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Reduced Forms For ∆ < 0
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This material represents §9.2.4 from the course notes.



Another Class Group Example, I

Example: Determine the class group of O√−31.

Since −31 ≡ 1 (mod 4), we have ∆ = −31, so Minkowski’s
bound says that every ideal class of R contains an ideal of

norm at most
2

π

√
31 ≈ 3.5445 < 4, so the only nontrivial

ideals we need to consider are ideals of norm 2 and 3.

The minimal polynomial of ω = 1+
√
−31

2 is x2 − x + 8.

For (3) we see the polynomial x2 − x + 8 is irreducible modulo
3, so (3) is inert of norm 9 and it does not yield a nontrivial
element of the class group.

So the only nontrivial elements are those arising from the
factorization of (2).

For (2) we see the polynomial has roots 0 and 1 so we get

(2) = (2, 1+
√
−31

2 )(2, 1−
√
−31

2 ).
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Another Class Group Example, II

Example: Determine the class group of O√−31.

If I2 = (2, 1+
√
−31

2 ) or its conjugate I ′2 = (2, 1−
√
−31

2 ) were
principal then it would be generated by an element of norm 2,
but there are no elements of norm 2 in O√−31.

The ideal I 2
2 cannot be principal either, since it would have to

be generated by an element of norm 4, but the only such
elements are ±2 and we already have the ideal factorization
(2) = I2I ′2 and I2 6= I ′2 since 2 is not ramified.

However, I 3
2 has norm 8, and there are elements of norm 8:

1±
√
−31

2 . As I 3
2 = (8, 2 + 2

√
−31,−15 +

√
−31, −23−7

√
−31

2 ),

this ideal contains 8 + 2(2 + 2
√
−31) + −23−7

√
−31

2 = 1+
√
−31

2 .

Thus I 3
2 = ( 1+

√
−31

2 ) is principal, and so [I2] is an element of
order 3 in the class group with inverse [I ′2] = [I2]2.

So the class group is generated by [I2] and has order 3.



Recall, I

Last time we discussed some properties of binary quadratic forms
f (x , y) = ax2 + bxy + cy 2 with discriminant ∆ = b2 − 4ac.

If there exist relatively prime x , y with f (x , y) = n, we say f
properly represents n.

We showed that there exists some binary quadratic form of
discriminant ∆ properly representing n if and only if D is a
quadratic residue modulo 4n.

For odd primes p, we can sharpen this to say that there exists
some binary quadratic form of discriminant ∆ representing p
if and only if D is a quadratic residue modulo p (and by
quadratic reciprocity, this is simply a congruence condition on
p modulo 4D).



Recall, II

We also defined an equivalence of binary quadratic forms:

Definition

We define the relation ∼ on binary quadratic forms by writing
f ∼ g if there exists a matrix A ∈ SL2(Z) such that g(x) = f (Ax),
which is to say that g is obtained from f by an invertible linear
change of variables with integer coefficients. Equivalently, f ∼ g if
there exists A ∈ SL2(Z) such that Mg = ATMf A.

∼ is an equivalence relation preserving (proper) representations.

Definition

If f (x , y) = ax2 + bxy + cy 2 is a binary quadratic form whose
discriminant ∆ is not a square, we say f is reduced when
− |a| < b ≤ |a| ≤ |c |, and if b = |a| we also insist that |a| < |c|,
while if |a| = |c | then we also insist that b ≥ 0.



Recall, III

Using reduced forms we showed that there were finitely many
equivalence classes and gave a method for calculating them all:

Theorem (Reduced Forms)

Let ∆ be a nonsquare integer congruent to 0 or 1 modulo 4 and
suppose f (x , y) = ax2 + bxy + cy 2 is a reduced form of
discriminant ∆. Then the following hold:

1. If D < 0 then a, c must have the same sign and
|a| ≤

√
−∆/3. If ∆ > 0 then a, c have opposite signs and

|a| <
√

∆/2. In either case, there are finitely many reduced
forms of discriminant ∆.

2. Every equivalence class of quadratic forms of discriminant ∆
contains at least one reduced form.

3. There are finitely many equivalence classes of binary quadratic
forms of discriminant ∆.



Endless Forms Most Beautiful, I

Example: Find all reduced forms of discriminant ∆ = −40 and
determine the number of equivalence classes.

From the analysis in (2) we see that any reduced form
ax2 + bxy + cy 2 of discriminant ∆ = −40 must have
|a| ≤

√
40/3 < 4, so since a 6= 0 this means a = ±1,±2,±3.

Then since b ∈ (− |a| , a] and b2 − 4ac = −40 so that b is
even, we must have b = 0,±2.

If a = 1 then b = 0 and then c = (b2 + 40)/(4a) = 10, and if
a = −1 then b = 0 and c = −10.

If a = ±2 then b = 0, 2 so that c = (b2 + 40)/(4a) = ±5 or
±44/8, but the second case yields non-integral c .

If a = ±3 then b = 0,±2 so that
c = (b2 + 40)/(4a) = ±40/12 or ±44/12 but these are not
integral either.
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Endless Forms Most Beautiful, II

Example: Find all reduced forms of discriminant ∆ = −40 and
determine the number of equivalence classes.

So in summary, we obtain two positive-definite forms
x2 + 10y 2 and 2x2 + 5y 2 along with their negatives (which
are negative-definite) −x2 − 10y 2 and −2x2 − 5y 2.

The positive-definite and negative-definite forms are not
equivalent to one another, and so we only have to consider
equivalence of the two positive-definite forms. But they are
not equivalent because they do not represent the same
numbers: for example, 2x2 + 5y 2 represents both 2 and 5,
while x2 + 10y 2 does not.

Therefore, all these reduced forms are inequivalent, and so
there are four inequivalent forms in total.



Endless Forms Most Beautiful, III

Example: Find all reduced forms of discriminant ∆ = −31 and
determine the number of equivalence classes.

From the analysis in (2) we see that any reduced form
ax2 + bxy + cy 2 of discriminant ∆ = −31 must have
|a| ≤

√
31/3 < 4, so since a 6= 0 this means a = ±1,±2,±3.

Then since b ∈ (− |a| , a] and b2 − 4ac = −31 so that b is
odd, we must have b = ±1,±3.

If a = 1 then b = 1 and then c = (b2 + 31)/(4a) = 8, and if
a = −1 then b = 1 and c = −8.

If a = 2 then b = ±1 and then c = (b2 + 31)/(4a) = 4, and if
a = −2 then b = ±1 and c = −4.

Finally, if a = ±3 then b = ±1 or 3 and then
c = (b2 + 31)/(4a) is either 32/± 6 or 40/± 6, but none of
these are integers.



Endless Forms Most Beautiful, III
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Endless Forms Most Beautiful, IV

Example: Find all reduced forms of discriminant ∆ = −31 and
determine the number of equivalence classes.

So in summary, we obtain three positive-definite forms
x2 + xy + 8y 2, 2x2 + xy + 4y 2, 2x2 − xy + 4y 2 along with
their negatives (which are negative-definite): −x2 − xy − 8y 2,
−2x2 − xy − 4y 2, and −2x2 + xy − 4y 2. As before, we only
need to consider equivalence of the positive-definite forms.

It is not hard to see that x2 + xy + 8y 2 is not equivalent to
either of the others, since it does not represent 2 whereas the
other two do. The other two forms 2x2 + xy + 4y 2,
2x2 − xy + 4y 2 are also inequivalent, although this is harder.

In particular, we cannot use the approach from the last
example: these two forms represent the same integers because
they are obtained via a change of variables (x , y) 7→ (x ,−y)
of determinant −1.



Endless Forms Most Beautiful, IV

Example: Find all reduced forms of discriminant ∆ = −31 and
determine the number of equivalence classes.

We can show the inequivalence using associated matrices: so

suppose we had A =

[
a b
c d

]
∈ SL2(Z) such that

AT

[
2 1/2

1/2 4

]
A =

[
2 −1/2
−1/2 4

]
.

Since A has determinant 1, we have A−1 =

[
d −b
−c a

]
and

so we equivalently must solve

AT

[
2 1/2

1/2 4

]
=

[
2 −1/2
−1/2 4

]
A−1, which means[

a c
b d

] [
2 1/2

1/2 4

]
=

[
2 −1/2
−1/2 4

] [
d −b
−c a

]
.



Endless Forms Most Beautiful, V

Example: Find all reduced forms of discriminant ∆ = −31 and
determine the number of equivalence classes.

This yields an explicit linear system that reduces to
2a− 2d = a + 2b + 4c = 2b + 4c + d = −4a + 4d = 0, so
that a = d = −2b − 4c .

But then ad − bc = (2b + 4c)2 − bc = 4b2 + 15bc + 16c2

cannot equal 1, as can be seen by completing the square:
(2b + 15c/4)2 + (31/16)c2 = 1 implies
(8b + 15c)2 + 31c2 = 16 and this has no integer solutions (it
requires c = 0 and 8b + 15c = 4).

Therefore, all three of these reduced forms are inequivalent,
and so there are six inequivalent forms in total.



Endless Forms Most Beautiful, VI

Last time, I identified some reduced forms that were equivalent
when ∆ > 0. But all of our examples of reduced forms with ∆ < 0
were inequivalent. This is true in general:

Proposition (Inequivalence of Reduced Forms for ∆ < 0)

Suppose ∆ < 0 is the discriminant of a quadratic integer ring.

1. If f (x , y) = ax2 + bxy + cy 2 is a reduced positive-definite
form of discriminant ∆, then a, c, and a− |b|+ c are the
smallest nonzero integers properly represented by f .

2. If f and g are reduced positive-definite forms of discriminant
∆ and f ∼ g, then in fact f = g.

3. Every equivalence class of binary quadratic forms of
discriminant ∆ is represented by a unique reduced form.



Endless Forms Most Beautiful, VII

1. If f (x , y) = ax2 + bxy + cy 2 is a reduced positive-definite
form of discriminant ∆, then a, c, and a− |b|+ c are the
smallest nonzero integers properly represented by f .

Proof:

Since definiteness is preserved by equivalence, without loss of
generality we may work only with the positive-definite forms.

Now suppose f (x , y) = ax2 + bxy + cy 2 is positive-definite
and reduced, so that |b| ≤ a ≤ c .

If x2 ≥ y 2 then f (x , y) ≥ ax2− |b| xy + cy 2 ≥ (a− |b|+ c)y 2.

Similarly if y 2 ≥ x2 then f (x , y) ≥ (a− |b|+ c)x2.

So we see f (x , y) ≥ (a− |b|+ c) min(x2, y 2).



Endless Forms Most Beautiful, VIII

1. If f (x , y) = ax2 + bxy + cy 2 is a reduced positive-definite
form of discriminant ∆, then a, c, and a− |b|+ c are the
smallest nonzero integers properly represented by f .

Proof (continued):

We have f (x , y) ≥ (a− |b|+ c) min(x2, y 2).

Since f (x , 0) = ax2 and f (0, y) = cy 2, the only integers with
xy = 0 properly represented by f are f (±1, 0) = a and
f (0,±1) = c. Otherwise, f (x , y) ≥ a− |b|+ c , and since
f (1, 1) = f (−1,−1) = a + b + c and
f (1,−1) = f (−1, 1) = a− b + c , the value a− |b|+ c is also
properly represented by f .

Any other value represented by f necessarily has
min(x2, y 2) ≥ 4 and is larger than these three values.

Therefore, the smallest nonzero integers properly represented
by f are a, c , and a− |b|+ c .



Endless Forms Most Beautiful, IX

2. If f and g are reduced positive-definite forms of discriminant
∆ and f ∼ g , then in fact f = g .

Proof:

Let f (x , y) = ax2 + bxy + cy 2, g(x , y) = a′x2 + b′xy + c ′y 2

be reduced positive-definite forms of discriminant ∆.

Then a ≤ c ≤ a− |b|+ c and also a′ ≤ c ′ ≤ a′ − |b′|+ c ′.

Since f ∼ g , as we have shown, the integers properly
represented by g are the same as those properly represented
by f . Therefore, by (1), we must have a = a′, c = c ′, and
|b| = |b′|, so b = ±b′.

We claim in fact that b must equal b′.



Endless Forms Most Beautiful, X

2. If f and g are reduced positive-definite forms of discriminant
∆ and f ∼ g , then in fact f = g .

Proof (continued):

We claim in fact that b must equal b′.

In the case where a = c or where |b| = a, since both forms are
reduced we must also have b and b′ ≥ 0, so b = b′.

Otherwise, assume |b| < a < c and that
g(x , y) = f (px + qy , rx + sy) where ps − qr = 1.

Then a = g(1, 0) = f (p, q) and c = g(0, 1) = f (r , s) are
proper representations of a and c respectively, and it is easy
to see that f properly represents a only at (x , y) = (±1, 0)
and f properly represents c only at (x , y) = (0,±1).

This forces (p, q) = (±1, 0) and (r , s) = (0,±1), and then the
determinant condition requires (p, q, r , s) = (1, 0, 0, 1) or
(−1, 0, 0,−1), and in both cases this yields g(x , y) = f (x , y).



Endless Forms Most Beautiful, XI

3. Every equivalence class of binary quadratic forms of
discriminant ∆ is represented by a unique reduced form.

Proof:

For positive-definite forms this follows immediately from (2),
since as we showed earlier, every equivalence class contains at
least one reduced form.

For negative-definite forms we can simply scale everything by
−1 and note that equivalence preserves the definiteness type
of a form and that f ∼ g implies −f ∼ −g .



Composition of Forms, I

We now investigate the composition of binary quadratic forms,
which we will motivate first via some examples.

As we have already seen during our discussion of solutions to
Pell’s equation, the product
(a + b

√
D)(c + d

√
D) = (ac + Dbd) + (ad + bc)

√
D is also

an element of Z[
√

D].

Taking norms on both sides yields
(a2 + Db2)(c2 + Dd2) = (ac + Dbd)2 + D(ad + bc)2, which
shows that the product of two integers represented by the
quadratic form x2 + Dy 2 is also represented by this form.

More generally, if D ≡ 1 (mod 4), because the quadratic
integer ring O√D is a ring, the product of two elements
a + bω and c + dω is again an element of this ring, and so the
product of two elements represented by the norm form
x2 + xy + 1−D

4 y 2 is also represented by that form.



Composition of Forms, II

For some ∆, we have found several inequivalent forms, only one of
which necessarily corresponds to the norm form.

For example, for ∆ = −40, we identified two inequivalent
positive-definite forms x2 + 10y 2 (which is the norm form for
D = −10) and 2x2 + 5y 2 (which is not the norm form).

x2 + 10y 2 values: 0, 1, 4, 9, 10, 11, 14, 16, 19, 25, 26, 35, ....

2x2 + 5y 2 values: 0, 2, 5, 7, 8, 13, 18, 20, 22, 23, 28, 32, ....

Aside from 0, these lists are disjoint. The first list is closed
under multiplication (as we showed above), but the second
visibly is not: indeed, 2, 5, and 7 are all on the second list,
but their pairwise products 10, 14, and 35 actually all appear
on the first list.



Composition of Forms, III

In fact, the product of any two values represented by 2x2 + 5y 2 is
represented by x2 + 10y 2: if we multiply out
(2a2 + 5b2)(2c2 + 5d2) = 4a2c2 + 10(a2d2 + b2c2) + 25b2d2, the
result is x2 + 10y 2 for x = 2ac + 5bd and y = bc − ad .

Also, if we multiply an element on the first list by an element
on the second list, we seem always to obtain something on the
second list: for example, 10 · 2 = 20, 14 · 2 = 28, 4 · 5 = 20,
and so forth. This holds in general too: if we multiply out
(2a2 + 5b2)(c2 + 10d2) = 2a2c2 + 5b2c2 + 20a2d2 + 50b2d2,
the result is 2x2 + 5y 2 for x = ac + 5bd and y = bc − 2ad .

All of this together shows that the equivalence classes of
positive-definite quadratic forms of discriminant ∆ = −40
have a group structure isomorphic to Z/2Z under
multiplication, with the form x2 + 10y 2 as the identity and
the form 2x2 + 5y 2 as the nontrivial element in the group.



Composition of Forms, IV

All of this together shows that the equivalence classes of
positive-definite quadratic forms of discriminant ∆ = −40 have a
group structure isomorphic to Z/2Z under multiplication.

The form x2 + 10y 2 acts the identity while the form
2x2 + 5y 2 acts as the nontrivial element in the group.

We can find similar patterns with the quadratic forms for other
discriminants, although in many cases they are harder to identify.



Composition of Forms, V

For example, for discriminant ∆ = −84, one may show that there
are four positive-definite reduced forms: x2 + 21y 2,
2x2 + 2xy + 11y 2, 3x2 + 7y 2, and 5x2 + 4xy + 5y 2.

Here are the integers less than 100 represented by each form:
Form Integers

e x2 + 21y 2 0, 1, 4, 9, 16, 21, 22, 25, 30, 36, 37, 46,
49, 57, 64, 70, 81, 84, 85, 88, 93

a 2x2 + 2xy + 11y 2 0, 2, 8, 11, 15, 18, 23, 32, 35, 42, 44,
50, 51, 60, 71, 72, 74, 92, 95, 98, 99

b 3x2 + 7y 2 0, 3, 7, 10, 12, 19, 27, 28, 31, 34, 40,
48, 55, 63, 66, 75, 76, 82, 90

c 5x2 + 4xy + 5y 2 0, 5, 6, 14, 17, 20, 24, 33, 38, 41, 45,
54, 56, 62, 68, 69, 77, 80, 89, 96



Composition of Forms, VI

If we hypothesize that the reduced forms up to equivalence form a
group under multiplication, we can identify the necessary
compositions to make it work out correctly.

Since x2 + 21y 2 is the norm form on Z[
√
−21], its set of

represented integers is closed under multiplication, so it
should be the identity element.

If we label the other three classes as a, b, and c , then it is not
hard to verify that a · a = e for small entries in the table (e.g.,
8 · 11 = 88, 2 · 23 = 46, etc.), and also b · b = e (e.g.,
3 · 7 = 21, 7 · 12 = 84) and c · c = e (e.g., 5 · 6 = 30,
6 · 14 = 84).

This suggests the group structure is isomorphic to the Klein
4-group, and so we should also have a · b = c (2 · 3 = 6,
11 · 7 = 77, etc.), a · c = b (2 · 5 = 10, 11 · 6 = 66), and
b · c = a (3 · 14 = 42, 10 · 5 = 50), which all do seem to hold.



Composition of Forms, VII

We would expect that these relations should arise from algebraic
identities. This is the case, although it is not so easy to find them.

In general, we are looking for identities of the form
f (x1, y1)g(x2, y2) = h(B1,B2) where
B1 = c1,1x1x2 + c1,2x1y2 + c2,1y1x2 + c2,2y1y2 = xT1 Cx2 and
B2 = d1,1x1x2 + d1,2x1y2 + d2,1y1x2 + d2,2y1y2 = xT1 Dx2 are
appropriate bilinear forms. By multiplying out and comparing
coefficients we can find the entries of the matrices C and D.

So for example to compose e · a = a, we can calculate
(a2 + 21b2)(2c2 + 2cd + 11d2) = 2x2 + 2xy + 11y 2 for
x = ac − bc + ad + 10bd and y = 2bc − ad + bd .

Similarly, for a · b = c we have
(2a2 + 2ab + 11b2)(3c2 + 7d2) = 5x2 + 4xy + 5y 2 for
x = ac − ad + 2bc + 4bd and y = −ac − ad + bc − 4bd .



Composition of Forms, VIII

Part of the difficulty is that in some cases, the integers represented
by inequivalent forms are the same, so we cannot use tables to
identify the group structure, nor can we necessarily identify the
composition structure by searching for algebraic identities.

For example, consider ∆ = −31, which has three inequivalent
positive-definite forms x2 + xy + 8y 2, 2x2 + xy + 4y 2, and
2x2 − xy + 4y 2. Here are values represented by each form:

Form Integers

e x2 + xy + 8y 2 0, 1, 4, 8, 9, 10, 14, 16, 20, 25, 28,
31, 32, 35, 36, 38, 40, 47, 49

a 2x2 + xy + 4y 2 0, 2, 4, 5, 7, 8, 10, 14, 16, 18, 19, 20,
25, 28, 32, 35, 36, 38, 40, 41, 45, 49

b 2x2 − xy + 4y 2 0, 2, 4, 5, 7, 8, 10, 14, 16, 18, 19, 20,
25, 28, 32, 35, 36, 38, 40, 41, 45, 49



Composition of Forms, IX

We can see that the forms 2x2 + xy + 4y 2 and 2x2 − xy + 4y 2

represent the same integers, since they are related via an improper
change of variables (x , y) 7→ (x ,−y) of determinant −1.

As in the examples above, we can write down algebraic
identities that yield a group structure on the equivalence
classes of these forms.

However, because of the presence of the improper change of
variables relating two of the forms, we can also generate
composition relations that do not yield a group structure.

For example, we have the identity
(a2 + ab + 8b2)(2c2 + cd + 4d2) = 2x2 ± xy + 4y 2 for
x = ±(ac − 4bd) and y = ad + 4bc − 2bc + bd , so depending
on our choice of sign, we could either take e · a = a (which is
the identity we want if we are to have a group structure) or
e · a = b (which would not give a group structure).



Composition of Forms, X

Many of the properties of binary quadratic forms we have discussed
were first treated by Legendre.

For example, he gave the definition of a reduced form,
discussed the equivalence of forms, and described a procedure
for computing the composition of two forms.

However, Legendre’s treatment also allowed what we now call
improper equivalence of forms (i.e., changes of coordinates
with determinant −1), which collapses the equivalence classes
further and makes it very difficult to identify the right
composition structure.



Composition of Forms, XI

Here is an example of Legendre’s results: suppose we have forms
f (x , y) = ax2 + 2bxy + cy 2 and g(x , y) = a′x2 + 2b′xy + c ′y 2 of
even discriminant ∆ < 0 with a, a′ relatively prime.

Also suppose B ≡ ±b (mod a) and also B ≡ ±b′ (mod a′).

Then B2 −∆/4 ≡ b2 + (ac − b2) ≡ 0 (mod a) and similarly
B2 −∆/4 ≡ 0 (mod a′), so B2 −∆/4 ≡ 0 (mod aa′).

One can then write down an appropriate linear change of
variables to show that the product f (x , y)g(x ′, y ′) is equal to

aa′X 2 + 2BXY + B2−∆/4
aa′ Y 2 for X and Y appropriate bilinear

forms in x , y and x ′, y ′.

However, because of the choice of ± signs in Legendre’s
composition above, there are multiple different possible results
of composing two forms, and (as with the example for
∆ = −31) these need not actually yield forms lying in the
same equivalence class.



Composition of Forms, XII

The resolution of this quite tricky issue was first accomplished by
Gauss.

It was Gauss who first introduced the notion of proper
equivalence (which is our relation ∼) and identified a
consistent procedure for composing quadratic forms that does
give them the structure of a group: this is known as Gauss
direct composition.

However, Gauss’s treatment is fairly complicated, owing to
the necessity of identifying the correct choice of compositions
whenever there is more than one option, although it is quite
remarkable how much of the general theory he was able to
characterize, given that the notion of an abstract group was
still decades away from being developed.



Composition of Forms, XIII

We will describe a simplified composition law, due to Dirichlet.

Definition

Let f (x , y) = ax2 + bxy + cy 2 and g(x , y) = a′x2 + b′xy + c ′y 2 be
positive-definite binary quadratic forms of discriminant ∆ < 0.
Suppose that gcd(a, a′, (b + b′)/2) = 1. Then the
Dirichlet composition of f (x , y) and g(x , y) is the binary quadratic
form h(x , y) = Ax2 + Bxy + Cy 2 where A = aa′, B is the unique
integer in (−A,A] satisfying B ≡ b (mod 2a), B ≡ b′ (mod 2a′),

and B2 ≡ ∆ (mod 4aa′), and C =
B2 −∆

4aa′
.

The new form has discriminant ∆ since C =
B2 −∆

4aa′
=

B2 −∆

4A
,

and the coefficients A,B,C are integers since the assumptions on
B indicate that B2 −∆ is divisible by 4aa′.



Composition of Forms, XVI

The Dirichlet composition does yield composition identities like the
ones we described earlier.

By hypothesis, B is congruent to b (mod 2a) and to b′ (mod
2a′), so by applying the appropriate power of T we see that
f (x , y) = ax2 + bxy + cy 2 and g(x , y) = a′x2 + b′xy + c ′y 2

are equivalent to the forms f ′(x , y) = ax2 + Bxy + a′Cy 2 and
g ′(x , y) = a′x2 + Bxy + aC ′y 2 respectively.

Then one has f ′(x1, y1)g ′(x2, y2) = AX 2 + BXY + CY 2 where
X = x1x2 − Cy1y2 and Y = ax1x2 + a′y1y2 + By1x2.



Composition of Forms, XIV

Example: Compute the Dirichlet composition of x2 + 10y 2 with
itself (note ∆ = −40).

We see A = 1 · 1 = 1, B ≡ 0 (mod 2), B ≡ 0 (mod 2), and
B2 ≡ −40 (mod 4), so that B = 0, and then
C = (B2 −∆)/(4A) = 10.

Thus, the Dirichlet composition of x2 + 10y 2 with itself is
again x2 + 10y 2.

Example: Compute the Dirichlet composition of x2 + 10y 2 with
2x2 + 5y 2 (note ∆ = −40).

We see A = 1 · 2 = 2, B ≡ 0 (mod 2), B ≡ 0 (mod 4), and
B2 ≡ −40 (mod 8), so that B = 0, and then
C = (B2 −∆)/(4A) = 5.

Thus, the Dirichlet composition of x2 + 10y 2 with 2x2 + 5y 2

is 2x2 + 5y 2.



Composition of Forms, XV

Example: Compute the Dirichlet composition of 2x2 + 2xy + 11y 2

with 3x2 + 7y 2 (note ∆ = −84).

We see A = 2 · 3 = 6, B ≡ 2 (mod 4), B ≡ 0 (mod 6), and
B2 ≡ −84 (mod 24), so that B = 6, and then
C = (B2 −∆)/(4A) = 5.

Thus, the Dirichlet composition of x2 + 10y 2 with
2x2 + 2xy + 11y 2 with 3x2 + 7y 2 is 6x2 + 6xy + 5y 2.

This form is not reduced, but applying S yields
5y 2 − 5xy + 6y 2 and then applying T yields the reduced form
5x2 + 4xy + 5y 2.



Composition of Forms, XVI

It can be shown that Dirichlet composition is well-defined on
equivalence classes of forms (boring details omitted).

So in situations where the condition for evaluating the
Dirichlet composition is not met (i.e., when
gcd(a, a′, (b + b′)/2) > 1) we may instead use equivalent
non-reduced forms for computing compositions.



Composition of Forms, XVII

Example: Compute the Dirichlet composition of 2x2 + 5y 2 with
itself (∆ = −40).

We cannot use the composition formula directly since
gcd(a, a′, (b + b′)/2) = 2.

Instead, we compute the composition of 2x2 + 5y 2 with the
equivalent form 5x2 + 2y 2 obtained by applying T .

We get A = 2 · 5 = 10, B ≡ 0 (mod 4), B ≡ 0 (mod 10), and
B2 ≡ −40 (mod 40), so that B = 0, and then
C = (B2 −∆)/(4A) = 1.

Thus, the Dirichlet composition of 2x2 + 5y 2 with 2x2 + 5y 2

is 10x2 + y 2.

This form is not reduced, but applying S yields the reduced
form x2 + 10y 2.



Composition of Forms, XVIII

Dirichlet’s composition law makes the collection of equivalence
classes of forms of discriminant ∆ into an abelian group:

Theorem (Composition of Quadratic Forms)

Suppose ∆ is the discriminant of a quadratic integer ring and let F
be the set of equivalence classes of quadratic forms of discriminant
∆. Then F has the structure of an abelian group under Dirichlet
composition. The identity of F is the norm form on the quadratic
integer ring ∆ and the inverse of the class containing
ax2 + bxy + cy 2 is the class containing ax2 − bxy + cy 2.

I will prove the non-tedious parts of this result next time. But I will
finish today’s lecture by telling you the magical result lurking in
the background: that the composition law on quadratic forms gives
the exact same group structure as the ideal class group of the
associated quadratic integer ring.



Summary

We did more examples of computing class groups and enumerating
reduced forms.

We motivated and then defined a composition law for binary
quadratic forms.

Next lecture: Composition and the ideal class group, complex
multiplication.


