mod 40) (both symbols are −1).

Thus, a prime p 6= 2, 5 is represented by one of x2 + 10y 2 and
2x2 + 5y 2 if and only if p ≡ 1, 7, 9, 11, 13, 19, 23, 37 (mod 40).



Applications, IV: Grad School Applications

Example: Classify the integers represented by the two quadratic
forms x2 + 10y 2 and 2x2 + 5y 2.

But if p is represented by x2 + 10y 2, then p ≡ x2 (mod 5), so
p must be a quadratic residue modulo 5 and so
p ≡ 1, 9, 11, 19 (mod 40).

Likewise, if p is represented by 2x2 + 5y 2, then p ≡ 2x2 (mod
5) so p must be a quadratic nonresidue modulo 5 and so
p ≡ 7, 13, 23, 37 (mod 40).

Since these cases partition the primes, we conclude that the
primes represented by x2 + 10y 2 are precisely the primes
p ≡ 1, 9, 11, 19 (mod 40), while the primes represented by
2x2 + 5y 2 are precisely 2, 5, and the primes p ≡ 7, 13, 23, 37
(mod 40).



Applications, V: Job Applications

Example: Classify the integers represented by the two quadratic
forms x2 + 10y 2 and 2x2 + 5y 2.

Now we can use the structure of the class group to identify
the integers represented by these forms. We may take out all
square factors to obtain a product of distinct primes.

The remaining primes p must be 2, 5, or have
p ≡ 1, 7, 9, 11, 13, 19, 23, 37 (mod 40).

Then, when we multiply these together, since x2 + 10y 2

represents the trivial element of the class group, we see that
the form representing n will be x2 + 10y 2 when the total
number of primes dividing n to an odd power among 2, 5 and
p ≡ 7, 13, 23, 37 (mod 40) is even, while the form will be
2x2 + 5y 2 when the total number of such primes is odd.



Some History, I: American History

There are many open problems regarding class groups of quadratic
fields. A natural immediate question is to determine which
quadratic integer fields have class number n for each fixed n.

The case n = 1 is known as the class number 1 problem, and
(per our earlier discussion) it is equivalent to asking which
quadratic integer rings have unique factorization. It was
conjectured by Gauss in 1801 that there are only finitely many
imaginary quadratic fields of class number 1.

It was proven by Heilbronn in 1934 that there are only finitely
many imaginary quadratic fields of any fixed class number (so
that in particular the class number h(−d)→∞ as d →∞).
This result was sharpened by Siegel to obtain an ineffective
bound h(−d) ≥ c

√
d for a positive constant c whose value

was not effectively known.



Some History, II: European History

Heilbronn also showed that there were at most 10 imaginary
quadratic fields of class number 1.

Since 9 such fields, corresponding to D = −1, −2, −3, −7,
−11, −19, −43, −67, and −163 were already known, this
meant there could exist at most one more.

The nonexistence of this 10th field was essentially proven by
Heegner in 1952 using modular forms, but his proof had some
minor gaps and it was not accepted1 until Stark gave a full
proof of the result in 1967. Baker also gave a proof, using an
entirely different method (linear forms in logarithms), in 1966.

1Heegner was not a professional mathematician (he was in fact a radio
engineer and high school teacher, though he did have mathematical training),
which certainly contributed to the mathematical community’s lack of credence
for his claim that he had settled a 150-year-old conjecture of Gauss. Sadly, he
died in 1965, before his results gained general acceptance.



Some History, III: Canadian History

For real quadratic fields, the results are quite different: Gauss
conjectured in this case that there are infinitely many real
quadratic fields of class number 1.

This problem of determining whether there actually are
infinitely many real quadratic fields of class number 1 is still
open (as of 2021). In fact, it is not known definitively whether
there are infinitely many real quadratic fields of class number
greater than 1 either!

Many small values of D do yield real quadratic fields of class
number 1. In fact, the only squarefree values of D less than
100 that do not are D =
10, 15,26,30,34,35,39,42,51,55,58,65,66,70,74,78,85,87,91,95
which all have class number 2 along with D = 79 which has
class number 3 and D = 82 which has class number 4.



Some History, IV: Venezuelan History

There are various conjectures about various aspects of the class
groups of real and imaginary quadratic fields.

One set of such results are the Cohen-Lenstra heuristics,
which give precise predictions, for odd primes p, about the
density with which any given abelian p-group will appear as
the p-power torsion part of a class group (i.e., the Sylow
p-subgroup) of a real or imaginary quadratic field.

For the prime p = 2, the structures of p-power torsion
subgroups of class groups are fully understood, and are
consequences of what is called genus theory, which is a name
due to Gauss (as is the term “equivalence class”, first used in
Gauss’s analysis of quadratic forms) that has nothing to do
with other uses2 of the word “genus”, e.g., in topology.

2Gauss’s organization of forms into classes, orders, and then genera was
clearly a reference to Linnaeus’s taxonomic nomenclature, which first appeared
40 years prior – and this is where our word “class” from set theory comes from!



Some History, V: Kyrgyzstani History

Intuitively, the Cohen-Lenstra heuristics say that the probability, in
an appropriate sense, that a given abelian p-group P will occur as
the p-part of the class group of an imaginary quadratic field should
be proportional to 1/#Aut(P).

This may initially seem to be a rather unnatural weighting,
but in fact it is quite sensible in the appropriate context.

Specifically, given a group acting on a set X , if we wish to
select a random orbit of the group uniformly at random, we
should weight each of the elements of X by 1 over the size of
its orbit and then pick an element of X at random with that
weighting.

As a side-comment, if you do this for “picking a random finite
set of size n”, the resulting probability distribution is the
Poisson distribution.



Some History, VI: Martian History

One can use the Cohen-Lenstra heuristics to make predictions
about p-parts of class groups by comparing 1/#Aut(P) to the
sum of all these values over all abelian p-groups.

Some various predictions for imaginary quadratic fields: the
probability that the class number is divisible by 3 (i.e., that
the 3-part of the class group is not trivial) is approximately
43.99%, the probability that it is divisible by 5 is
approximately 23.97%, and the probability that it is divisible
by 7 is approximately 16.32%.

A similar heuristic holds for real quadratic fields, although the
weighting is slightly different: the probability that a prime p
divides the class number is predicted as 1−

∏
k≥2(1− p−k),

which for p = 3 is approximately 15.98%, for p = 5 is
approximately 4.96%, and for p = 7 is approximately 2.37%.

These results agree very well with numerical data.



Complex Multiplication, I

For fun in the last few minutes, I thought I’d try to pack in a very
brief discussion of elliptic curves with complex multiplication.

For an arbitrary elliptic curve E , we say that a function
f : E → E is an endomorphism of E if f is a group
homomorphism on the points of E , and is also a rational
function when written down in coordinates.

The endomorphisms naturally form a ring (addition is
pointwise, multiplication is via function composition).

The typical examples are the multiplication-by-m maps. For
most curves, these maps are the only endomorphisms.

But some elliptic curves have “extra” endomorphisms: over C,
these will be “complex multiplications”, which behave like
multiplication by a complex number. (Over finite fields, one
can also get quaternion rings, but we won’t worry about that.)



Complex Multiplication, II

As we discussed, an elliptic curve E over C corresponds to a lattice
Λ in the complex plane.

The endomorphisms of E then act on the lattice Λ via
complex number arithmetic. Suppose Λ has basis {1, τ}.
Then if we have an element z ∈ C that corresponds to a
complex multiplication, multiplying Λ by z must land back
inside Λ.

In particular, z · 1 and z · τ are both in Λ, so z = aτ + b and
zτ = cτ + d for some integers a, b, c, d .

But this means cτ + d = τ(aτ + b), so τ is the root of a
quadratic polynomial with integer coefficients, which is to say,
it lies in some (necessarily) imaginary quadratic field Q(

√
D).

Moreover, eliminating τ yields z2 − (b + c)z + ad = 0, so in
fact z ∈ O√D .



Complex Multiplication, III

This tells us that the possible complex multiplications on the
lattice Λ are given by a (nonzero) ideal of O√D .

On the other hand, as we have already seen, we can view any
nonzero ideal of O√D as yielding a lattice λI inside C via the
Minkowski embedding.

Then, because ideals are closed under arbitrary
R-multiplication, we obtain complex multiplication by O√D
on the elliptic curve E corresponding to λI .

Furthermore, scaling the lattice λI by a constant does not
affect the isomorphism class of the curve E . So in fact, up to
isomorphism, the elliptic curves E with endomorphism ring
O√D are in bijection with the elements of the ideal class
group of O√D .



Complex Multiplication, IV

This result actually tells us quite a lot about the j-invariants of
these possible curves E .

In fact, for an elliptic curve with complex multiplication by
O√D , the j-invariant is necessarily an algebraic integer (i.e., a
root of a monic polynomial with integer coefficients) whose
degree is equal to the degree of the class number of O√D .

The degree part of this statement follows because of this
bijection between elliptic curves E with endomorphism ring
O√D and the elements of the class group of O√D . (Then one
uses a bit of Galois theory: all of the elliptic curves are Galois
conjugates, so applying this to the j-invariant shows that it
has the same number of Galois conjugates over Q, and this
gives the degree. The hard part is showing all of the curves
are actually Galois conjugates.)



Complex Multiplication, V

In particular, if we choose O√D to have class number 1, then its
j-invariant satisfies a monic polynomial with integer coefficients of
degree 1: in other words, it is an integer.

We can use this fact to make a very mysterious observation:
the real number
eπ
√

163 ≈ 262537412640768743.99999999999925 . . .
is extremely close to an integer.



Complex Multiplication, VI

The mysterious observation is, in fact, related to what I was just
talking about.

The connection is that the j-invariant is actually what is
called a modular function: this is a meromorphic function f
on the complex upper half-plane such that

1. f ( az+b
cz+d ) = (cz + d)k f (z) for all γ =

(
a b
c d

)
∈ SL2(Z) and

all z in the upper half-plane
2. The function f has a Fourier expansion at i∞ of the

form f (z) =
∑∞

n=0 cnqn for q = e2πiz .

The integer k is called the weight of the modular function.



Complex Multiplication, VII

The j-invariant is a modular function of weight 0 that is
holomorphic on the upper half-plane.

One can then compute its Fourier expansion at ∞, which is

j(z) =
1

q
+ 744 + 196884q + · · · .

Now, apply this to an elliptic curve with complex
multiplication by z =

√
−163, so that

q = e2πi
√
−163 = eπ

√
−163.

Since O√−163 has class number 1, its j-invariant is an integer.

But the Fourier series says j(z) =
1

q
+ 744 + 196884q + · · · =

eπ
√

163 + 744 + 196884e−π
√

163 + · · · , and the terms after the
first two are very, very small.

Hence, our numerical coincidence.



Complex Multiplication, VIII

Another mystery: the Fourier series of the j-invariant is
j(z) = 1

q + 744 + 196884q + 21493760q2 + 864299970q3 + · · · .
If M is the monster group (the largest sporadic simple group,
of order 808017424794512875886459904961710757005754368000000000

= 246320597611213317 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71), then the
dimensions of the irreducible representations of M are 1,
196883, 21296876, 842609326, .....

It was conjectured by McKay, Thompson, Conway, and
Norton that these suspiciously close values are not a
coincidence: this was called the Moonshine Conjecture.

In 1992, using some very deep results like the no-ghost
theorem from string theory, Borcherds proved that there is a
graded module whose automorphism group is exactly M, from
which these comparisons arise.



Complex Multiplication, VIII

Another mystery: the Fourier series of the j-invariant is
j(z) = 1

q + 744 + 196884q + 21493760q2 + 864299970q3 + · · · .
If M is the monster group (the largest sporadic simple group,
of order 808017424794512875886459904961710757005754368000000000

= 246320597611213317 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71), then the
dimensions of the irreducible representations of M are 1,
196883, 21296876, 842609326, .....

It was conjectured by McKay, Thompson, Conway, and
Norton that these suspiciously close values are not a
coincidence: this was called the Moonshine Conjecture.

In 1992, using some very deep results like the no-ghost
theorem from string theory, Borcherds proved that there is a
graded module whose automorphism group is exactly M, from
which these comparisons arise.



Wrap-Up

So, of course, I hope all of this discussion has convinced you that
there are lots more amazing results in number theory out there to
learn, and that all of the topics from the course really are
connected, often in surprising and unexpected ways.

I really had fun designing and teaching this course, and I hope
you enjoyed taking it.

I didn’t cover quite everything I was hoping to cover, but I
think we got through quite a lot of great things.

If you did enjoy the course, please do make sure to fill out the
TRACE evaluations. The department really does use them to
decide who gets to teach what, and I’m really hoping to be
able to teach other courses like this one in the future.

Also, the due date for HW13 is extended to Friday evening, and I
will have office hours from noon-3pm on that day.



Summary

We established that the composition of binary quadratic forms
yields a group structure that is the same as the ideal class group.

We discussed some examples of classifying integers represented by
quadratic forms.

We discussed some open problems about class groups, including
the Cohen-Lenstra heuristics.

We briefly discussed elliptic curves with complex multiplication.

Next lecture: There isn’t one, the class is over :-(



Wrap-Up, II: The Finaling

Finally, I know you’re all dreading the prospect of taking an actual
exam in this course.

Since essentially everyone has worked quite hard all semester,
I am announcing a change to the course grade policy: if

1. you have finished all 13 homework assignments (no
slacking off this week, sorry), and

2. your total score on the 13 assignments is at least
330/400 (which for those who have completed the first
12 assignments, requires at most 20/35 on HW13)

then you are excused from taking the final exam as you are
already receiving an A in the course.

If these conditions do not apply to you, I will email you the
final exam and it will be due on Friday, April 30th.

Otherwise, good luck on your other exams, have a great
summer, and stay safe!


