Math 4527 (Number Theory 2)
Lecture #29 of 37 ~ March 31, 2021

Factorization in O ,—3 + Diophantine Equations
e Factorization in O —
@ Applications to Diophantine Equations

This material represents §8.3.2-8.3.3 from the course notes.



Factorization in OF' [

Since O /5 = Z[%] is also a Euclidean domain, we can
analyze factorizations in this ring using essentially the same
techniques we used for Z[i] and for Z[/—2].

@ Things are slightly complicated by the fact that the generator
for the ring is Hfﬁ rather than /—3, but it is not especially
difficult to handle this minor change.

@ We also have more units in O, /—3: specifically, it contains the
sixth roots of unity, which are the elements % V=3 and +1.

@ One helpful aspect of these extra units is that every element is
associate to one of the form a + by/—3 with a, b € Z.

o Explicitly, if @ = <9Y=2 with ¢, d odd has ¢ = d mod 4,
then « - I_T‘/j’ has integer coefficients, while if c = d 4 2

mod 4 then « - Hf V=3 has integer coefficients.
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Now we can identify the irreducible elements in O ,—:

Theorem (Irreducibles in O )

Up to associates, the irreducible elements in O ,—5 are as follows:

1. The element /=3 (of norm 3).

2. The primes p € 7 congruent to 2 modulo 3 (of norm p?).

3. The distinct irreducible factors a + b\/—3 and a — b\/—3
(each of norm p) of p = a® + 3b? where p € 7 is congruent to
1 modulo 3. )
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Proof:

@ Since Z][i] is Euclidean, we may equivalently find the ideal
factors of the ideals (p) for integer primes p, which we may do
by factoring g(x) = x> — x + 1 modulo p.

o For p =3, we have x? — x + 1 = (x — 2)? (mod p), so we
obtain the ideal factorization (3) = (w — 2)? = (v/=3)?,
yielding the element factorization 3 = —(/—3)2.

e For p =2 mod 3, the polynomial x> — x + 1 is irreducible
modulo p. For p = 2 this can be checked directly, and for odd
p, by quadratic reciprocity we have
(5) = (5) (3) = (2 () (-1~ = (5).
When p = 2 mod 3, this last Legendre symbol is —1, and so
—3 is not a square modulo p. Since the roots of x? — x + 1 are
1+v/-3 2

==, this means x“ — x + 1 has no roots hence is irreducible

modulo p. Thus, the ideal (p) is prime, as is the element p.
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Proof (continued):

@ For p =1 mod 3, we instead have (?) = (%) = 1: thus —3

is a square modulo p, so x> — x + 1 factors mod p.

o If the factorization is x> — x + 1 = (x — r)(x — 1 + r) (mod
p), the ideal factorization is (p) = (p,w —r) - (p,w — 1 +r).

@ Since O /=3 is a PID, the ideal (p,w — r) = (a+ by/=3) for
some a, b that we can compute by applying the Euclidean
algorithm to p and w — r. Its conjugate is then
(p,w—1+r)=(a—by-3).

@ This yields the ideal factorization
(p) = (a + by/—3)(a — by/—3) and so we get the element
factorization p = (a + bv/—3)(a — by/—3) up to a unit factor,
which by rescaling we may assume is 1. This means
p = (a+ byv/=3)(a— by/—3) = a®> +3b?, and we have
N(a+ by/=3) = a®> +3b%> = p = N(a — by/=3).
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We can then compute element factorizations just as before:

o First, find the prime factorization of N(a+ by/—3) = a° + 3b?
over the integers Z, and write down a list of all (rational)
primes p € Z dividing N(a + byv/—3).

Second, for each p on the list, find the factorization of p in
the ring O, /—p, which we can do by referring to the lists
above, and then solving p = a® + 3b? in integers a, b
whenever this equation has a solution.

We can find this factorization by inspection for small p, and
for large p we can find a solution by solving the quadratic
r> = —3 (mod p) and then using the Euclidean algorithm to
compute the ged a + by/—3 of pand V-3 +rin O .
Finally, use trial division to determine which irreducible
elements divide a + by/—3 in O, ;=3 and to which powers.



Factorization in OF' VI

Example: Find the prime factorization of 27 — /=3 in O, ,=3.
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Example: Find the prime factorization of 27 — /=3 in 0/

o We compute N(27 — /=3) =272 +3-12 =22.3.61, so the
primes dividing the norm are 2, 3, and 61.

@ Over O\/_—3, the element 2 is prime, and we also can find the
factorizations 3 =0+ 3-12 = —/—3° and
61 =72+3-22 = (7+2V/=-3)(7 - 2v/-3).

@ Now we just do trial division to find the correct powers of
each of these elements dividing 47 + 321/—2: we get one
factor of 2, one factor of \/—3, and one of 7 & 2v/=3.

@ Doing the trial division yields the factorization

N L Y=HUEN=))
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We can also describe the integers that can be represented by the
two quadratic forms a® + ab + b? and a® + 3b*:

Theorem (Integers of the Form a2 + ab + b? and a® + 3b?)

Let n be a positive integer, and write n = 3%p* - - - plkq™ - - - g7,

where p1,--- , px are distinct primes congruent to 1 modulo 3 and
g1, - ,qq are distinct primes congruent to 2 modulo 3. Then n
can be written in the form a® + ab + b? for integers a, b if and only
if it can be written in the form a® + 3b2, if and only if all the m;
are even. Furthermore, in this case, the number of ordered pairs of
integers (A, B) such that n = A?> + AB + B? is equal to

6(n1 =+ 1)(n2 + 1) cee (nk + 1).
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Proof:

The question of whether n can be written as

n = A% + AB + B2 is equivalent to the question of whether n
1+\2/T3.
Write A+ Bw = p1p2 - -- pr as a product of irreducibles
(unique up to units), and take norms to obtain

n=N(p1) - N(p2)----- N(pr).

By the classification of primes in O =3, if p is irreducible in
O /=3, then N(p) is either 3, a prime congruent to 1 modulo
3, or the square of a prime congruent to 2 modulo 3.

is the norm of an element A+ Bw € O\/j3 where w =

Hence there exists such a choice of p; with n =[] N(p;) if
and only if all the m; are even.

For representations a° 4 3b?, we simply observe that every
irreducible element in O /3 is associate to one in Z[y/=3], so
all statements about representability also hold for a® 4+ 3b°.
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Proof (continued):

@ For the counting, since the factorization of A+ Bw is unique,

to find the number of possible pairs (A, B), we need only
count the number of ways to select terms for A+ Bw and

A 4 Bw from the factorization of n over (’)\ﬁ, which is

n = (=1)*(V=3)*(mm)™ - (memk) " qr™ - - 4.

Up to associates, we must choose

A+ Bw = (V=3)k(xdrmrtt) - (r2mb) g2 - 2,
where a; + b; = n; foreach 1 < < k.

Since there are n; + 1 ways to choose the pair (aj, b;), and 6
ways to multiply A+ Bw by a unit, the total number of ways
to write n as A2+ AB + B2 is 6(n; +1)---(nx + 1), as
claimed.
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Example: Determine whether 21, 101, and 292 can be written in
the form a® 4 3b? for integers a and b.
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Example: Determine whether 21, 101, and 292 can be written in
the form a® 4 3b? for integers a and b.

@ We have 21 = 3-7. Since all of the primes are either 3 or
congruent to 1 modulo 3, 21 is of the form a + 3b°.

@ The integer 101 is prime and congruent to 2 modulo 3.
Therefore, it cannot be written in the form a2 + 3b2.

@ We have 292 = 22.73. Since 73 is congruent to 1 modulo 3
and since 2 occurs to an even power, 292 is of the form
a% + 3p2.



Some More Diophantine Equations, |

Example: Find all integer solutions to the Diophantine equation
x? 4 y? = 7% where x and y are relatively prime.
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Example: Find all integer solutions to the Diophantine equation
x? 4 y? = 7% where x and y are relatively prime.

@ Since squares are 0 or 1 modulo 4, one of x, y must be odd
and the other is even, and also z is odd.

Now factor the equation inside Z[i], which as we have shown

is a unique factorization domain, as (x + iy)(x — iy) = z°.

Claim: x + iy and x — iy are relatively prime inside Z[i].

To see this, observe that any common divisor must necessarily
divide the sum 2x and the difference 2iy, but since x and y
are relatively prime integers, this means that the gcd must
divide 2 = —i(1 4 i)2. Thus the only possible Gaussian prime
divisor of the gcd is 1 + 7, but 1 4+ /7 does not divide x + iy
because x and y have opposite parity.



Some More Diophantine Equations, Il

Example: Find all integer solutions to the Diophantine equation
x? + y? = z% where x and y are relatively prime.

e So, with (x + iy)(x — iy) = z°, we just showed x + iy and

x — iy are relatively prime inside Z[i]. Since their product is a
fifth power (namely, z°) and Z[i] is a UFD, this means that
each term must be a fifth power up to a unit factor.

@ But since the only units are +1, 4/ and these are all fifth
powers (of themselves), we must have
x+iy = (a+bi)® = (a®—10a3b?+5b*)+(5a*b—10a% b3+ b°)i.
Then the conjugate x — iy is (a — bi)®, and
2> = (x 4+ iy)(x — iy) = (3% + b?)>.

@ Since all such tuples work, the solutions are of the form
(x,y,z) = (a° — 10a%b% + 5b%, 5a*b — 10a°b> + b°, a° + b?)
for relatively prime integers a and b.



Some More Diophantine Equations, Il

Example: Show that the only integer solutions to the Diophantine
equation y? = x> — 2 are (3,45).
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Example: Show that the only integer solutions to the Diophantine
equation y? = x> — 2 are (3,45).

First, observe that y must be odd, for if y were even then we
would x3 = 2 (mod 4), which is impossible.

Now we rearrange the equation and factor it inside Z[/—2] as
(v +vV=2)y —v=2) = x>

Claim: y ++/=2 and y — /=2 are relatively prime in Z[\/=2].
To see this, observe that any common divisor must divide

(v +v=-2) = (y — vV=2) = 2v/—-2 = —(v/=2)3, so the only
possible irreducible factor of the d|fFerence is v/ —2.

But y + +/—2 cannot be divisible by /—2 since this would
require y to be even.

Thus, y ++v/—2 and y — +/—2 are relatively prime.
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Example: Show that the only integer solutions to the Diophantine
equation y2 = x3 — 2 are (3,45).

@ We showed y + v/—2 and y — /—2 are relatively prime.

@ Since their product is a cube (namely, x3) and Z[/—2] is a
UFD, this means that each term must be a cube up to a unit
factor. But since the only units are +1 and these are both
cubes, we must have
y+vV=2=(a+ by/-2)3 = (3% - 6ab?) + (3a°b — 2b3)/-2,
which requires 3a’b — 2b% = 1.

e Factoring yields b(3a®> — 2b%) = 1 and so since a, b are
integers, we see that b = +1 and then 32°> = 2 & 1, which has
the two solutions (a, b) = (£1, —1).

o Then y = a® — 6ab®> = 45 and then x = 3, and so we obtain
the solutions (x,y) = (3,+5) as claimed.



Some More Diophantine Equations, V

Example: Show that the Diophantine equation 4y? = x3 — 3 has
no integer solutions.
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Example: Show that the Diophantine equation 4y? = x3 — 3 has
no integer solutions.
@ First note that y cannot be divisible by 3, since then x would
also have to be divisible by 3, but in that case 3 = x> — 4y?
would be divisible by 9, impossible.

@ Now rearrange the equation and factor it inside the UFD
O =3 as (2y +vV=3)(2y — vV=3) = x*.

@ Any common divisor of 2y + v/—3 and 2y — v/—3 must divide
their difference 21/—3, which is the product of the irreducible
elements v/—3 and 2. Clearly 2 cannot divide 2y + /-3, and
v/—3 cannot divide it either because y is not divisible by 3.

@ Therefore, 2y + v/—3 and 2y — v/—3 are relatively prime.
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Example: Show that the Diophantine equation 4y? = x3 — 3 has
no integer solutions.
e We've shown 2y + v/—3 and 2y — /=3 are relatively prime.
@ Since their product is a cube and Oﬁ is a UFD, this means
that each term must be a cube up to a unit factor.

@ By rescaling and conjugating if necessary, we either have
2y +v=3=(a+by=3)30
(2y +v-3) - Hr (a+b\/7) for some a, b € Z.
However, the second case cannot occur, because the
coefficients of the product on the LHS are not integers.

e So we must have 2y ++/—3 = (a + by/—3)3. Expanding and
comparing coefficients of /=3 yields 1 = 3a%b — 3b3, which is
impossible since the right-hand side is a multiple of 3.

@ Thus, there are no integer solutions, as claimed.



Some More Diophantine Equations, VII

We can, with a nontrivial amount of work, also establish the n =3
case of Fermat’s conjecture, which was first settled by Euler.

For convenience in organizing the proof, we first establish a lemma
(which is itself another example of solving a Diophantine equation):

Lemma (Cubes of the Form m? + 3n?)

Suppose that m, n are relatively prime integers of opposite parity.
If m® 4+ 3n? = r3, then there exist positive integers a and b with
m = a® — 9ab® and n = 3a°b — 3b>.

The expressions for m and n come from comparing coefficients in

m+ ny/—=3 = (a+ by/—-3)3.
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Proof:

o Let m, n be relatively prime, opposite parity, m?> + 3n> = r3.

o First, if 3|m so that m = 3k, then we obtain 9k 4+ 3n? = r3:
this forces 3|r, but then dividing by 3 shows that
n3 = (r/3)% — 3k? so that 3 would also divide n, which is
impossible. Thus, 31 m.

o Now factor the equation m? 4+ 3n? = r3 in O,/ as
(m+ ny/=3)(m — ny/=3) = r3.

@ Any common divisor of m + ny/—3 and m — nv/—3 must also
divide 2m and 2n+/—3, and since m, n are relatively prime,
this means the common divisor must divide 21/—3.

@ Since 2 and v/—3 are irreducible in Oﬁ, we can see 2 does

not divide m + nv/—3 because m, n have opposite parities,
and v/—3 does not divide m + n\/—3 because 31 m.
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Proof (continued):

@ So, m+ ny/—3 and m — n\/—3 are relatively prime.

@ Then since (’)\/_—3 is a UFD, we see that m+ nv/—3 must be a
unit times a cube: say m+ny/~3 =u-(a+ byv/-3)3. B
negating, conjugating, and replacing a + by/—3 with an
associate as necessary, we may assume a, b € Z and that the
unit u is either 1 or _1%‘/?3

e However, if m+ ny/—3 = —1++ﬁ - (a+ by/—3)3 then since
m, n are integers, both a and b must be odd. But then
(—1++v/=3)(a+ by/—3) has integer coefficients that are
even, as does (a + by/—3)?, so the product m + nv/—3 would
have both m and n even, contrary to assumption.

@ Therefore, we must have
m+ny/=3 = (a + by/—3)3 = (a® —9ab?) + (3a%b — 3b%)/—3

and so m = a3 — 9ab? and n = 3a%b — 3b3, as claimed.
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We can now essentially give Euler's treatment of the n = 3 case of
Fermat’s equation:

Theorem (Euler's p = 3 Case of Fermat’'s Theorem)

There are no solutions to the Diophantine equation x3 + y3 = 23

with xyz # 0.

As with the n = 4 case that we did a month and a half ago, the
idea is to use a descent argument: by assuming there is a
nontrivial solution, we will construct a smaller solution, which
yields a contradiction if we assume that we start with the solution
having the minimal possible |z|.
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Proof:

@ Assume x,y,z # 0 and suppose we have a solution to the
equation with |z| minimal.
If two of x, y, z are divisible by a prime p then the third must

be also, in which case we could divide x, y,z by p and obtain
a smaller solution.

Thus, without loss of generality, we may assume x, y, z are
relatively prime, and so two are odd and the other is even.

By rearranging and negating, suppose that x and y are odd
and relatively prime. Set x + y = 2p and x — y = 24, so that
x=p+qgand y =p— q, where p, g are necessarily relatively
prime of opposite parity. We then obtain a factorization
2Z=x3+y}=(x+y)® - xy +y%) =2p- (p* +3¢°).

@ We now proceed in two cases: where 31 p and where 3|p.
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Proof (Case 3 1 p, Start):

@ Suppose 31 p. Since p? + 3g? is odd, any common divisor of
2p and p? 4 3g® necessarily divides p and p? + 3g2, hence
also divides p and 3g¢2. Furthermore, since 3 { p this means
any common divisor of p and 3g? divides both p and g2, but
these elements are relatively prime.

e Thus, 2p and p? + 3¢ are relatively prime, so since their
product is a cube, each must be a cube up to a unit factor in
Z, hence are actually cubes.

o By the lemma, we then have p = a® — 9ab? and

q = 3a°b — 3b3 for some a, b € Z, and we also know
2p =2a(a—3b)(a+ 3b) is a cube.
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Proof (Case 3 1 p, Finish):

o We have p = a® — 9ab? and q = 3a%b — 3b3 for some
a,b € Z, and 2p = 2a(a — 3b)(a + 3b) is a cube.

o We see that 2a, a — 3b, a + 3b must be pairwise relatively
prime, since any common divisor would necessarily divide 2a
and 6b hence divide 6, but a cannot be divisible by 3 (since
then p, g would both be divisible by 3) and a, b cannot have
the same parity (since then both p, g would be even).

@ Therefore, since their product is a cube in Z, each of 23,
a—3b, and a+ 3b must be a cube in Z. But then if 2a = z},
a—3b=x} and a+3b=y}, we have x; + y7 =z}, and
clearly we also have 0 < |z1| < |a| < |r| < |z|.

@ We have therefore found a solution to the equation with a
smaller value of z, which is a contradiction.
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Proof (Case 3|p, Start):
@ The case 3|p is similar: write p = 3s and note g, s are
relatively prime of opposite parity with z3 = 18s - (352 + ¢?).

@ Since g cannot be divisible by 3 and 3s% + ¢ is odd, any
common divisor of 18s and 3s? + g? must divide s and
352 + g° hence divides s and g2, but these are relatively prime.

o Thus 18s and 3s? + g2 are relatively prime, so they are each
cubes.

@ By the lemma again, we have g = a® — 9ab? and
s = 3a%b— 3b3, where 185 = 33-2b(a — b)(a+ b) is a perfect
cube.
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Proof (Case 3|p, Finish):
o We have g = a® — 9ab? and s = 3a%b — 3b3, where
18s = 33 . 2b(a — b)(a + b) is a perfect cube.

o Like before, any common divisor of any pair of 2b, a — b,
a+ b must divide 2a and 2b hence divide 2, but a, b must
have opposite parity since otherwise g, s would both be even.

@ Thus, 2b, a— b, and a+ b are all perfect cubes. But then if
at+b=2z a—b=x3, and 2b =y, we have x{ + yi = z},
and clearly we also have 0 < |z1| = |a+ b| < |s| < |z|.

@ We have again found a solution to the equation with a smaller
value of z, which is a contradiction. Since we have reached a

contradiction in both cases, we are done.



Summary

We characterized the primes in O /=3, described how to compute
factorizations in O =3, and characterized the integers of the form
a’ + ab + b? and a® + 3b2.

We solved some Diophantine equations using factorization in
quadratic integer rings.

We established that the Fermat equation x> + y3 = z3 has no
nontrivial integer solutions.

Next lecture: Cubic reciprocity.



