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Ideal Class Groups of Quadratic Integer Rings

This material represents §9.1.3-9.2.1 from the course notes.



Minkowski’s Convex-Body Theorem

Recall Minkowski’s convex-body theorem from last time:

Theorem (Minkowski’s Theorem for General Lattices)

Let Λ be any lattice in Rn whose fundamental domain has volume
V . If B is any open convex centrally-symmetric region in Rn

whose volume is > 2nV , then B contains a nonzero point of Λ.

We used the theorem to analyze sums of 2 and 4 squares yesterday.



Sums of Three Squares, I

Today, we will use Minkowski’s theorem to discuss sums of 3
squares, although this problem turns out to be much harder.

By testing small examples, one is rapidly led to the conjecture
that n may be written as the sum of three squares if and only
if n is not a power of 4 times an integer that is 7 modulo 8
(i.e., when n 6= 4a(8b + 7) for some a, b).

As we showed back in chapter 6, if n = 4a(8b + 7) then n is
not the sum of three squares. For a = 0 this follows
immediately by considering n modulo 8, and then we can
induct on a.

It remains to establish that integers not of this form can be
written as the sum of three squares.



Sums of Three Squares, II

We will treat the case where n ≡ 3 (mod 8), since the exposition is
easiest to give there.

Unlike in the case for sums of two squares and sums of four
squares, the set of integers that are a sum of three squares is
not closed under multiplication: both 3 = 12 + 12 + 12 and
5 = 22 + 12 + 02 are the sum of three squares, but 15 = 3 · 5
is not.

Therefore, we cannot simply reduce to the case of considering
representations of primes, as we did for the case of sums of
two and four squares.

Our approach will be to use Minkowski’s theorem along with
our characterization of integers that are expressible as the sum
of two squares.



Sums of Three Squares, III

This particular argument was originally given by Ankeny in 1956.

Theorem (Sums of 3 Squares, 3 Mod 8 Case)

If n is a positive integer congruent to 3 modulo 8, then n is the
sum of three squares.

The general idea of the proof is to use Minkowski’s theorem to
show that we can write n = R2 + N for integers R and N where N
has a particular form that allows us to show it is a sum of two
squares. Then n will be the sum of three squares, as desired.



Sums of Three Squares, IV

Proof:

First, we observe that there exists a prime q ≡ 1 (mod 4)
such that −2q is a quadratic residue modulo n.
This follows from Dirichlet’s theorem on primes in arithmetic
progressions, since saying −2q is a quadratic residue modulo
n is simply a congruence condition modulo n.
So, since −2q is a quadratic residue modulo n, its reciprocal is
also: say with −1/(2q) ≡ t2 (mod n).
Next, we observe that(
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)
=
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=
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)(
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=
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by

quadratic reciprocity for Jacobi symbols and the fact that

n ≡ 3 (mod 8) so that

(
−2
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)
= +1 and that q ≡ 1 (mod 4)
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q
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)
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q
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= +1.



Sums of Three Squares, V

Proof (continued):

Therefore, −n is a quadratic residue modulo q, say with
−n ≡ b2 (mod q) where we may assume that b is odd.

This means b2 + n = qh′ for some h′ ∈ Z, but now since
n ≡ 3 (mod 8), reducing both sides modulo 4 yields h′ ≡ 0
(mod 4), and so h′ = 4h.

So, to summarize, we have integers q, b, and h such that
−1/(2q) ≡ t2 (mod n) and b2 + n = 4qh.



Sums of Three Squares, VI

Proof (continued more):

We have integers q, b, and h such that −1/(2q) ≡ t2 (mod
n) and b2 + n = 4qh.

Let Λ be the lattice in R3 spanned by the vectors
〈2tq,

√
2q, 0〉, 〈tb, b/

√
2q,
√

n/(2q)〉, and 〈n, 0, 0〉. The
determinant of these three vectors is n3/2, so the volume of
the fundamental domain is n3/2.

Now let B be the convex, centrally-symmetric open set in R3

defined by x2
1 + x2

2 + x2
3 < 2n, whose volume is

4

3
π(2n)3/2

since it is merely a sphere of radius
√

2n.

Since the volume of B is larger than 23 times the volume of

the fundamental domain of Λ (since
4

3
π · 23/2 > 8), we

conclude that there is a nonzero element of Λ in B.



Sums of Three Squares, VII

Proof (continued even more):

We have integers q, b, and h such that −1/(2q) ≡ t2 (mod
n) and b2 + n = 4qh, and a nonzero element 〈R, S ,T 〉 =
x〈2tq,

√
2q, 0〉+ y〈tb, b/

√
2q,
√

n/(2q)〉+ z〈n, 0, 0〉 of Λ.

Then R = 2tqx + tby + nz , S =
√

2qx + b√
2q

y , T =
√

n
2q y so

R2 + S2 + T 2 = (2tqx + tby + nz)2 + (
√

2qx + b√
2q

y)2 + (
√

n
2q y)2

≡ (t2 + 1/(2q))(2qx + by)2 (mod n)

≡ 0 (mod n).

Notice also that R2 + S2 + T 2 is an integer, because it equals
R2 + 2qx2 + 2bxy + 2hy2, and these quantities are all integers.

Since R2 + S2 + T 2 < 2n, we must have R2 + S2 + T 2 = n.



Sums of Three Squares, VIII

Proof (continued even yet more):

Now we will show that the integer
N = S2 + T 2 = 2qx2 + 2bxy + 2hy2 is actually the sum of
two integer squares, which will complete the proof because
then n = R2 + N is then the sum of three squares.

So suppose p is an odd prime dividing N to an odd power,
meaning that p2a+1 divides N but p2a+2 does not: we wish to
show that p ≡ 1 (mod 4).

We have two cases: either p divides n, or it does not.



Sums of Three Squares, VIII

Proof (continued even yet still more):

First suppose p does not divide n: then n ≡ R2 (mod p) and

so

(
n

p

)
= +1.

Also, if p = q then since −2q is a quadratic residue modulo n

we have

(
−n

p

)
= +1.

Otherwise, if p 6= q then
2qN = 4q2x2 + 4bqxy + 4qhy2 = (2qx + by)2 + ny2.
But the only way that this quantity can be divisible by an odd
power of p is if there is a nonzero solution to e2 + nf 2 ≡ 0
(mod p), which forces −n to be a quadratic residue modulo p.

In both cases we have

(
n

p

)
= +1 and

(
−n

p

)
= +1, so(

−1

p

)
= +1 and so p ≡ 1 (mod 4).



Sums of Three Squares, IX

Proof (continued even yet still more also finally):

Now suppose p divides n. Then R2 + N = n, so since p
divides N it must also divide R. Rewriting the equation as

R2 +
1

2q

[
(2qx + by)2 + ny2

]
= n, we see that p must also

divide 2qx + by . Dividing through by p and then reducing

modulo p yields
1

2q
· n

p
y2 ≡ n

p
(mod p), so since n/p is

nonzero modulo p as n is squarefree, we get y2 ≡ 2q (mod p)

and thus

(
2q

p

)
= +1. Since we assumed at the very

beginning that

(
−2q

p

)
= +1, this implies

(
−1

p

)
= +1 and

so p ≡ 1 (mod 4) once again.

This takes care of all cases, so we are finally done.



Sums of Three Squares, X

The proof for the case n ≡ 3 (mod 8) can be adapted to establish
the other cases n ≡ 1, 2, 5, 6 (mod 8) as well, by suitable minor
modifications on the conditions taken at the beginning.

In these cases, we instead take q to be a prime with q ≡ 1
(mod 4) such that −q is a quadratic residue modulo n. If n is

even we also take q such that
(
−2
q

)
= (−1)(m−2/4) (this

imposes a condition on q mod 8).

Also take t odd such that t2 ≡ −1/q (mod n) and set
b2 − qh = −n.

Then we apply Minkowski’s theorem to the lattice spanned by
〈tq,
√

q, 0〉, 〈tb, b/
√

q,
√

n/q〉, and 〈m, 0, 0〉.
Following the same argument through shows that
R2 + S2 + T 2 = n and S2 + T 2 = N is a sum of two squares.



Ideal Class Groups, I

We will now discuss some additional properties of the ideals in
quadratic integer rings.

Our task today is to introduce the ideal class group, and then
use some geometric methods to establish that the ideal class
group of any quadratic integer ring is finite and provide
methods for computing it.

In particular we will then use our results to compute explicitly
the ideal class groups of various quadratic integer rings.

Next week, we will use Minkowski’s theorem to write down
stronger results.



Ideal Class Groups, II

As we have already discussed, a quadratic integer ring O√D has
unique factorization if and only if it is a principal ideal domain, and
(thus) any examples of non-unique factorization necessarily arise
from nonprincipal ideals.

Our goal now is to quantify more precisely how “non-unique”
the non-unique factorization in O√D can be, which is (in a
sense we will make precise) the same as asking about the
various possible classes of nonprincipal ideals.

Let me give some motivation by working (once again) with our
standard example of a quadratic integer ring with non-unique
factorizations, namely Z[

√
−5].



Ideal Class Groups, III

We have shown that Z[
√
−5] is not a PID by constructing explicit

nonprincipal ideals I2 = (2, 1 +
√
−5), I3 = (3, 1 +

√
−5), and

I ′3 = (3, 1−
√
−5).

Notice, however, that the pairwise products of these
nonprincipal ideals are all principal:
I 22 = (4, 2(1 +

√
−5),−4 + 2

√
−5) = (2),

I2I3 = (6, 2(1+
√
−5), 3(1+

√
−5),−4+2

√
−5) = (1+

√
−5),

I2I ′3 = (1−
√
−5) since it is just the conjugate of I2I3, and

I 23 = I3I ′ = (I ′3)2 = (3).

This seems like it might just be a coincidence, so let’s find
some more nonprincipal ideals in Z[

√
−5].



Ideal Class Groups, IV

By factoring other integer primes, we can cook up some more
nonprincipal ideals: for example I7 = (7, 3 +

√
−5) and its

conjugate I ′7 = (7, 3−
√
−5).

But if we compute products, like I2I3 or I3I ′7, we will discover
that no matter which pair of ideals we multiply together, the
result will always be principal. For example,
I2I7 = (14, 6 + 2

√
−5, 7 + 7

√
−5,−2 + 4

√
−5), so it contains

3 +
√
−5 = 2(6 + 2

√
−5)− (7 + 7

√
−5)− (−2 + 4

√
−5) and

also each element in the ideal is divisible by 3 +
√
−5, so in

fact I2I7 = (3 +
√
−5).

Similarly, for I3I ′7 = (3, 1 +
√
−5)(7, 3−

√
−5) =

(21, 9− 3
√
−5, 7 + 7

√
−5, 8 + 2

√
−5), we see this ideal

contains 4 +
√
−5 = 21 + (7 + 7

√
−5)− 3(8 + 2

√
−5) and

also each element in the ideal is divisible by 4 +
√
−5, so in

fact I3I ′7 = (4 +
√
−5).



Ideal Class Groups, V

These calculations suggest that there might actually be only one
type of nonprincipal ideal in Z[

√
−5], up to an appropriate notion

of equivalence of ideals.

If you’re not convinced yet, you can try finding other primes
that split in Z[

√
−5].

You can use quadratic reciprocity to identify these, since(
−5

p

)
=

(
−1

p

)(
5

p

)
=

(
−1

p

)(p

5

)
, so the primes that

split are precisely those congruent to 1, 3, 7, or 9 modulo 20.

For example, (23) = (23, 8 +
√
−5)(23, 8−

√
−5), and neither

of these ideals I23, I
′
23 is principal.

However, in fact I23I2 = (1 + 3
√
−5) is principal.

There is also a natural composition operation on ideals, given by
ideal multiplication, which seems to behave nicely with respect to
this equivalence.



Ideal Class Groups, VI

We will now make all of this precise:

Definition

Let R = O√D be a quadratic integer ring. We define a relation ∼
on the set of nonzero ideals of R by saying I ∼ J if (a)I = (b)J for
some nonzero principal ideals (a) and (b).

Intuitively, we declare two ideals to be equivalent if they differ
by a principal ideal factor.

Example: Inside Z[i ], since every nonzero ideal I is principal,
we have I ∼ (1) for all such I .

Example: Inside O√−5, with the notation as previously, we

have I2 ∼ I3: since I 22 = (2) and I2I3 = (1 +
√
−5), we see

that (1 +
√
−5)I 22 = (2)I2I3 and thus cancelling I2 gives

(1 +
√
−5)I2 = (2)I3.



Ideal Class Groups, VII

The relation ∼ is, perhaps unsurprisingly, an equivalence relation,
and we can also use it to detect whether O√D is a PID:

Proposition (Properties of Ideal Classes)

Suppose R = O√D is a quadratic integer ring. Then the following
properties hold for the relation I ∼ J if (a)I = (b)J for some
nonzero a, b ∈ R:

1. The relation ∼ is an equivalence relation on nonzero ideals.
The equivalence classes of this relation are called ideal classes.

2. We have I ∼ (1) if and only if I is principal. Thus, O√D is a
principal ideal domain if and only if I ∼ (1) for all nonzero
ideals I of O√D .

3. Multiplication of ideals respects ideal classes: if I ∼ I ′ and
J ∼ J ′, then IJ ∼ I ′J ′.



Ideal Class Groups, VIII

1. The relation is an equivalence relation on nonzero ideals.

Proof:

Clearly I ∼ I since (1)I = (1)I .

Also, if I ∼ J then (a)I = (b)J, and then by interpreting this
as (b)J = (a)I we see J ∼ I .

Finally, if I ∼ J and J ∼ K then (a)I = (b)J and
(c)J = (d)K , and so (ac)I = (bc)J = (bd)K meaning I ∼ K .



Ideal Class Groups, IX

2. We have I ∼ (1) if and only if I is principal. Thus, O√D is a
principal ideal domain if and only if I ∼ (1) for all nonzero
ideals I of O√D .

Proof:

If I ∼ (1) then (a)I = (b) for some nonzero a and b. This
equality requires that a divides b, say with b = ka. Then
cancelling (a) yields I = (k), so I is principal.

The second statement follows immediately from the first.

3. Multiplication of ideals respects ideal classes: if I ∼ I ′ and
J ∼ J ′, then IJ ∼ I ′J ′.

Proof:

Suppose (a)I = (b)I ′ and (c)J = (d)J ′. Multiplying these
relations yields (ac)IJ = (bd)I ′J ′, so IJ ∼ I ′J ′.



Ideal Class Groups, X

We have a natural multiplication operation on ideals, which makes
the set of nonzero ideals into a semigroup.

Because the multiplication of ideals respects ideal classes, the
set of ideal classes inherits this multiplication operation.

But things become even better with ideal classes, because the
operation makes the set of ideal classes into an actual group,
rather than just a semigroup!

Proposition (The Ideal Class Group)

Let R = O√D be a quadratic integer ring and let [I ] represents the
ideal class of an ideal I of R. Then the operation [I ] · [J] = [IJ]
makes the set of ideal classes into an abelian group. This group is
called the ideal class group of R (often, just the class group of R).



Ideal Class Groups, XI

Proof:

First, multiplication of ideal classes is well-defined by (3) from
the proposition earlier.

The operation is associative and commutative because
multiplication of ideals is associative and commutative:
([I ][J])[K ] = [IJ][K ] = [IJK ] = [I ][JK ] = [I ]([J][K ]) and
[I ][J] = [IJ] = [JI ] = [J][I ].

The ideal class of (1) is a multiplicative identity, since
(1)I = I and so [(1)][I ] = [I ] for all I .

Finally, every ideal class has an inverse: as we proved, for any
ideal I the product I · I is a principal ideal (a), and so
[I ][I ] = [(a)] = [(1)].



Ideal Class Groups, XII

We see that the ideal classes have the structure of an abelian
group under multiplication.

By itself, this fact does not yield very much useful information
about the ideal classes.

What we really want to do is compute the structure of the
ideal class group.

In particular, it would be quite nice if this group were finitely
generated, or (even better) finite, since we can say lots of
things about the structure of finite(ly generated) abelian
groups.



Ideal Class Groups, XIII

In fact, the ideal class group of O√D is always finite:

Theorem (Properties of the Class Group)

Suppose R = O√D is a quadratic integer ring and let [I ] denote
the ideal class of an ideal I of R. Then the following are true:

1. If I is a nonzero ideal of R, then I contains a nonzero element
α such that N(α) ≤ (|D|+ 1)N(I ).

2. Every ideal class of R contains an ideal J such that
N(J) ≤ |D|+ 1.

3. The ideal class group of O√D is finite.

The headline result is (3), but in fact (2) is even better than (3),
because it actually allows us to compute the class group. (I will do
examples next time.)



Ideal Class Groups, XIV

1. If I is a nonzero ideal of R, then I contains a nonzero element
α such that N(α) ≤ (|D|+ 1)N(I ).

Proof:

Let m = b
√

N(I )c so that m2 ≤ N(I ) < (m + 1)2.

Then since the cardinality of R/I is N(I ) < (m + 1)2, by the
pigeonhole principle at least two of the (m + 1)2 elements
{a + b

√
D : 0 ≤ a, b ≤ m} in R must be congruent modulo

I , so their difference is in I .

Thus, there exists a nonzero element γ ∈ I of the form a + bω
where −m ≤ a, b ≤ m.

Then N(γ) = (a + b
√

D)(a− b
√

D) = a2 − Db2 ≤∣∣a2∣∣+
∣∣Db2

∣∣ = m2(|D|+ 1) ≤ (|D|+ 1)N(I ), as claimed.

When D ≡ 1 (mod 4) this bound can be improved by working
instead with the elements of the form a + bω. But we will do
better next week anyway.



Ideal Class Groups, XV

2. Every ideal class of R contains an ideal J such that
N(J) ≤ |D|+ 1.

Proof:

Let C be an ideal class and let I be any ideal in the inverse
class C−1.

By (1), there exists a nonzero element α ∈ I such that
N(α) ≤ (|D|+ 1)N(I ). Because α ∈ I , by the equivalence of
divisibility and containment we see that I divides (α) and so
(α) = IJ for some ideal J.

Taking norms yields N(α) = N(I )N(J), so

N(J) =
N(α)

N(I )
≤ |D|+ 1. Finally, taking ideal classes gives

[1] = [(α)] = [I ][J] so J ∈ [I ]−1 = (C−1)−1 = C , as required.



Ideal Class Groups, XVI

3. The ideal class group of O√D is finite.

Proof:

By (2), every ideal class contains some ideal J with
N(J) ≤ |D|+ 1.

But there are only finitely many possible ideals J with
N(J) ≤ |D|+ 1: there are only finitely many possible prime
ideals that could occur in the prime factorization of J
(namely, the primes of norm at most |D|+ 1) and the power
to which each such ideal can occur is bounded (since a prime
power Pa has norm N(P)a, we must have
a ≤ logN(P)(|D|+ 1) for all such P).

Thus, the ideal classes are all represented by a finite list of
ideals, so there are finitely many ideal classes.



Summary

We used Minkowski’s theorem to classify the integers that are the
sum of three squares.

We introduced the ideal class group of a quadratic integer ring and
proved that it is always a finite abelian group.

Next lecture: Computing ideal class groups.


