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Some More Diophantine Equations, VII

We can, with a nontrivial amount of work, also establish the n = 3
case of Fermat’s conjecture, which was first settled by Euler.

For convenience in organizing the proof, we first establish a lemma
(which is itself another example of solving a Diophantine equation):

Lemma (Cubes of the Form m2 + 3n2)

Suppose that m, n are relatively prime integers of opposite parity.
If m2 + 3n2 = r3, then there exist positive integers a and b with
m = a3 − 9ab2 and n = 3a2b − 3b3.

The expressions for m and n come from comparing coefficients in
m + n

√
−3 = (a + b

√
−3)3.
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Proof:

Let m, n be relatively prime, opposite parity, m2 + 3n2 = r3.

First, if 3|m so that m = 3k , then we obtain 9k2 + 3n2 = r3:
this forces 3|r , but then dividing by 3 shows that
n3 = (r/3)3 − 3k2 so that 3 would also divide n, which is
impossible. Thus, 3 - m.

Now factor the equation m2 + 3n2 = r3 in O√−3 as

(m + n
√
−3)(m − n

√
−3) = r3.

Any common divisor of m + n
√
−3 and m − n

√
−3 must also

divide 2m and 2n
√
−3, and since m, n are relatively prime,

this means the common divisor must divide 2
√
−3.

Since 2 and
√
−3 are irreducible in O√−3, we can see 2 does

not divide m + n
√
−3 because m, n have opposite parities,

and
√
−3 does not divide m + n

√
−3 because 3 - m.
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Proof (continued):

So, m + n
√
−3 and m − n

√
−3 are relatively prime.

Then since O√−3 is a UFD, we see that m + n
√
−3 must be a

unit times a cube: say m + n
√
−3 = u · (a + b

√
−3)3. By

negating, conjugating, and replacing a + b
√
−3 with an

associate as necessary, we may assume a, b ∈ Z and that the

unit u is either 1 or −1+
√
−3

2 .

However, if m + n
√
−3 = −1+

√
−3

2 · (a + b
√
−3)3 then since

m, n are integers, both a and b must be odd. But then
(−1 +

√
−3)(a + b

√
−3) has integer coefficients that are

even, as does (a + b
√
−3)2, so the product m + n

√
−3 would

have both m and n even, contrary to assumption.

Therefore, we must have
m + n

√
−3 = (a + b

√
−3)3 = (a3− 9ab2) + (3a2b− 3b3)

√
−3

and so m = a3 − 9ab2 and n = 3a2b − 3b3, as claimed.
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We can now essentially give Euler’s treatment of the n = 3 case of
Fermat’s equation:

Theorem (Euler’s p = 3 Case of Fermat’s Theorem)

There are no solutions to the Diophantine equation x3 + y3 = z3

with xyz 6= 0.

As with the n = 4 case that we did a month and a half ago, the
idea is to use a descent argument: by assuming there is a
nontrivial solution, we will construct a smaller solution, which
yields a contradiction if we assume that we start with the solution
having the minimal possible |z |.
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Proof:

Assume x , y , z 6= 0 and suppose we have a solution to the
equation with |z | minimal.

If two of x , y , z are divisible by a prime p then the third must
be also, in which case we could divide x , y , z by p and obtain
a smaller solution.

Thus, without loss of generality, we may assume x , y , z are
relatively prime, and so two are odd and the other is even.

By rearranging and negating, suppose that x and y are odd
and relatively prime. Set x + y = 2p and x − y = 2q, so that
x = p + q and y = p − q, where p, q are necessarily relatively
prime of opposite parity. We then obtain a factorization
z3 = x3 + y3 = (x + y)(x2 − xy + y2) = 2p · (p2 + 3q2).

We now proceed in two cases: where 3 - p and where 3|p.
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Proof (Case 3 - p, Start):

Suppose 3 - p. Since p2 + 3q2 is odd, any common divisor of
2p and p2 + 3q2 necessarily divides p and p2 + 3q2, hence
also divides p and 3q2. Furthermore, since 3 - p this means
any common divisor of p and 3q2 divides both p and q2, but
these elements are relatively prime.

Thus, 2p and p2 + 3q2 are relatively prime, so since their
product is a cube, each must be a cube up to a unit factor in
Z, hence are actually cubes.

By the lemma, we then have p = a3 − 9ab2 and
q = 3a2b − 3b3 for some a, b ∈ Z, and we also know
2p = 2a(a− 3b)(a + 3b) is a cube.
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Proof (Case 3 - p, Finish):

We have p = a3 − 9ab2 and q = 3a2b − 3b3 for some
a, b ∈ Z, and 2p = 2a(a− 3b)(a + 3b) is a cube.

We see that 2a, a− 3b, a + 3b must be pairwise relatively
prime, since any common divisor would necessarily divide 2a
and 6b hence divide 6, but a cannot be divisible by 3 (since
then p, q would both be divisible by 3) and a, b cannot have
the same parity (since then both p, q would be even).

Therefore, since their product is a cube in Z, each of 2a,
a− 3b, and a + 3b must be a cube in Z. But then if 2a = z3

1 ,
a− 3b = x3

1 , and a + 3b = y3
1 , we have x3

1 + y3
1 = z3

1 , and
clearly we also have 0 < |z1| < |a| < |r | < |z |.
We have therefore found a solution to the equation with a
smaller value of z , which is a contradiction.
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Proof (Case 3|p, Start):

The case 3|p is similar: write p = 3s and note q, s are
relatively prime of opposite parity with z3 = 18s · (3s2 + q2).

Since q cannot be divisible by 3 and 3s2 + q2 is odd, any
common divisor of 18s and 3s2 + q2 must divide s and
3s2 + q2 hence divides s and q2, but these are relatively prime.

Thus 18s and 3s2 + q2 are relatively prime, so they are each
cubes.

By the lemma again, we have q = a3 − 9ab2 and
s = 3a2b− 3b3, where 18s = 33 · 2b(a− b)(a + b) is a perfect
cube.
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Proof (Case 3|p, Finish):

We have q = a3 − 9ab2 and s = 3a2b − 3b3, where
18s = 33 · 2b(a− b)(a + b) is a perfect cube.

Like before, any common divisor of any pair of 2b, a− b,
a + b must divide 2a and 2b hence divide 2, but a, b must
have opposite parity since otherwise q, s would both be even.

Thus, 2b, a− b, and a + b are all perfect cubes. But then if
a + b = z3

1 , a− b = x3
1 , and 2b = y3

1 , we have x3
1 + y3

1 = z3
1 ,

and clearly we also have 0 < |z1| = |a + b| < |s| < |z |.
We have again found a solution to the equation with a smaller
value of z , which is a contradiction. Since we have reached a
contradiction in both cases, we are done.
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As our next application of our study of the quadratic integer rings,
we can develop cubic reciprocity using properties of the ring O√−3.

Proposition (Arithmetic in O√−3)

Let π be a prime of R = O√−3 and let ω = −1+
√
−3

2 ∈ O√−3
denote a nonreal cube root of unity. Then the following are true:

1. The quotient ring R/(π) is a finite field with N(π) elements.

2. For any nonzero residue class α modulo π, we have
αN(π)−1 ≡ 1 (mod π).

3. If π is not associate to
√
−3, the elements 1, ω, and ω2 are

distinct modulo π, and N(π)− 1 is divisible by 3.
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1. The quotient ring R/(π) is a finite field with N(π) elements.

Proof:

We showed earlier that R/I is finite for any I 6= 0, and it is a
field because (π) is prime hence maximal.

For the statement about the cardinality, if π is associate to√
−3 then clearly R/(π) has 3 residue classes (represented by

0, 1, and 2) and N(π) = 3.

If π is associate to a rational prime p ≡ 2 (mod 3) then R/(p)
has p2 elements (per the calculation above) and N(π) = p2.

Finally, if π is one of the two conjugate factors of a rational
prime p ≡ 1 (mod 3), then R/(p) ∼= R/(π)× R/(π) and since
both R/(π) and R/(π) are fields (and thus have cardinality
greater than 1) and R/(p) has cardinality p2, we must have
#(R/(π)) = #(R/(π)) = p = N(π).
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2. For any nonzero residue class α modulo π, we have
αN(π)−1 ≡ 1 (mod π).

Proof:

As shown in (1), the quotient ring R/(π) is a finite field with
N(π) elements. The multiplicative group of this finite field
then has N(π)− 1 elements.

Hence by Lagrange’s theorem, any element in this group (i.e.,
any nonzero residue class) αN(π)−1 ≡ 1 (mod π), as claimed.

Note that this is a generalization of Euler’s theorem for Z/mZ,
which says aϕm ≡ 1 (mod m) for any a relatively prime to m.
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3. If π is not associate to
√
−3, the elements 1, ω, and ω2 are

distinct modulo π, and N(π)− 1 is divisible by 3.

Proof:

Suppose that 1 ≡ ω, 1 ≡ ω2, or ω ≡ ω2 (mod π).

Then π necessarily has a nontrivial gcd with
(1− ω)(1− ω2) = 3, so since π is irreducible, it must be an
irreducible factor of 3, hence associate to

√
−3.

Taking the contrapositive shows that if π is not associate to√
−3, the elements 1, ω, and ω2 are distinct modulo π.

The second statement then follows by Lagrange’s theorem,
since {1, ω, ω2} is a subgroup of order 3 of the multiplicative
group of residues modulo π. (Alternatively, we could verify it
directly using our characterization of the primes in O√−3.)
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The idea now is that we can define a cubic residue symbol that will
detect cubes modulo π, in a similar way to how we define the
quadratic residue symbol modulo p that detects squares.

For the quadratic residue symbol, the idea is to observe that
ap−1 − 1 ≡ 0 (mod p) by Euler’s theorem.

Thus, when p is odd, we may use the factorization
z2 − 1 = (z − 1)(z + 1) to factor this expression as
(a(p−1)/2 − 1)(a(p−1)/2 + 1) ≡ 0 (mod p).

This tells us that a(p−1)/2 ≡ 1 or −1 (mod p).

Furthermore, the elements with a(p−1)/2 ≡ 1 (mod p) will
precisely be the squares modulo p: this is exactly the content
of Euler’s criterion for the Legendre symbol, which says that(

a

p

)
≡ a(p−1)/2 (mod p).
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Let’s run through the analogous procedure inside O√−3/(π).

From the proposition, if π is not associate to
√
−3, then

N(π)− 1 is divisible by 3 and αN(π)−1 − 1 ≡ 0 (mod π).

Then we may use the factorization
z3 − 1 = (z − 1)(z − ω)(z − ω2) to factor the expression as
(α(N(π)−1)/3 − 1)(α(N(π)−1)/3 − ω)(α(N(π)−1)/3 − ω2) ≡ 0
(mod π).

Thus, since O√−3/(π) is an integral domain, this means

α(N(π)−1)/3 is congruent to one of 1, ω, ω2 modulo π.

Furthermore (as we will show in a moment) the cubes modulo
π are precisely the elements with α(N(π)−1)/3 ≡ 1 (mod π).
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We take the content of this calculation as the definition of our
cubic residue symbol:

Definition

If π is a prime element of O√−3 and N(π) 6= 3, we define the

cubic residue symbol
[α
π

]
3
∈ {0, 1, ω, ω2} to be 0 if π|α, and

otherwise to be the unique value among {1, ω, ω2} satisfying[α
π

]
3
≡ α(N(π)−1)/3 (mod π).

We showed in the proposition that 1, ω, ω2 are distinct modulo π,
and we showed on the last slide that α(N(π)−1)/3 is always
congruent to one of 1, ω, ω2 whenever π does not divide α, so the
cubic residue symbol is well-defined.
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Here are some properties of the cubic residue symbol:

Proposition (Properties of Cubic Residues)

Let π be a prime element of O√−3 with N(π) 6= 3, and let
α, β ∈ O√−3. Then the following hold:

1. If α ≡ β (mod π) then
[
α
π

]
3

=
[
β
π

]
3
.

2. The cubic residue symbol is multiplicative:
[
αβ
π

]
3

=
[
α
π

]
3

[
β
π

]
3
.

3. We have
[
α
π

]
3

=
[
α
π

]
3

=
[
α
π

]2
3

=
[
α2

π

]
3
.

4. If n is an integer not divisible by π, then
[
n
π

]
3

= 1.

5. If u is a primitive root modulo π, then
[
u
π

]
3

is either ω or ω2.

6. The cubic residue symbol detects cubes: if α 6= 0 mod π, then[
α
π

]
3

= 1 if and only if α is a cubic residue modulo π (which
is to say, α ≡ β3 (mod π) for some β).
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1. If α ≡ β (mod π) then
[α
π

]
3

=

[
β

π

]
3

.

Proof:

By definition we have[α
π

]
3
≡ α(N(π)−1)/3 ≡ β(N(π)−1)/3 ≡

[
β

π

]
3

(mod π).

But since the elements 0, 1, ω, ω2 are distinct modulo π, this

congruence actually implies equality:

[
αβ

π

]
3

=
[α
π

]
3

[
β

π

]
3

.
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2. Cubic residue symbols are multiplicative:

[
αβ

π

]
3

=
[α
π

]
3

[
β

π

]
3

.

Proof:

By definition we have[
αβ

π

]
3

≡ (αβ)(N(π)−1)/3 (mod π)

≡ α(N(π)−1)/3β(N(π)−1)/3 (mod π)

≡
[α
π

]
3

[
β

π

]
3

(mod π)

and just as in (1) this congruence implies equality.
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3. We have

[
α

π

]
3

=
[α
π

]
3

=
[α
π

]2
3

=

[
α2

π

]
3

.

Proof:

For the first equality we have[
α

π

]
3

≡ α(N(π)−1)/3 ≡ α(N(π)−1)/3 ≡
[α
π

]
3

(mod π) and

again as above this congruence implies equality.

For the second equality we note that each of the possible
values 0, 1, ω, ω2 has the property that its square equals its
complex conjugate.

The third equality follows from multiplicativity of the cubic
residue symbol.
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4. If n is an integer not divisible by π, then
[n

π

]
3

= 1.

Proof:

By (3) we have
[n

π

]
3

=

[
n

π

]
3

=
[n

π

]
3

since n is real.

Since
[n

π

]
3
6= 0 the only possibility is that

[n

π

]
3

= 1.
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Before I prove the next item, I will first show that R/(π) always
has a primitive root for any prime π.

Lemma (Multiplicative Groups of Finite Fields)

If G is a multiplicative subgroup of a field F , then G is a cyclic
group. In particular, multiplicative groups of finite fields are cyclic.

Since R/(π) is a finite field, the lemma implies that its
multiplicative group is cyclic. A generator of this cyclic group is
called a primitive root modulo π, just as in Z modulo m.
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Proof (of lemma):

Let M be the maximal order among all elements in G ; clearly
M ≤ #G . If g has order M and h is any other element of
order k , then if k does not divide M, there is some prime q
which occurs to a higher power qf in the factorization of k
than the corresponding power qe dividing M.

Then gqf · hk/qe has order M · qf−e , which is impossible
because this value is greater than M.

Therefore, the order of every element divides M, so the
polynomial p(x) = xM − 1 has #G roots in F [x ].

But by unique factorization in F [x ], this is impossible unless
M ≥ #G , since a polynomial of degree M can have at most
M roots in F [x ].

Thus, M = #G , so some element has order #G so G is cyclic.
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5. If u is a primitive root modulo π (i.e., an element of order

N(π)− 1 modulo π), then
[u

π

]
3

is either ω or ω2 (i.e., it

cannot equal 1).

Proof:

Observe that
[u

π

]
3

= u(N(π)−1)/3 cannot be congruent to 1

modulo π since this would mean that the order of u would be
at most (N(π)− 1)/3, contradicting the assumption that its
order is N(π)− 1.

Thus, since π cannot divide u,
[u

π

]
3

is either ω or ω2, as

claimed.
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6. The cubic residue symbol detects cubes: if α 6= 0 mod π, then[α
π

]
3

= 1 if and only if α is a cubic residue modulo π (which

is to say, α ≡ β3 (mod π) for some β).

Proof:

Let u be a primitive root modulo π and write α = uk for some

integer k. Then by (4), since
[α
π

]
3

=

[
uk

π

]
3

=
[u

π

]k
3

, and[u

π

]
3

is either ω or ω2, we see that that
[α
π

]
3

= 1 if and only

if k is a multiple of 3.

But this condition is easily seen to be equivalent to saying
that α is a cubic residue: if α ≡ β3 then if β = ur we have
α = u3r , and conversely if k is a multiple of 3 then
α ≡ (uk/3)3.
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Example: Determine whether 2 +
√
−3 and 2

√
−3 are cubic

residues modulo π = 5 inside O√−3.

Since N(π) = 25, for 2 +
√
−3 we must calculate the cubic

residue symbol[
2+
√
−3

5

]
3
≡ (2 +

√
−3)(25−1)/3 ≡ (2 +

√
−3)8 ≡ 2 + 3

√
−3

(mod 5).

Since ω = −1+
√
3

2 ≡ 2 + 3
√
−3 (mod 5), we see[

2+
√
−3

5

]
3

= ω, so 2 +
√
−3 is not a cubic residue mod 5.

For 2
√
−3 we calculate

[
2
√
−3
5

]
3
≡ (2
√
−3)8 ≡ 1 (mod 5).

Thus,
[
2
√
−3
5

]
3

= 1 and so 2
√
−3 is a cubic residue mod 5.
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Example: Determine whether 2 +
√
−3 and 2

√
−3 are cubic

residues modulo π = 5 inside O√−3.

Since N(π) = 25, for 2 +
√
−3 we must calculate the cubic

residue symbol[
2+
√
−3

5

]
3
≡ (2 +

√
−3)(25−1)/3 ≡ (2 +

√
−3)8 ≡ 2 + 3

√
−3

(mod 5).

Since ω = −1+
√
3

2 ≡ 2 + 3
√
−3 (mod 5), we see[

2+
√
−3

5

]
3

= ω, so 2 +
√
−3 is not a cubic residue mod 5.

For 2
√
−3 we calculate

[
2
√
−3
5

]
3
≡ (2
√
−3)8 ≡ 1 (mod 5).

Thus,
[
2
√
−3
5

]
3

= 1 and so 2
√
−3 is a cubic residue mod 5.
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In order to handle the situation of associates in O√−3, we select a
unique associate for each prime:

Definition

If π is a prime in O√−3, we say π is primary if π ≡ 2 (mod 3).
Equivalently, if π = a + bω, then π is primary when a ≡ 2 (mod 3)
and b ≡ 0 (mod 3).

Examples:

The primes 2 and
7 + 3

√
−3

2
= 5 + 3ω are primary.

The prime 4 +
√
−3 = 5 + 2ω is not primary.
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It is straightforward to see that if π is not associate to
√
−3, then

exactly one associate of π is primary.

Explicitly, if π = a + bω then the associates of π are
π = a + bω,
−π = (−a) + (−b)ω,
ωπ = (−b) + (a− b)ω,
−ωπ = b + (b − a)ω,
ω2π = (b − a) + (−a)ω, and
−ω2π = (a− b) + aω.

One may then check that exactly one of b, a− b, a is divisible
by 3, so two of the associates will have ω-coefficient divisible
by 3, and then exactly one will have its coefficient of 1
congruent to 2 modulo 3.
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We can now state cubic reciprocity in full:

Theorem (Cubic Reciprocity in O√−3)

If π and λ are both primary primes in O√−3 with different norms
(i.e., with π, λ both congruent to 2 modulo 3, and with

N(π) 6= N(λ)), then
[π
λ

]
3

=

[
λ

π

]
3

.

Some aspects of this result were mentioned by Euler and Gauss,
and results that are essentially equivalent to this one are implied by
some results in Gauss’s papers, but the first proof is due to
Eisenstein: indeed, the ring O√−3 is occasionally known as the
Eisenstein integers for this reason.
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The proof is relatively involved and is typically broken into three
cases: when π and λ are both integer primes, when one is an
integer prime, and when both are complex.

The first case is trivial, since if p is an integer then
[p

λ

]
3

= 1

regardless of the value of λ, as we showed earlier.

The second case requires proving that

[
λ

p

]
3

= 1 if p is a

prime integer and λ is a prime element, since
[p

λ

]
3

= 1 as

noted above.

The third case is the most difficult.
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Example: Verify cubic reciprocity for π =
7 + 3

√
−3

2
= 5 + 3ω and

λ = 2 + 3
√
−3 = 5 + 6ω in O√−3.

We have N(π) = 19 and N(λ) = 31.

By definition we have[
λ

π

]
3

≡ λ(N(π)−1)/3 ≡ (5 + 6ω)6 ≡ ω2 (mod π).

By definition we also have[π
λ

]
3
≡ λ(N(λ)−1)/3 ≡ (5 + 3ω)10 ≡ ω2 (mod λ).

Thus, we see

[
λ

π

]
3

=
[π
λ

]
3
, precisely as dictated by cubic

reciprocity.



Cubic Reciprocity, III

Example: Verify cubic reciprocity for π =
7 + 3

√
−3

2
= 5 + 3ω and

λ = 2 + 3
√
−3 = 5 + 6ω in O√−3.

We have N(π) = 19 and N(λ) = 31.

By definition we have[
λ

π

]
3

≡ λ(N(π)−1)/3 ≡ (5 + 6ω)6 ≡ ω2 (mod π).

By definition we also have[π
λ

]
3
≡ λ(N(λ)−1)/3 ≡ (5 + 3ω)10 ≡ ω2 (mod λ).

Thus, we see

[
λ

π

]
3

=
[π
λ

]
3
, precisely as dictated by cubic

reciprocity.
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The general approach to most proofs of cubic reciprocity involves
manipulation of Gauss sums.

Definition

A multiplicative character on Fp is a function χ : F×p → C such
that χ(ab) = χ(a)χ(b) for all a, b ∈ F×p .

Equivalently, a multiplicative character is a group homomorphism
from F×p to C. The Legendre symbol and the cubic residue symbol
are both examples of multiplicative characters.

Definition

If χ is a multiplicative character on Fp, we define the Gauss sum

ga(χ) =

p−1∑
t=1

χ(t)e2πiat/p ∈ C
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Definition

If χ is a multiplicative character on Fp, we define the Gauss sum

ga(χ) =

p−1∑
t=1

χ(t)e2πiat/p ∈ C

The values of the Gauss sum ga(χ) are essentially the discrete
Fourier transform of the function χ(t).

Thus, the values of the Gauss sum completely encode all of
the information that is contained in the values of the function
χ(t), and we may convert back and forth between the values
of ga(χ) and the values χ(t).

As such, if we can compute the value of the Gauss sum for a
character, then it essentially uniquely determines the value of
the character.
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Thus, to prove cubic reciprocity, the idea is to consider the Gauss

sums for the cubic character χπ(t) =
[ t

π

]
3

on Fp, where p = ππ.

Using the definitions, one may prove various identities involving the
Gauss sums:

1. For any character χ, we have ga(χ) = χ(a)−1g1(χ).

2. For any character χ 6= 1, we have g1(χ)g1(χ) = p.

3. For the cubic residue character χπ, we have g1(χπ)3 = pπ.

By suitably manipulating these identities, we can then show that
χλ(π) = χπ(λ) for all primary primes λ and π, which establishes
cubic reciprocity.

We will illustrate by working through the second case of the
proof (the third case is more difficult but can be done using a
similar method).



Cubic Reciprocity, VII

Proof (Second Case of Cubic Reciprocity):

Suppose q ≡ 2 (mod 3) is an integer prime and π is a
non-integral prime of O√−3, with ππ = p that is 1 mod 3.

Take the (q2 − 1)/3 power of the Gauss-sum identity
g1(χπ)3 = pπ to obtain
g1(χπ)q

2−1 ≡ (pπ)(q
2−1)/3 ≡ χq(pπ) = χq(π) (mod q)

because χq is multiplicative and χq(p) = 1 as we showed.

Thus, g1(χπ)q
2 ≡ χq(π)g1(χπ) (mod q).



Cubic Reciprocity, VII

Proof (continued):

Since q2 ≡ 1 (mod 3) and the value χπ(t) is zero or a cube
root of unity, we have χπ(t)q

2
= χπ(t) for all t.

Also, the qth-power map is additive mod q, so

g1(χπ)q
2

=

[
p−1∑
t=0

χπ(t)e2πit/p

]q2

≡
p−1∑
t=0

χπ(t)q
2
e2πiq

2t/p (mod q)

=

p−1∑
t=0

χπ(t)e2πiq
2t/p = gq2(χπ)

= χπ(q−2)g1(χπ) = χπ(q)g1(χπ)

via the Gauss-sum identity ga(χ) = χ(a)−1g1(χ).



Cubic Reciprocity, VIII

Proof (continued):

So, we have now computed two different expressions for the
power g1(χπ)q

2
modulo q: they are

g1(χπ)q
2 ≡ χq(π)g1(χπ) (mod q)

g1(χπ)q
2 ≡ χπ(q)g1(χπ) (mod q)

Multiplying both sides by g1(χπ) and using the Gauss-sum
identity g1(χπ)g1(χπ) = p then yields

χq(π)p ≡ χπ(q)p (mod q).

So, since p is invertible modulo q, we may cancel it to deduce
that χq(π) ≡ χπ(q) (mod q).

At last, this congruence implies the equality χq(π) = χπ(q),
which is exactly cubic reciprocity in this case.



Cubic Reciprocity, IX

We can use cubic reciprocity to calculate the cubic residue symbol[α
π

]
3
, after we find the prime factorization of the element α, using

the same “flip-and-invert” procedure we use for evaluating
Legendre symbols.

Explicitly, if we write α = u · (1− ω)kλ1λ2 · · ·λn where the λi
are primary primes, then we only need to compute the cubic

residue symbols
[u

π

]
3
,

[
1− ω
π

]
3

, and

[
λi
π

]
3

.



Cubic Reciprocity, X

It remains to compute the residue symbols
[u

π

]
3

and

[
1− ω
π

]
3

.

The residue symbol
[u

π

]
3

we can compute using the definition

since u = ±ωk and
[ω
π

]
3

= ω(N(π)−1)/3, so
[ω
π

]
3

= 1, ω, or

ω2 when N(π) ≡ 1, 4, or 7 modulo 9 (respectively), and[
−1

π

]
3

= 1.

The residue symbol

[
1− ω
π

]
3

is more difficult to compute,

but its value can be shown to be equal to ω2(p+1)/3 if π = p
is an integer prime, and it is equal to ω2(a+1)/3 if π = a + bω
is a primary prime.



Summary

We developed the cubic residue symbol and established some of its
properties.

We outlined the proof of the cubic reciprocity law using properties
of Gauss sums.

Next lecture: Quartic reciprocity.


