
Math 4527 (Number Theory 2)

Lecture #32 of 37 ∼ April 7, 2021

Minkowski’s Theorems + Sums of Two and Four Squares

Minkowski’s Convex-Body Theorem

Sums of Two Squares

Sums of Four Squares

This material represents §9.1.1-9.1.2 from the course notes.



Overview

We now start the final chapter of the course, which is on the
geometry of numbers.

Broadly speaking, we will discuss applications of geometric
ideas in number theory.

These will primarily revolve around interpreting various
quantities as giving lattices in Euclidean space, and then using
various geometric methods to establish the existence of a
“small” vector in the lattice.

Although this might not seem to be a particularly useful
thing, in fact we will be able to get quite a lot of mileage out
of the results we discuss.

First, we will review some basic terminology1 for sets in Rn.

1I promise to do as little analysis and topology as possible, even though
analysis and topology are wonderful!



Some Terminology, I

We will denote the set of all points in Rn all of whose coordinates
are integers by Zn.

Definition

A set B in Rn is convex if, for any x and y in B, all points on the
line segment joining x and y are also in B.

Examples:

1. The n-ball of radius r centered at the origin in Rn, given by
the points (x1, x2, . . . , xn) with x21 + x22 + · · ·+ x2n ≤ r2, is a
convex set.

2. The unit cube, given by the points (x1, x2, . . . , xn) with
0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n, is a convex set.



Some Terminology, II

We may distinguish three different classes of points in Rn relative
to B, based on their behaviors when we draw balls around them.

1. If we can draw a ball around P that is entirely contained in B,
then P is called an interior point of B.

2. If we can draw a ball around P that is entirely contained in
Bc , the complement of B, then we call P an exterior point of
B. (Equivalently, it is an interior point of Bc .)

3. Otherwise, no matter what size of ball we draw, it will always
contain some points in B and some points in Bc . Points with
this property are called boundary points. Note that boundary
points can be in B or in Bc .



Some Terminology, III

Definition: The interior of the set B, denoted int(B), is the set of
its interior points. A set B is open if B = int(B).

Example: The open unit n-ball B in Rn, given by the points
(x1, x2, . . . , xn) with x21 + x22 + · · ·+ x2n < 1, is indeed an open
set, since any point in this set is an interior point. (If a point
is a distance r = 1− ε from the origin, then the ball of radius
ε/2 is contained in B.)

Non-Example: The closed unit n-ball in Rn, given by the
points (x1, x2, . . . , xn) with x21 + x22 + · · ·+ x2n ≤ 1, is not an
open set, since any point with x21 + x22 + · · ·+ x2n = 1 is a
boundary point, rather than an interior point.

It is moderately straightforward to see that if B is an
n-dimensional convex set in Rn, then its interior is also convex.



Some Terminology, IV

Definition: A set B in Rn is symmetric about the origin if, for any
x in B, the point −x is also in B.

Example: The n-ball of radius r centered at the origin in Rn is
symmetric about the origin.

Non-Example: The unit cube, given by the points
(x1, x2, . . . , xn) with 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n, is not
symmetric about the origin.

We will also use the concept of (Lebesgue) measurability, which I
don’t want to define since this isn’t an analysis class.

Informally, a set B is measurable if we can assign a sensible
notion of n-dimensional volume to it.

We can then compute the volume of B by integrating the
characteristic function (1 on B, 0 elsewhere) on Rn.



Minkowski’s Convex-Body Theorem, I

Our goal now is to prove that if a convex set is sufficiently nice
and has a sufficiently large n-measure (i.e., n-volume), it must
contain a lattice point. First, a preliminary result:

Proposition (Blichfeldt’s Principle)

If S is a bounded measurable set in Rn whose n-measure is greater
than 1, then there exist two points x and y in S such that x − y
has integer coordinates.

The idea of the proof is essentially to use the pigeonhole principle,
but with measure.



Minkowski’s Convex-Body Theorem, II

Let me give the “proof by picture” first:

Take each piece of the region inside the grid of 1× 1 squares on
the left, and translate them into the grid on the right. If the area
of the set on the left is > 1, then the area inside the box on the
right is also > 1, so there is an overlap.



Minkowski’s Convex-Body Theorem, III

Proof:

For each lattice point a = (a1, · · · , an), let R(a) be the “box”
consisting of the points (x1, · · · , xn) whose coordinates satisfy
ai ≤ xi < ai+1, and also set S(a) = S ∩ R(a).

Then we have
∑

a∈Zn vol(S(a)) = vol(S), because each point
of S lies in exactly one of the boxes R(a).

Now imagine translating the set S(a) by the vector −a: this
action will preserve measure, but it moves S(a) to land inside
S(0). Denote this translated set by S∗(a).

Then
∑

a∈Zn vol(S∗(a)) = vol(S) > 1.

Now notice that each of the sets S∗(a) lies inside S(0), which
has volume 1, so there must be some overlap.

Hence, there exists some distinct x , y ∈ S and a1, a2 ∈ Zn

such that x − a1 = y − a2. Then x − y = a1− a2 is a nonzero
lattice point, as required.



Minkowski’s Convex-Body Theorem, IV

Proof (once more, with feeling):

Let χB(x) be the characteristic function of B (1 if x ∈ B, 0 if
x 6∈ B, which is integrable because B is measurable.

If we write ψ(x) =
∑

v∈Zn χB(x + v), then ψ is bounded
because B is bounded so there are only finitely many nonzero
terms for any v ∈ Zn.

We may then integrate both sides and change the order of
integration and summation (because the sum is a finite sum
of nonnegative terms) and use the translation-invariance of
the measure on Rn to see that

∫
[0,1]n ψ(x) dx =∫

[0,1]n
∑

v∈Zn χB(x + v) dx =
∑

v∈Zn

∫
[0,1]n χB(x + v) dx =∑

v∈Zn

∫
[0,1]n+v χB(x) dx =

∫
Rn χB(x) dx > 1, since this last

integral is simply the measure of B.

This means ψ(x) ≥ 2 for some x ∈ [0, 1]n, which gives the
desired points.



Minkowski’s Convex-Body Theorem, V

Now we may prove our first main result:

Theorem (Minkowski’s Convex Body Theorem)

Let B be a convex open set in Rn that is symmetric about the
origin and whose n-measure is greater than 2n. Then B contains a
nonzero point all of whose coordinates are integers.

We will remark that the bound here is sharp, in the sense that we
cannot lower the bound to any number less than 2n. Also, if we
change “open” to “closed”, then we may weaken the condition to
“measure at least 2n”.



Minkowski’s Convex-Body Theorem, VI

Proof:

Suppose B is a convex open set symmetric about 0 whose
volume is > 2n, and let 1

2B =
{
1
2x : x ∈ B

}
.

Notice that since vol(B) > 2n, we have vol(12B) > 1.

Now apply Blichfeldt’s principle to the set 1
2B: we obtain

distinct points x , y ∈ 1
2B such that x − y has integer

coordinates.

Then 2x ∈ B and 2y ∈ B. Furthermore, since B is symmetric
about the origin, −2y ∈ B.

Then because B is convex, the midpoint of the line segment
joining 2x and −2y lies in B.

But this point is simply x − y , which is a nonzero point in B
all of whose coordinates are integers, as desired.



Minkowski’s Convex-Body Theorem, VII

The result of Minkowski’s theorem does not apply merely to the
lattice Zn of points having integer coordinates.

If v1, ... , vn are (R-)linearly independent vectors in Rn, the
set Λ of vectors of the form c1v1 + · · ·+ cnvn, where each
ci ∈ Z, is called a lattice.

A fundamental region for this lattice can be obtained by
drawing all of the vectors v1, ... , vn outward from the origin,
and then filling them in to create a parallelepiped (i.e., a
“skew box”).

The points in this fundamental region give unique
representatives for the quotient group Rn/Λ, up to an
appropriate choice of representatives on the boundary of the
region.



Minkowski’s Convex-Body Theorem, VIII

Now we invoke a fact from linear algebra:

Proposition (Volume of a Parallelepiped)

If v1, ... , vn are arbitrary vectors in Rn, then the signed volume of
the parallelepiped they form is equal to the determinant of the
matrix whose columns are the vi .

One may prove this fact by a direct calculation and induction
(namely, by projecting vn into the subspace spanned by the
other vectors, and computing the resulting “height”).

Another quite efficient approach is to use wedge products.



Minkowski’s Convex-Body Theorem, IX

More structurally, the result follows by observing that the signed
volume of the fundamental domain satisfies the same properties as
the determinant:

1. Interchanging two vectors scales the signed volume by −1.

2. Scaling a vector scales the signed volume by the same amount.

3. Adding a multiple of one vector to another does not change
the signed volume.

4. The signed volume for the standard basis is 1.

The determinant can be shown to be the only multilinear function
satisfying these four properties, and so the signed volume is equal
to the determinant. (The usual approach is to prove that the space
of functions satisfying (1)-(3) is one-dimensional.)



Minkowski’s Convex-Body Theorem, X

By changing basis, we may give a version of Minkowski’s theorem
for general lattices:

Theorem (Minkowski’s Theorem for General Lattices)

Let Λ be any lattice in Rn whose fundamental domain has volume
V . If B is any open convex centrally-symmetric region in Rn

whose volume is > 2nV , then B contains a nonzero point of Λ.

The idea is just to change basis to the standard basis, which will
turn Λ into Zn and rescale the volume of an arbitrary region by a
factor of 1/V .



Minkowski’s Convex-Body Theorem, XI

Proof:

Apply the linear transformation T sending the basis vectors of
Λ to the standard basis of Rn.

Linear transformations preserve open sets, convex sets, and
central symmetry, so the image of B under this map is still
open, convex, and centrally symmetric.

The volume of T (B) is equal to 1/V times the volume of B
by the observation made about determinants above, so this
open convex centrally-symmetric set T (B) has volume > 2n.

Applying the previous version of Minkowski’s theorem to
T (B) yields that T (B) contains a nonzero point all of whose
coordinates are integers. This immediately implies that B
contains a nonzero point of Λ, as required.



Sums of Two Squares, I

As our first application of Minkowski’s convex body theorem, we
will prove that every prime p congruent to 1 modulo 4 can be
expressed as the sum of two squares.

We have previously established this result as a consequence of
studying factorizations in Z[i ]. The argument we will give
using Minkowski’s theorem is quite different.

Theorem (Fermat’s Two-Squares Theorem)

If p is any prime congruent to 1 modulo 4, then there exist integers
a and b such that p = a2 + b2.

This result was first explicitly noted by Girard in 1625, about 15
years before Fermat observed it. Fermat also did not provide a
proof; the first actual proof was given by Euler.



Sums of Two Squares, II

Proof:

We start with an observation that we have already made
several times: if p ≡ 1 (mod 4) then −1 is a square modulo p.

This observation follows immediately from Euler’s criterion(
−1

p

)
≡ (−1)(p−1)/2 ≡ 1 (mod p), so since the Legendre

symbol evaluates to +1, this means −1 is a quadratic residue.

Alternatively, we could note that the group of nonzero residue
classes modulo p is cyclic and has order p − 1, and so since 4
divides p − 1, there exists an element r of order 4. Then r2

has order 2, but the only element of order 2 modulo p is −1.



Sums of Two Squares, III

Proof (continued):

Now suppose −1 ≡ m2 (mod p), and consider the lattice Λ be
the lattice in R2 spanned by the two vectors 〈1,m〉 and 〈0, p〉.
The determinant of these two vectors is p, so the volume of
the fundamental domain is p.

Let B be the interior of the disc x21 + x22 < 2p in R2, and
observe that B is open, convex and centrally-symmetric. From
elementary geometry, the area of this disc is 2πp.

Since 2π > 4, the volume of B is larger than 22 times the
volume of the fundamental domain of Λ, and so by
Minkowski’s theorem, we conclude that there is a nonzero
element 〈x1, x2〉 = a 〈1,m〉+ b 〈0, p〉 of Λ in B.



Sums of Two Squares, IV

Proof (continued):

We have −1 ≡ m2 (mod p) and we have just shown that there
is a nonzero element 〈x1, x2〉 = a 〈1,m〉+ b 〈0, p〉 of Λ in B.

But then

x21 + x22 = a2 + (ma + bp)2

≡ a2(1 + m2) (mod p)

≡ 0 (mod p)

and since 〈x1, x2〉 is a nonzero integer and x21 + x22 < 2p, the
only possibility is that x21 + x22 = p.

Thus, p is the sum of two squares, and we are done.



Sums of Two Squares, V

With the characterization of primes congruent to 1 modulo 4 in
hand, we could then give a classification of the integers that are
the sum of two squares.

We have already done this, however, so we will not bother to
do it again.

Instead, we will note that the key idea is to use the fact that
the product of the sum of two squares is also the sum of two
squares, which follows from the identity
(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.



Sums of Four Squares, I

We can give a similar kind of argument to establish that every
positive integer n can be expressed as the sum of four squares,
which is a result first proven by Lagrange.

This result was known, in most respects, to the ancient
Greeks, and was stated explicitly by Bachet in 1621 in his
translation notes of the works of Diophantus.

The first actual proof was given by Lagrange in 1770, and in
1834 Jacobi extended the result to give a formula for the
number of representations of n as a sum of four squares.

Jacobi’s result is as follows: if σ(n) represents the sum of the
divisors of n and r4(n) is the number of ways of writing n as
the sum of four squares, then r4(n) = 8σ(n) if n is odd and
r4(n) = 24σ(d) if n = 2kd (d odd) is even.



Sums of Four Squares, II

We first show that if a, b are the sum of four squares, then so is ab:

Lemma (Products of Sums of Four Squares)

If a and b are the sum of four squares, then so is ab.

Proof:

This follows from the following identity:

(x21 + x22 + x23 + x24 )(y21 + y22 + y23 + y4)2 = (x1y1 + x2y2 + x3y3 + x4y4)2

+ (x1y2 − x2y1 + x3y4 − x4y3)2

+ (x1y3 − x2y4 − x3y1 + x4y2)2

+ (x1y4 + x2y3 − x3y2 − x4y1)2

which can be verified simply by multiplying out and verifying
that all of the cross-terms cancel.



Sums of Four Squares, III

Like the corresponding identity for sums of two squares, which
arises from the fact that the norm map on Z[i ] is multiplicative,
the four-squares identity also arises from a norm map on a ring:
here, it is the noncommutative ring H of quaternions.

Explicitly, H is the set of elements of the form
a + bi + cj + dk, where a, b, c , d are real numbers, subject to
the multiplication rules i2 = j2 = k2 = ijk = −1. (From these
relations one can deduce explicitly that ij = −ji = k,
jk = −kj = i , and ki = −ik = j .)

The conjugation on H is a + bi + cj + dk = a− bi − cj − dk,
and the norm map is N(q) = qq. One may compute explicitly
that N(a + bi + cj + dk) = a2 + b2 + c2 + d2, and the fact
that the norm map is multiplicative (which is not obvious
from its definition because the multiplication of quaternions is
not commutative) amounts to the four-squares identity.



Sums of Four Squares, IV

In fact, since the norm of a nonzero quaternion is nonzero, the
multiplicativity of the norm map implies that every nonzero
quaternion has a multiplicative inverse, which is to say, the
quaternions form a division ring (which is the noncommutative
equivalent of a field).

Multiplication in this noncommutative manner using the
letters i , j , and k might be familiar from the algebra of the
cross product of vectors in 3-space: often the notation
i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉 is used for the basis
vectors, and then for example one has i× j = k.

You may also have encountered the quaternion group Q8,
which is simply the multiplicative subset {±1,±i ,±j ,±k}.



Sums of Four Squares, V

The quaternions were originally described2 by Hamilton in 1843,
which is why the ring of quaternions is denoted by H.

As a historical note, the development of quaternions actually
predates the modern language of vectors by about 40 years,
and so many of the classical results in physics (e.g., Maxwell’s
equations) predating the 20th century were originally written
in terms of quaternions rather than vectors.

Due to their connection with geometry in 3 dimensions, the
quaternions are often used in computer graphics, applied
physics, and engineering, since they can be used to represent
spatial rotations in 3-dimensional space far more efficiently
than matrices.

2Someone should make a musical about this.



Sums of Four Squares, VI

We need one additional lemma:

Lemma

For any prime p, there exist integers r and s such that
r2 + s2 ≡ −1 (mod p). In other words, −1 is the sum of two
squares modulo p.

Proof:

If p = 2 the result is obvious, so suppose p is odd.

From our results on quadratic residues, the set S of squares r2

modulo p contains (p + 1)/2 elements. Thus, the set T of
elements of the form −1− s2 also has (p + 1)/2 elements.

Since there are only p residue classes modulo p, the sets S
and T must intersect nontrivially: then we have r2 ≡ −1− s2

(mod p) and so r2 + s2 ≡ −1 (mod p), as required.



Sums of Four Squares, VII

We can now establish our main result:

Theorem (Lagrange’s Four-Square Theorem)

If n is any positive integer, then n can be written as the sum of
four squares. In other words, there exist integers a, b, c , d such
that n = a2 + b2 + c2 + d2.

Since products of sums of four squares are also sums of four
squares, we only have to prove that every prime p can be written
as the sum of four squares.



Sums of Four Squares, VIII

Proof:

Let p be a prime. By the Lemma, there exist integers r and s
such that r2 + s2 ≡ −1 (mod p).

Now let Λ be the lattice in R4 spanned by the four vectors
〈p, 0, 0, 0〉, 〈0, p, 0, 0〉, 〈r , s, 1, 0〉, and 〈s,−r , 0, 1〉. It is a
simple computation to see that the determinant of these four
vectors is p2, so the volume of the fundamental domain is p2.

Let B be the convex, centrally-symmetric open set in R4

defined by x21 + x22 + x23 + x24 < 2p. The volume of this ball
can be computed to be 2π2p2 (there are fairly efficient
approaches via cylindrical or spherical coordinates).

Since the volume of B is larger than 24 times the volume of
the fundamental domain of Λ (since 2π2p2 > 16p2),
Minkowski’s theorem implies that there is a nonzero element
of Λ in B.



Sums of Four Squares, IX

Proof (continued):

We have r2 + s2 ≡ −1 and we showed that there is a nonzero
element of Λ in B. Suppose it is 〈x1, x2, x3, x4〉 =
a 〈p, 0, 0, 0〉+ b 〈0, p, 0, 0〉+ c 〈r , s, 1, 0〉+ d 〈s,−r , 0, 1〉.
Then

x21 + x22 + x23 + x24 = (ap + cr + ds)2 + (bp + cs − dr)2 + c2 + d2

≡ (c2 + d2)(1 + r2 + s2) (mod p)

≡ 0 (mod p)

and since 〈x1, x2, x3, x4〉 is a nonzero integer with
x21 + x22 + x23 + x24 < 2p, the only possibility is that
x21 + x22 + x23 + x24 = p.

Thus, p is the sum of four squares, and we are done.



Summary

We proved Minkowski’s convex-body theorem for general lattices.

We used Minkowski’s theorem to prove every prime congruent to 1
modulo 4 is the sum of two squares.

We used Minkowski’s theorem to prove every positive integer is the
sum of four squares.

Next lecture: Sums of three squares, the ideal class group.


