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Binary Quadratic Forms

Representations of Integers

Equivalence of Forms

This material represents §9.2.3 from the course notes.



Binary Quadratic Forms, I

We will now discuss representations of integers by binary quadratic
forms, which are expressions of the form ax2 + bxy + cy2 for fixed
integers a, b, c .

We have already classified the integers that are represented by
the forms x2 + y2, x2 + 2y2, x2 + xy + y2, and x2 + 3y2 using
unique factorization in the quadratic integer rings Z[i ],
Z[
√
−2], and O√−3.

Our goal is now to broaden our focus and analyze integers
represented by other quadratic forms.



Binary Quadratic Forms, II

First, some terminology:

Definition

The discriminant of the binary quadratic form
f (x , y) = ax2 + bxy + cy2 is ∆ = b2 − 4ac. We also classify the
behavior of f based on its values:

If f takes both positive and negative values on R, f is
indefinite.

If f takes only nonnegative values, f is positive semidefinite.

If in addition f = 0 only when (x , y) = (0, 0), f is
positive definite.

Finally, f is negative semidefinite (respectively,
negative definite) if −f is positive semidefinite (respectively,
positive definite).



Binary Quadratic Forms, III

Most of these behaviors are determined by the discriminant.

If D > 0 then f has two real roots (they are rational iff ∆ is a
perfect square), while if ∆ = 0 then f has a repeated
(rational) root, and if D < 0 then f has no real roots. Thus:

f is indefinite precisely when ∆ > 0.

f is definite precisely when ∆ < 0: it is positive definite for
a > 0 and negative definite for a < 0.

f is semidefinite but not definite when ∆ = 0: it is positive
semidefinite when a + c > 0 and negative semidefinite when
a + c < 0.



Binary Quadratic Forms, IV

Examples:

1. The forms x2 − y2 (∆ = 4), xy (∆ = 1), and x2 − 5xy + y2

(∆ = 21) are all indefinite.

2. The forms x2 + y2 (∆ = −4), x2 + 2xy + 3y2 (∆ = −8), x2

(∆ = 0), and x2 + 2xy + y2 (∆ = 0) are all positive
semidefinite. The first two are positive definite while the last
two are not.

3. The forms −x2 + 2xy − 2y2 (∆ = −4) and −4x2 − 6xy − 9y2

(∆ = 0) are both negative semidefinite. The first is negative
definite while the second is not.



Binary Quadratic Forms, V

We will observe that the discriminant ∆ of any quadratic form is
always congruent to 0 or 1 modulo 4, so it is always the
discriminant of a quadratic integer ring up to a square factor.

Conversely, if ∆ is 0 or 1 modulo 4 and is squarefree up to a
factor of 4, then the norm N(x + yω) where ω is the

generator of the quadratic integer ring O√D (
√

D or 1+
√
D

2 )
gives a quadratic form of discriminant ∆. In this case, ∆ is
simply the discriminant of the ring O√D itself.

You’ll doubtless be shocked when I tell you later about a bunch of
other deep connections between the quadratic integer rings and the
binary quadratic forms we are discussing.



Binary Quadratic Forms, VI

Now we can discuss representations of integers by quadratic forms:

Definition

If f is a binary quadratic form and n ∈ Z, we say f represents n if
there exist integers x and y such that f (x , y) = n, and we say f
properly represents n if these x , y are also relatively prime.

Examples:

1. f = x2 + y2 represents 2, 9, and 13, but it does not properly
represent 9 because there is no solution to x2 + y2 = 9 with
x , y relatively prime.

2. f = x2 + xy + y2 represents 3, 4, and 7, but it does not
properly represent 4 because there is no solution to
x2 + xy + y2 = 4 with x , y relatively prime.



Binary Quadratic Forms, VII

Ultimately, we would like to be able to classify the integers
represented (or properly represented) by a given quadratic form.

This turns out to be an incredibly difficult problem, and we
will not be able to fully address the question in this class,
since one really needs the full power of class field theory to
make major headway1.

Nonetheless, we will still be able to say quite a few substantial
things, particularly when we restrict our attention to
representations of primes.

1I will mention that there is an entire book on ostensibly the easiest case of
this question, titled “Primes of the form x2 + ny 2”



Binary Quadratic Forms, VIII

We will generally adopt the approach of fixing the discriminant and
considering all forms of that discriminant.

Proposition (Representations by Forms of Discriminant ∆)

Suppose ∆ is a nonzero integer congruent to 0 or 1 modulo 4.

1. If n is a nonzero integer, then there exists a binary quadratic
form of discriminant ∆ that properly represents n if and only
if D is a quadratic residue modulo 4n.

2. If p is an odd prime, then there exists a binary quadratic form
of discriminant ∆ that represents p if and only if ∆ is a
quadratic residue modulo p.



Binary Quadratic Forms, IX

1. If n is a nonzero integer, then there exists a binary quadratic
form of discriminant ∆ that properly represents n if and only
if D is a quadratic residue modulo 4n.

Proof:

First suppose that ∆ is a quadratic residue modulo 4n, say
with ∆ ≡ b2 (mod 4n), so that b2 −∆ = 4nc for some
integer c .

Then the quadratic form f (x , y) = nx2 + bxy + cy2 has
discriminant b2 − 4nc = ∆ and it properly represents n since
f (1, 0) = n.



Binary Quadratic Forms, X

1. If n is a nonzero integer, then there exists a binary quadratic
form of discriminant ∆ that properly represents n if and only
if D is a quadratic residue modulo 4n.

Proof (converse):

Conversely, suppose ax2 + bxy + cy2 = n with x , y relatively
prime and with b2 − 4ac = ∆. Multiplying by 4a and
completing the square gives
4an = 4a2x2 + 4abxy + 4acy2 = (2ax + by)2 + (b2 − 4ac)y2

so that (b2 − 4ac)y2 ≡ (2ax + by)2 (mod 4n).

Therefore, b2 − 4ac is a quadratic residue modulo
4n/ gcd(y , 4n). By a symmetric argument, we see b2 − 4ac is
also a quadratic residue modulo 4n/ gcd(x , 4n), and since x , y
are relatively prime, this means b2 − 4ac is a quadratic residue
modulo 4n, as required.



Binary Quadratic Forms, XI

2. If p is an odd prime, then there exists a binary quadratic form
of discriminant ∆ that represents p if and only if ∆ is a
quadratic residue modulo p.

Proof:

Since p is squarefree, any representation of p must
automatically be proper.

Then by (1), we see that p is represented by a form of
discriminant ∆ if and only if ∆ is a quadratic residue modulo
4p.

However, since p is odd and ∆ is 0 or 1 modulo 4 (hence is a
square modulo 4), by the Chinese remainder theorem this is
equivalent to saying that ∆ is a quadratic residue modulo p.



Binary Quadratic Forms, XII

The results above give an easy way to decide whether there is some
quadratic form of discriminant ∆ that represents a given prime p.

It therefore stands to reason that if we can understand the
structure of the quadratic forms of a given discriminant ∆,
then we might be able to determine whether p is represented
by a particular quadratic form of discriminant ∆.

As we will show, there actually is quite a lot of structure to
the quadratic forms of a particular discriminant.



Binary Quadratic Forms, XII

To begin, we can see that there are simple changes of variable we
can perform that do not affect representability.

For example, the binary quadratic forms f (x , y) = x2 + y2

and g(x , y) = f (x − y , y) = x2 − 2xy + 2y2 represent the
same integers, since (x , y) ∈ Z2 if and only if (x − y , y) ∈ Z2.

The forms h(x , y) = x2 + 2y2 and
i(x , y) = h(2x + 3y , x + 2y) = 6x2 + 20xy + 17y2 also
represent the same integers, since (x , y) ∈ Z2 if and only if
(2x + 3y , x + 2y) ∈ Z2.

On the other hand, not every linear change of variables preserves
representability.

For (counter)example, f (x , y) = x2 + y2 and
g(x , y) = f (2x , y) = 4x2 + y2 do not represent the same
integers (e.g., f represents 2 while g does not).



Binary Quadratic Forms, XIII

The point of these examples is to illustrate that, if we look at
values of the quadratic form, we may identify any two quadratic
forms that are obtained via a linear change of variables from one
another, as long as the change of variables is invertible over Z.

The correct way to keep track of all this is via matrices:

Definition

If f (x , y) = ax2 + bxy + cy2 is a binary quadratic form, its

associated matrix is the symmetric matrix Mf =

[
a b/2

b/2 c

]
.

The connection is that the quadratic form f (x , y) is equal to

xTMf x where x =

[
x
y

]
is the column vector of the two variables.

Note also that det(Mf ) = ac − b2/4 = −∆/4.



Binary Quadratic Forms, XIV

It is then easy to write down how a binary quadratic form f
transforms under a change of coordinates x 7→ Ax.

Explicitly, we have f (Ax) = (Ax)TMf (Ax) = xT [ATMf A]x,
and so the associated matrix of the new form is ATMf A.

For the purposes of representations of integers, we want only
to consider changes of variables x 7→ Ax that are a bijection
from Z2 to itself, since this ensures that the possible input
vectors x are the same for both forms. It is easy to see that
this is equivalent to saying that A is an invertible matrix with
integer entries whose inverse also has integer entries.

These conditions imply that det(A−1) = 1/ det(A) ∈ Z, so A
must have determinant ±1.



Binary Quadratic Forms, XV

Conversely, saying that A is an integer matrix with determinant ±1
is actually sufficient.

Explicitly, we can invoke the adjugate inverse formula

A−1 =
1

det(A)
adj(A), which for 2× 2 matrices reads as[

e f
g h

]−1
=

1

eh − fg

[
h −f
−g e

]
, to see that if

det(A) = ±1, then A−1 also has integer entries.

Thus, the condition of having integer entries and determinant
±1 is both necessary and sufficient for x 7→ Ax to be a
bijection from Z2 to itself.



Binary Quadratic Forms, XVI

For various reasons (primarily, that the resulting theory is much
nicer), we will restrict our attention to changes of coordinates with
determinant +1 only, which yields the matrix group
SL2(Z) = {M ∈ GL2(Z) : det(M) = 1}.

From our discussion above, for any A ∈ SL2(Z), we see that
the integers represented by the forms f (x) and f (Ax) will be
the same, as will the integers properly represented by these
two forms.

Another way to phrase all of this is that we have a group
action of SL2(Z) on the set of binary quadratic forms of
discriminant ∆. This action is not faithful, because its kernel
is {±I}, so for this reason we often instead act by the group
PSL2Z = SL2Z/{±I}. (This group is called the
modular group and has a natural action on the upper
half-plane via fractional linear transformations.)



Binary Quadratic Forms, XVII

Now we can talk about equivalence under this group action:

Definition

We define the relation ∼ on binary quadratic forms by writing
f ∼ g if there exists a matrix A ∈ SL2(Z) such that g(x) = f (Ax),
which is to say that g is obtained from f by an invertible linear
change of variables with integer coefficients. Equivalently, f ∼ g if
there exists A ∈ SL2(Z) such that Mg = ATMf A.

It is not hard to see that ∼ is an equivalence relation:

1. To see f ∼ f , simply take A = 1.

2. If f ∼ g then Mg = ATMf A and so (A−1)TMg (A−1) = Mf

so that g ∼ f .

3. If f ∼ g and g ∼ h let Mg = ATMf A and Mh = BTMgB:
then Mh = (AB)TMf (AB) so f ∼ h.



Binary Quadratic Forms, XVIII

Examples:

1. The quadratic forms f (x , y) = x2 + y2 and
g(x , y) = f (x − y , y) = x2 − 2xy + 2y2 have f ∼ g , since we

can take the matrix A =

[
1 −1
0 1

]
∈ SL2(Z). For the matrix

calculation, we have Mf =

[
1 0
0 1

]
and Mg =

[
1 −1
−1 2

]
and indeed we have Mg = ATMf A.

2. The quadratic forms f (x , y) = x2 + 2xy − y2 and
g(x , y) = 7x2 + 22xy + 17y2 have f ∼ g , since we can take

the matrix A =

[
2 3
1 2

]
∈ SL2(Z); one may check that

g(x , y) = f (2x + 3y , x + 2y).

Also, if f ∼ g then det(Mg ) = det(AT ) det(Mf ) det(A) = det(Mf ),
so forms in the same equivalence class have the same discriminant.



Binary Quadratic Forms, XIX

Since we are interested in representability of integers by quadratic
forms, and representability is the same for different forms in the
same equivalence class under ∼, our next task is to identify nice
representatives for the equivalence classes under ∼.

Definition

If f (x , y) = ax2 + bxy + cy2 is a binary quadratic form whose
discriminant ∆ is not a square, we say f is reduced when
− |a| < b ≤ |a| ≤ |c |, and if b = |a| we also insist that |a| < |c|,
while if |a| = |c | then we also insist that b ≥ 0.

Examples:

The forms x2 + y2, x2 − y2, −3x2 + 3xy + 4y2, and
2x2 + xy + 3y2 are all reduced.

The forms x2 + 2xy , xy − 2y2, and 2x2 + 2xy + y2 are not
reduced.



Binary Quadratic Forms, XX

Using reduced forms we can show that there are finitely many
equivalence classes:

Theorem (Reduced Forms)

Let ∆ be a nonsquare integer congruent to 0 or 1 modulo 4 and
suppose f (x , y) = ax2 + bxy + cy2 is a reduced form of
discriminant ∆. Then the following hold:

1. If D < 0 then a, c must have the same sign and
|a| ≤

√
−∆/3. If ∆ > 0 then a, c have opposite signs and

|a| <
√

∆/2. In either case, there are finitely many reduced
forms of discriminant ∆.

2. Every equivalence class of quadratic forms of discriminant ∆
contains at least one reduced form.

3. There are finitely many equivalence classes of binary quadratic
forms of discriminant ∆.



Binary Quadratic Forms, XXI

1. If D < 0 then a, c must have the same sign and
|a| ≤

√
−∆/3. If ∆ > 0 then a, c have opposite signs and

|a| <
√

∆/2. In either case, there are finitely many reduced
forms of discriminant ∆.

Proof:

If a, c have the same sign, ∆ = b2 − 4ac = b2 − 4 |a| |c | ≤ 0,
while if a, c are opposite, ∆ = b2 − 4ac = b2 + 4 |ac| ≥ 0.

If ∆ < 0 then because |a| ≤ |c | we see that
∆ = b2 − 4 |a| |c| ≤ a2 − 4a2 = −3a2 so |a| ≤

√
−∆/3. If

∆ > 0 then again because |a| ≤ |c | we see that
∆ = b2 + 4 |ac | ≥ 4a2 and so |a| ≤

√
∆/2.

In either case there are finitely many values of a. For each of
these values of a, there are only finitely many possible b since
|b| ≤ |a|, and then c = (b2 −∆)/(4a) is determined. Thus,
there are only finitely many reduced forms of discriminant ∆.



Binary Quadratic Forms, XXII

2. Every equivalence class of quadratic forms of discriminant ∆
contains at least one reduced form.

Motivation:

The group SL2(Z) is generated2 by the matrices

S =

[
0 −1
1 0

]
and T =

[
1 1
0 1

]
.

The idea is then to show that if we have a non-reduced form,
we must be able to apply either S or a power of T to obtain a
“smaller” form, and so iterating this procedure must
eventually yield a reduced form.

2Sketch proof: note that T−qM will subtract q times the second row from
the first row, and SM will swap the rows and negate the first one: these (up to
the scaling by −1) are precisely the operations in the Euclidean algorithm.
Applying it will turn the first column into [1 0]T , and then the second column
must be [m 1]T since it is in SL2(Z). And this matrix is just Tm.



Binary Quadratic Forms, XXIII

2. Every equivalence class of quadratic forms of discriminant ∆
contains at least one reduced form.

Proof:

Suppose f (x , y) = ax2 + bxy + cy2 has discriminant ∆ and
has associated matrix Mf .

Then STMf S =

[
c −b/2
−b/2 a

]
corresponds to the form

cx2− bxy + ay2, which swaps the x2- and y2-coefficients while
leaving the absolute value of the xy -coefficient unchanged.

Also, (Tm)TMf Tm =

[
a a + mb/2

a + mb/2 m2a + mb + c

]
corresponds to the form
ax2 + (b + 2am)xy + (am2 + bm + c)y2, which leaves the
x2-coefficient unchanged and shifts the xy -coefficient by 2am.



Binary Quadratic Forms, XXIV

2. Every equivalence class of quadratic forms of discriminant ∆
contains at least one reduced form.

Proof (continued):

Starting with f = ax2 + bxy + cy2, loop this algorithm:

(a) If b is not in the interval (− |a| , |a|], let m be the unique
integer such that b + 2am ∈ (− |a| , |a|] and apply Tm to the
quadratic form. This yields an equivalent form whose
xy -coefficient is b + 2am ∈ (− |a| , |a|] and whose
x2-coefficient is the same. Then go to step (b).

(b) If b is in the interval (− |a| , |a|], test if |a| = |c|. If so and if
b ≥ 0, the form is reduced; otherwise if b < 0 then applying S
will yield a reduced form. Otherwise, test whether |a| < |c |. If
so, the form is reduced, and if not, apply S to the quadratic
form. This yields an equivalent form whose x2-coefficient is
smaller in absolute value, and return to step (a).



Binary Quadratic Forms, XXV

2. Every equivalence class of quadratic forms of discriminant ∆
contains at least one reduced form.

Proof (wrapup):

After applying the steps once, the form is either reduced or
has its x2-coefficient strictly smaller in absolute value, so
iterating the procedure must eventually yield a reduced form.

Since each application of S or T yields an equivalent form, we
conclude that every equivalence class contains at least one
reduced form.

3. There are finitely many equivalence classes of binary quadratic
forms of discriminant ∆.

Proof:

Each equivalence class contains at least one reduced form by
(2), and there are finitely many reduced forms by (1).



Binary Quadratic Forms, XXVI

The algorithm in (2) works to find equivalent reduced forms:

Example: Find a reduced form equivalent to
f (x , y) = 17x2 + 99xy − 46y2.

First, since b 6∈ (−17, 17] we find m with
b + 34m ∈ (−17, 17], which gives m = −3.

Applying T 3 yields the equivalent form
g(x , y) = f (x − 3y , y) = 17x2 − 3xy − 190y2.

Now because |a| < |c |, the resulting form

17x2 − 3xy − 190y2 is reduced.
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The algorithm in (2) works to find equivalent reduced forms:

Example: Find a reduced form equivalent to
f (x , y) = 17x2 + 99xy − 46y2.

First, since b 6∈ (−17, 17] we find m with
b + 34m ∈ (−17, 17], which gives m = −3.

Applying T 3 yields the equivalent form
g(x , y) = f (x − 3y , y) = 17x2 − 3xy − 190y2.

Now because |a| < |c |, the resulting form

17x2 − 3xy − 190y2 is reduced.



Binary Quadratic Forms, XXVII

Example: Find a reduced form equivalent to
f (x , y) = 119x2 − 145xy + 17y2.

First, since b 6∈ (−119, 119] we find m with
b + 238m ∈ (−119, 119], which gives m = 1.

Applying T yields the equivalent form
g(x , y) = f (x + y , y) = 119x2 + 93xy − 9y2.

Now because |a| > |c | the form is not reduced so we apply S
to get the form h(x , y) = f (−y , x) = −9x2 − 93xy + 119y2.

Then since b 6∈ (−9, 9] we find m with b + 18m ∈ (−9, 9],
which gives m = 5.

Applying T 5 yields the equivalent form
i(x , y) = f (x + 5y , y) = −9x2 − 3xy + 359y2. Since |a| < |c |,
this form −9x2 − 3xy + 359y2 is reduced.



Binary Quadratic Forms, XXVII

Example: Find a reduced form equivalent to
f (x , y) = 119x2 − 145xy + 17y2.
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Example: Find a reduced form equivalent to
f (x , y) = 81x2 − 65xy + 13y2.

Applying the algorithm yields the following equivalent forms:

Apply S , yielding 13x2 + 65xy + 81y2.

Apply T−2, yielding 13x2 + 13xy + 3y2.

Apply S , yielding 3y2 − 13xy + 13y2.

Apply T 2, yielding 3y2 − xy − y2.

Apply S , yielding −x2 + xy + 3y2, which is reduced.
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Example: Find a reduced form equivalent to
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Binary Quadratic Forms, XXIX

For small values of ∆ we can also use the partial description of
reduced forms in (2) from the theorem to make a full list of
reduced forms.

By deciding which of these are equivalent to one another, we
can then determine the precise number of equivalence classes
of forms.



Binary Quadratic Forms, XXX: The Sensual Form

Example: Find all reduced forms of discriminant ∆ = −4 and show
that there is only one equivalence class of positive-definite forms.

From the analysis in (2) we see that any reduced form
ax2 + bxy + cy2 of discriminant ∆ = −4 must have
|a| ≤

√
4/3, so since a 6= 0 this means a = ±1. Then since

|b| ≤ |a| we have b = 0,±1.

Also, since c = (b2 −∆)/(4a) must be an integer, b must be
even. Thus the only possible forms have a = ±1 and b = 0,
which yields the two forms x2 + y2 and its negative −x2 − y2.

Therefore, since only x2 + y2 is positive-definite, it represents
the only equivalence class of positive-definite forms.
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Example: Find all reduced forms of discriminant ∆ = −4 and show
that there is only one equivalence class of positive-definite forms.
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4/3, so since a 6= 0 this means a = ±1. Then since
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the only equivalence class of positive-definite forms.
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Example: Find all reduced forms of discriminant ∆ = 13 and
determine the number of equivalence classes.

From the analysis in (2) we see that any reduced form
ax2 + bxy + cy2 of discriminant ∆ = 5 must have
|a| ≤

√
13/2 < 2, so since a 6= 0 this means a = ±1. Then

since b ∈ (− |a| , a) we must have b = 0 or b = 1.

However, since c = (b2 −∆)/(4a) must be an integer, b must
be odd, and so b = 1. We then get two possible forms for
a = −1 and a = 1 respectively: f (x , y) = −x2 + xy + 3y2 and
g(x , y) = x2 + xy − 3y2.

Although both of these forms are reduced, they are in fact

equivalent: if we take the matrix A =

[
2 −3
1 −1

]
then it is

straightforward to check that ATMf A = Mg , and so f ∼ g .

Therefore, there is only one equivalence class with ∆ = 13.
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If we can classify all of the binary quadratic forms of a given
discriminant, we can often identify exactly which primes may be
represented by a given form.

As we proved earlier, a prime p is (properly) represented by a
form of discriminant ∆ if and only if ∆ is a square modulo p.

If the equivalence classes of the forms of discriminant ∆ are
represented by f1, f2, . . . , fk , then (at least) one of the fi
represents p if and only if ∆ is a square modulo p.

In the particular case where there is only one equivalence
class, we get a complete characterization of the prime values
taken by (any) quadratic form of that discriminant.
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Some examples:

For ∆ = −4, p is represented by the unique equivalence class
representative f (x , y) = x2 + y2 if and only if −4 is a square
modulo p, which is in turn equivalent to saying that −1 is a
square modulo p, which (as we have already noted numerous
times) is equivalent to saying that p ≡ 1 (mod 4).

For ∆ = 13, we see that p is represented by the unique
equivalence class representative f (x , y) = x2 + xy − 3y2 if
and only if 13 is a square modulo p, which (by quadratic
reciprocity) is equivalent to saying that p is a quadratic
residue modulo 13, which is to say, when p = 13 or when
p ≡ 1, 3, 4, 9, 10, 12 (mod 13).



Summary

We introduced binary quadratic forms, discussed representability
and equivalence of forms, and established that there are only
finitely many equivalence classes of forms of a given discriminant.

We discussed how to enumerate all reduced forms of a given
discriminant.

Next lecture: Composition of forms and the class group.


