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Computing Ideal Class Groups

Computing Ideal Class Groups

Minkowski’s Bound

This material represents §9.2.1-9.2.2 from the course notes.



Reminders, I

Recall Minkowski’s convex-body theorem:

Theorem (Minkowski’s Theorem for General Lattices)

Let Λ be any lattice in Rn whose fundamental domain has volume
V . If B is any open convex centrally-symmetric region in Rn

whose volume is > 2nV , then B contains a nonzero point of Λ.

Also recall the class group:

Definition

Let R = O√D be a quadratic integer ring. The ideal class group is
the set of ideal classes (where I ∼ J if (a)I = (b)J for some
nonzero a, b) of O√D under multiplication.



Reminders, II

The ideal class group of O√D is always a finite abelian group:

Theorem (Properties of the Class Group)

Suppose R = O√D is a quadratic integer ring and let [I ] denote
the ideal class of an ideal I of R. Then the following are true:

1. If I is a nonzero ideal of R, then I contains a nonzero element
α such that N(α) ≤ (|D|+ 1)N(I ).

2. Every ideal class of R contains an ideal J such that
N(J) ≤ |D|+ 1.

3. The ideal class group of O√D is finite.



Computing Class Groups, I

Item (2) in the proposition on the last slide gives us an explicit way
to calculate the ideal class group of O√D .

Explicitly, we need only compute all of the possible prime
ideals having norm at most D + 1, and then determine the
resulting structure of these ideals under multiplication.

The cardinality of the class group also has a name:

Definition

If D is a squarefree integer not equal to 1, the class number of the
quadratic integer ring O√D is the order of the ideal class group of
O√D . The class number is often written as h(D).

The class number of O√D is equal to 1 if and only if O√D is a
PID. A larger class number corresponds to having more
inequivalent types of non-unique factorizations.



Computing Class Groups, II

Example: Show that the class group of Z[
√

2] is trivial and deduce
that Z[

√
2] is a principal ideal domain.

From the proposition, we know that any ideal class contains
an ideal J of norm at most 3.

Then the only possible prime divisors of the norm are 2 and 3,
so the only possible prime ideal divisors of J are the primes
lying above 2 and 3.

Using the Dedekind-Kummer factorization theorem shows that
in Z[

√
2] we have (2) = (

√
2)2 while the ideal (3) is inert and

has norm 9, and so the only possible ideals J are (1), of norm
1, and (

√
2), of norm 2.

Since both of these ideals are principal, we conclude that
every ideal of Z[

√
2] is principal and so Z[

√
2] is a principal

ideal domain.
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Computing Class Groups, III

Example: Show that the class group of Z[
√
−5] has order 2.

From the proposition, we know that any ideal class contains
an ideal J of norm at most 6.

Then the only possible prime divisors of the norm are 2, 3,
and 5 so the only possible prime ideal divisors of J are the
primes lying above 2, 3, and 5.

Using the Dedekind-Kummer factorization theorem (or
appealing to our analysis from earlier) shows that in Z[

√
−5]

we have (2) = (2, 1 +
√
−5)2,

(3) = (3, 1 +
√
−5)(3, 1−

√
−5), and (5) = (

√
−5)2.

Thus, the possible prime ideals dividing J are
I2 = (2, 1 +

√
−5) of norm 2, I3 = (3, 1 +

√
−5) and

I ′3 = (3, 1−
√
−5) both of norm 3, and I5 = (

√
−5) of norm 5.
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Computing Class Groups, IV

Example: Show that the class group of Z[
√
−5] has order 2.

As we have previously shown, the ideal I2 is not principal, so
since I 22 = (2) we see that [I2] is an element of order 2 in the
class group.

We have also previously shown that I2I3 = (1 +
√
−5), so

[I3] = [I2]−1 = [I2], and then since I3I ′3 = (3) we see [I ′3] = [I2]
as well.

Thus, since I5 is principal, we see that all of the nonprincipal
ideals lie in the same class (namely, the class [I2]) and so the
class group of Z[

√
−5] has order 2.



Computing Class Groups, IV
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Computing Class Groups, V

Example: Determine the class group of Z[
√

6] and decide whether
it is a principal ideal domain.

From the proposition, we know that any ideal class contains
an ideal J of norm at most 7.

Then the only possible prime divisors of the norm are 2, 3, 5,
and 7, so the only possible prime ideal divisors of J are the
primes lying above 2, 3, 5, and 7.

Using the Dedekind-Kummer factorization theorem shows that
in Z[

√
6] we have (2) = (2,

√
6)2, (3) = (3,

√
6)2,

(5) = (5, 1 +
√

6)(5, 1−
√

6), and (7) is inert.

Thus the possible prime ideals dividing J are I2 = (2,
√

6) of
norm 2, I3 = (3,

√
6) of norm 3, and I5 = (5, 1 +

√
6) and

I ′5 = (5, 1−
√

6) both of norm 5. (Note that I7 = (7) cannot
divide J since its norm is 49.)
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Computing Class Groups, VI

Example: Determine the class group of Z[
√

6] and decide whether
it is a principal ideal domain.

In fact we can see I2 is principal, since it contains 2−
√

6 and
both 2 and

√
6 are divisible by 2−

√
6.

Likewise, I3 is principal since it contains 3−
√

6 and both 3
and
√

6 are divisible by 3−
√

6, and also I5 (hence also its
conjugate I ′5) is principal since 1 +

√
6 divides 5.

Thus, no matter what the ideal J is, it is principal, and so the
class group of Z[

√
6] is trivial , and Z[

√
6] is a PID.



Minkowski’s Bound, I

Our ability to compute the class group of O√D relies upon being
able to get a good estimate on the norm of the smallest nonzero
element in an ideal I .

If D is negative, then the elements of the quadratic integer
ring O√D naturally form a lattice in the complex plane. Then
any nonzero ideal I will form a sublattice, to which we can
then apply Minkowski’s convex-body theorem to obtain an
element of small norm.

If D is positive, we will have to take a slightly different
approach to embed O√D into R2 as a lattice, but we will be
able to do essentially the same thing. The idea in this case is
instead to map an element α ∈ O√D to the point (α, α) ∈ R2.



Minkowski’s Bound, II

Now we can define the Minkowski embedding:

Definition

Suppose D is a squarefree integer not equal to 1. We define the
Minkowski embedding ϕ : O√D → R2 as follows: if D < 0, we

map the element a + b
√

D ∈ O√D to (a, b
√
|D|), and if D > 0,

we map the element a + b
√

D ∈ O√D to (a + b
√

D, a− b
√

D).

It is easy to see that the Minkowski map ϕ is a
homomorphism of additive groups (i.e., it is Z-linear).

Thus, the image of O√D will be a 2-dimensional lattice
spanned by the vectors ϕ(1) and ϕ(ω), where ω is a generator
of O√D .



Minkowski’s Bound, III

The image of O√D will be a 2-dimensional lattice Λ in R2.

If D < 0, the Minkowski embedding is simply the result of
identifying the elements of O√D as points in the complex
plane.

For D < 0, the lattice is spanned by ϕ(1) = (1, 0) and ϕ(ω),
which is either (0,

√
|D|) or (1/2,

√
|D|/2) according to

whether D ≡ 2, 3 or D ≡ 1 (mod 4).

If D > 0, the lattice is spanned by the linearly-independent
vectors ϕ(1) = (1, 1) and ϕ(ω) = (ω, ω), which is either

(
√

D,−
√

D) or (1+
√
D

2 , 1−
√
D

2 ).



Minkowski’s Bound, IV

In order to apply Minkowski’s theorem, we need to compute the
volume of the fundamental domain of the lattice. This turns out to
be most easily written in terms of the discriminant ∆, which I
introduced on the last homework:

Definition

If O√D is a quadratic integer ring, the discriminant of O√D is

defined to be ∆ =

{
4D if D ≡ 2, 3 (mod 4)

D if D ≡ 1 (mod 4)
.



Minkowski’s Bound, V

Now we can give Minkowski’s bound:

Theorem (Minkowski’s Bound)

Suppose D is a squarefree integer not equal to 1, let ∆ be the
discriminant of O√D , and let ϕ : O√D → R2 be the Minkowski
embedding with Λ = ϕ(O√D) . Then the following hold:

1. The fundamental domain for Λ has area

{√
∆ if D > 0

1
2

√
|∆| if D < 0

.

2. If I 6= 0 and ΛI = ϕ(I ), the fundamental domain for ΛI has
area equal to N(I ) times the fundamental domain for Λ.

3. Every nonzero ideal I of R contains a nonzero element α with

|N(α)| ≤ µ · N(I ), where µ =

{
1
2

√
∆ if D > 0

2
π

√
∆ if D < 0

.

4. Every ideal class has an ideal with norm ≤

{
1
2

√
∆ if D > 0

2
π

√
∆ if D < 0

.



Minkowski’s Bound, VI

1. The fundamental domain for Λ has area

{√
∆ if D > 0

1
2

√
|∆| if D < 0

.

Proof:

The area of the fundamental domain equals the determinant
of ϕ(1), ϕ(ω), where ω is a generator for O√D .

If D < 0, we have ϕ(1) = (1, 0) and ϕ(ω) = (Re(ω), Im(ω))
is either (0,

√
|D|) or (1/2,

√
|D|/2) according to whether

D ≡ 2, 3 or D ≡ 1 (mod 4). The determinant is
√
|D| or√

|D|/2 respectively, and this equals
√
|∆|/2.

If D > 0, we have ϕ(1) = (1, 1) and ϕ(ω) = (ω, ω) is either

(
√

D,−
√

D) or (1+
√
D

2 , 1−
√
D

2 ). Then the determinant is

2
√

D or
√

D respectively, and this equals
√

∆.



Minkowski’s Bound, VII

2. If I 6= 0 and ΛI = ϕ(I ), the fundamental domain for ΛI has
area equal to N(I ) times the fundamental domain for Λ.

Proof:

Let ΛI = ϕ(I ) be the image of I , which is a lattice inside R2

that is a sublattice of Λ = ϕ(O√D).

Since ϕ is an isomorphism of additive abelian groups that
maps O√D to Λ and I to ΛI , we see that Λ/ΛI

∼= O√D/I .

Taking cardinalities yields #(Λ/ΛI ) = #(O√D/I ) = N(I ).

Geometrically, this means that the fundamental domain for ΛI

consists of N(I ) copies of the fundamental domain for Λ.
Thus, the fundamental domain for ΛI has area N(I ) times the
area of the fundamental domain for Λ, as claimed.



Minkowski’s Bound, VIII

3. Every nonzero ideal I of R contains a nonzero element α with

|N(α)| ≤ µ · N(I ), where µ =

{
1
2

√
∆ if D > 0

2
π

√
∆ if D < 0

.

Proof:

Let ΛI = ϕ(I ). By (1) and (2), the fundamental domain of ΛI

has area

{
N(I ) ·

√
∆ if D > 0

N(I ) · 12
√
|∆| if D < 0

.

Now we break into the two cases D > 0 and D < 0 and apply
Minkowski’s theorem to an appropriate convex body.



Minkowski’s Bound, IX

3. Every nonzero ideal I of R contains a nonzero element α with

|N(α)| ≤ µ · N(I ), where µ =

{
1
2

√
∆ if D > 0

2
π

√
∆ if D < 0

.

Proof (D > 0 case):

Suppose D > 0 and let B be the convex, centrally-symmetric
closed set in R2 defined by |x1|+ |x2| ≤ N(I )1/2∆1/4

√
2,

which is a square of area 4N(I )
√

∆.

By Minkowski’s theorem, since the area of B equals 22 times
the area of the fundamental domain of ΛI , there necessarily
exists some nonzero element ϕ(α) = (α, α) of ΛI in B.

Then |N(α)| = |α| |α| ≤
[
|α|+ |α|

2

]2
≤ N(I ) · 1

2

√
∆ where

we used the arithmetic-geometric mean inequality. Victory.



Minkowski’s Bound, X

3. Every nonzero ideal I of R contains a nonzero element α with

|N(α)| ≤ µ · N(I ), where µ =

{
1
2

√
∆ if D > 0

2
π

√
∆ if D < 0

.

Proof (D < 0 case):

Suppose D < 0 and let B be the convex, centrally-symmetric

closed set in R2 defined by x2
1 + x2

2 ≤
2

π
N(I )

√
|∆| , which is

simply a circle of area 2N(I )
√
|∆|.

By Minkowski’s theorem, since the area of B equals 22 times
the area of the fundamental domain of ΛI , there exists some
nonzero element ϕ(α) = (Re(α), Im(α)) of ΛI in B.

Then N(α) = Re(α)2 + Im(α)2 is the sum of the squares of
the coordinates of ϕ(α), which by the hypotheses on B is at

most
2

π

√
|∆| · N(I ), as claimed.



Minkowski’s Bound, XI

4. Every ideal class of R contains an ideal J with

N(J) ≤

{
1
2

√
∆ if D > 0

2
π

√
∆ if D < 0

.

Proof:

This follows the same way as last week:

Let C be an ideal class and let I be any ideal in C−1.

By (3), there exists a nonzero element α ∈ I such that
N(α) ≤ µN(I ). Because α ∈ I , by the equivalence of
divisibility and containment we see that I divides (α) and so
(α) = IJ for some ideal J.

Taking norms yields N(α) = N(I )N(J), so

N(J) =
N(α)

N(I )
≤ µ. Finally, taking ideal classes gives

[1] = [(α)] = [I ][J] so J ∈ [I ]−1 = (C−1)−1 = C , as required.



Minkowski’s Bound, XII

Minkowski’s bound is quite a lot better than the estimate we
obtained earlier.

The reason is that the constant µ is basically
√

∆ ∼ D1/2,
rather than the constant |D|+ 1 ∼ D.

So, for large D, we have far fewer ideals to examine in order
to compute the class group.

We will also remark that, much like everything else we have done,
Minkowski’s bound on ideal classes holds for general rings of
integers of number fields (the proof is similar but more involved,
since one must work in Rn).



Computing Class Groups, VI

Example: Determine the class group of Z[
√

5].

Since 5 ≡ 1 (mod 4), we have ∆ = 5, and so Minkowski’s
bound says that every ideal class of R contains an ideal of

norm at most
1

2

√
5 ≈ 1.1180 < 2, so the only nontrivial ideals

we need to consider are ideals of norm 2.

Thus, the class group of Z[
√

5] is trivial.



Computing Class Groups, VI

Example: Determine the class group of Z[
√
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Computing Class Groups, VII

Example (again): Show that the class group of Z[
√
−5] has order

2.

Since −5 ≡ 3 (mod 4), we have ∆ = −20, and so
Minkowski’s bound says that every ideal class of R contains

an ideal of norm at most
2

π

√
20 ≈ 2.8471 < 3, so the only

nontrivial ideals we need to consider are ideals of norm 2.

Since (2) splits as (2) = (2, 1 +
√
−5)2, and we have

previously shown that (2, 1 +
√
−5) is nonprincipal, we

conclude that the class group is generated by the nonprincipal
ideal I2 = (2, 1 +

√
−5). Since I2 has order 2 as I 22 = (2), the

class group has order 2 as claimed.



Computing Class Groups, VII

Example (again): Show that the class group of Z[
√
−5] has order

2.

Since −5 ≡ 3 (mod 4), we have ∆ = −20, and so
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Computing Class Groups, VIII

Example: Show that the class group of O√−19 is trivial and deduce
that it is a principal ideal domain.

Since −19 ≡ 1 (mod 4), we have ∆ = −19, and so
Minkowski’s bound says that every ideal class of R contains

an ideal of norm at most
2

π

√
19 ≈ 2.7750 < 3, so the only

nontrivial ideals we need to consider are ideals of norm 2.

The minimal polynomial of the generator is x2 − x + 5, which
is irreducible modulo 2. Therefore, (2) is inert, and so there
are no ideals of norm 2 in O√−19.

Therefore, the only ideal class is the trivial class, so the class
group is trivial and O√−19 is a PID.

Remark: It can be shown that O√−19 is not Euclidean with
respect to any norm (though this is not quite so easy), so it
provides an example of a PID that is not a Euclidean domain.



Computing Class Groups, VIII
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Computing Class Groups, IX

Example: Determine the class group of Z[
√

6].

Since 6 ≡ 2 (mod 4), we have ∆ = 24, and so Minkowski’s
bound says that every ideal class of R contains an ideal of

norm at most
1

2

√
24 ≈ 2.4495 < 3, so there can be no

nontrivial ideal classes.

The minimal polynomial of the generator is x2 − 6, which has
a repeated root r = 0 modulo 2, so (2) is ramified:
(2) = (2,

√
6)2. This ideal I2 = (2,

√
6) is in fact principal as

we saw earlier (it is generated by 2 +
√

6).

Therefore, the only ideal class is the trivial class, so the class
group is trivial.



Computing Class Groups, IX

Example: Determine the class group of Z[
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√

6).

Therefore, the only ideal class is the trivial class, so the class
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Computing Class Groups, X

Example: Determine the class group of Z[
√

10].

Since 10 ≡ 2 (mod 4), we have ∆ = 40, and so Minkowski’s
bound says that every ideal class of R contains an ideal of

norm at most
1

2

√
40 ≈ 3.1623 < 4, so the only nontrivial

ideals we need to consider are ideals of norm 2 and norm 3.

For 2, since x2 − 10 has a repeated root r = 0 modulo 2, we
see (2) is ramified: (2) = (2,

√
10)2.

This ideal I2 = (2,
√

10) is not principal, since any generator
would necessarily have norm ±2, but there are no elements of
norm ±2 since x2 − 10y2 = ±2 has no solutions modulo 5.

Thus, [I2] is an element of order 2 in the class group since I2
is not principal but I 22 is.



Computing Class Groups, X

Example: Determine the class group of Z[
√
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Since 10 ≡ 2 (mod 4), we have ∆ = 40, and so Minkowski’s
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For 2, since x2 − 10 has a repeated root r = 0 modulo 2, we
see (2) is ramified: (2) = (2,

√
10)2.

This ideal I2 = (2,
√
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would necessarily have norm ±2, but there are no elements of
norm ±2 since x2 − 10y2 = ±2 has no solutions modulo 5.

Thus, [I2] is an element of order 2 in the class group since I2
is not principal but I 22 is.



Computing Class Groups, XI

Example: Determine the class group of Z[
√

10].

For 3, since x2 − 10 has roots ±1 modulo 3, we see (3) splits:
(3) = (3, 1 +

√
10)(3, 1−

√
10).

The ideals I3 = (3, 1 +
√

10) and I ′3 = (3, 1−
√

10) are both
nonprincipal, since any generator would necessarily have norm
±3, but there are no elements of norm ±3.

We can then compute I 23 = (9, 3 + 3
√

10, 11 + 2
√

10).

To test for principality we can look for elements of norm 9,
and looking at such elements (e.g., 1±

√
10) will reveal this

ideal is in fact principal and generated by (1 +
√

10).

Explicitly, 1 +
√

10 = 9 + (3 + 3
√

10)− (11 + 2
√

10) ∈ I 23 and
each generator is divisible by 1 +

√
10.

Then (I ′3)2 = (1−
√

10), so [I3] and [I ′3] are both ideal classes
of order 2 and they are equal.



Computing Class Groups, XII

Example: Determine the class group of Z[
√

10].

It remains to determine the relationship between I2 and I3.

We have I2I3 = (6, 2 + 2
√

10, 3
√

10, 10 +
√

10).

To test for principality we can look for elements of norm 6,
and looking at such elements (e.g., 4±

√
10) will reveal this

ideal is in fact principal and generated by (4 +
√

10), since
4 +
√

10 = (10 +
√

10)− 6 and each generator is divisible by
4 +
√

10.

Since [I2][I3] = (1) = [I2]2, we see [I2] = [I3].

Thus, we conclude that there is one nonprincipal ideal class of
order 2, so the class group is isomorphic to Z/2Z.



Summary

We computed some examples of class groups of quadratic integer
rings.

We proved Minkowski’s bound and use it to compute more
examples of class groups of quadratic integer rings.

Next lecture: Binary quadratic forms.


