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Factorization in O√−3 + Diophantine Equations

Factorization in O√−3
Applications to Diophantine Equations

This material represents §8.3.2-8.3.3 from the course notes.



Factorization in O√−3, I

Since O√−3 = Z[1+
√
−3

2 ] is also a Euclidean domain, we can
analyze factorizations in this ring using essentially the same
techniques we used for Z[i ] and for Z[

√
−2].

Things are slightly complicated by the fact that the generator

for the ring is 1+
√
−3

2 rather than
√
−3, but it is not especially

difficult to handle this minor change.

We also have more units in O√−3: specifically, it contains the

sixth roots of unity, which are the elements ±1±
√
−3

2 and ±1.

One helpful aspect of these extra units is that every element is
associate to one of the form a + b

√
−3 with a, b ∈ Z.

Explicitly, if α = c+d
√
−3

2 with c , d odd has c ≡ d mod 4,

then α · 1−
√
−3

2 has integer coefficients, while if c ≡ d + 2

mod 4 then α · 1+
√
−3

2 has integer coefficients.



Factorization in O√−3, II

Now we can identify the irreducible elements in O√−3:

Theorem (Irreducibles in O√−3)

Up to associates, the irreducible elements in O√−3 are as follows:

1. The element
√
−3 (of norm 3).

2. The primes p ∈ Z congruent to 2 modulo 3 (of norm p2).

3. The distinct irreducible factors a + b
√
−3 and a− b

√
−3

(each of norm p) of p = a2 + 3b2 where p ∈ Z is congruent to
1 modulo 3.



Factorization in O√−3, III

Proof:

Since Z[i ] is Euclidean, we may equivalently find the ideal
factors of the ideals (p) for integer primes p, which we may do
by factoring q(x) = x2 − x + 1 modulo p.

For p = 3, we have x2 − x + 1 ≡ (x − 2)2 (mod p), so we
obtain the ideal factorization (3) = (ω − 2)2 = (

√
−3)2,

yielding the element factorization 3 = −(
√
−3)2.

For p ≡ 2 mod 3, the polynomial x2 − x + 1 is irreducible
modulo p. For p = 2 this can be checked directly, and for odd
p, by quadratic reciprocity we have(
−3
p

)
=
(
−1
p

)(
3
p

)
= (−1)(p−1)/2

(p
3

)
(−1)−(p−1)/2 =

(p
3

)
.

When p ≡ 2 mod 3, this last Legendre symbol is −1, and so
−3 is not a square modulo p. Since the roots of x2− x + 1 are
1±
√
−3

2 , this means x2− x + 1 has no roots hence is irreducible
modulo p. Thus, the ideal (p) is prime, as is the element p.



Factorization in O√−3, IV

Proof (continued):

For p ≡ 1 mod 3, we instead have
(
−3
p

)
=
(p
3

)
= 1: thus −3

is a square modulo p, so x2 − x + 1 factors mod p.

If the factorization is x2 − x + 1 ≡ (x − r)(x − 1 + r) (mod
p), the ideal factorization is (p) = (p, ω − r) · (p, ω − 1 + r).

Since O√−3 is a PID, the ideal (p, ω − r) = (a + b
√
−3) for

some a, b that we can compute by applying the Euclidean
algorithm to p and ω − r . Its conjugate is then
(p, ω − 1 + r) = (a− b

√
−3).

This yields the ideal factorization
(p) = (a + b

√
−3)(a− b

√
−3) and so we get the element

factorization p = (a + b
√
−3)(a− b

√
−3) up to a unit factor,

which by rescaling we may assume is 1. This means
p = (a + b

√
−3)(a− b

√
−3) = a2 + 3b2, and we have

N(a + b
√
−3) = a2 + 3b2 = p = N(a− b

√
−3).



Factorization in O√−3, V

We can then compute element factorizations just as before:

First, find the prime factorization of N(a + b
√
−3) = a2 + 3b2

over the integers Z, and write down a list of all (rational)
primes p ∈ Z dividing N(a + b

√
−3).

Second, for each p on the list, find the factorization of p in
the ring O√−D , which we can do by referring to the lists

above, and then solving p = a2 + 3b2 in integers a, b
whenever this equation has a solution.

We can find this factorization by inspection for small p, and
for large p we can find a solution by solving the quadratic
r2 ≡ −3 (mod p) and then using the Euclidean algorithm to
compute the gcd a + b

√
−3 of p and

√
−3 + r in O√−3.

Finally, use trial division to determine which irreducible
elements divide a + b

√
−3 in O√−3 and to which powers.



Factorization in O√−3, VI

Example: Find the prime factorization of 27−
√
−3 in O√−3.

We compute N(27−
√
−3) = 272 + 3 · 12 = 22 · 3 · 61, so the

primes dividing the norm are 2, 3, and 61.

Over O√−3, the element 2 is prime, and we also can find the

factorizations 3 = 0 + 3 · 12 = −
√
−3

2
and

61 = 72 + 3 · 22 = (7 + 2
√
−3)(7− 2

√
−3).

Now we just do trial division to find the correct powers of
each of these elements dividing 47 + 32

√
−2: we get one

factor of 2, one factor of
√
−3, and one of 7± 2

√
−3.

Doing the trial division yields the factorization

27−
√
−3 =

−1−
√
−3

2
· 2 ·
√
−3 · (7 + 2

√
−3).



Factorization in O√−3, VI
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√
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√
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Factorization in O√−3, VII

We can also describe the integers that can be represented by the
two quadratic forms a2 + ab + b2 and a2 + 3b2:

Theorem (Integers of the Form a2 + ab + b2 and a2 + 3b2)

Let n be a positive integer, and write n = 3kpn11 · · · p
nk
k qm1

1 · · · q
md
d ,

where p1, · · · , pk are distinct primes congruent to 1 modulo 3 and
q1, · · · , qd are distinct primes congruent to 2 modulo 3. Then n
can be written in the form a2 + ab + b2 for integers a, b if and only
if it can be written in the form a2 + 3b2, if and only if all the mi

are even. Furthermore, in this case, the number of ordered pairs of
integers (A,B) such that n = A2 + AB + B2 is equal to
6(n1 + 1)(n2 + 1) · · · (nk + 1).



Factorization in O√−3, VIII

Proof:

The question of whether n can be written as
n = A2 + AB + B2 is equivalent to the question of whether n

is the norm of an element A+Bω ∈ O√−3 where ω = 1+
√
−3

2 .

Write A + Bω = ρ1ρ2 · · · ρr as a product of irreducibles
(unique up to units), and take norms to obtain
n = N(ρ1) · N(ρ2) · · · · · N(ρr ).

By the classification of primes in O√−3, if ρ is irreducible in
O√−3, then N(ρ) is either 3, a prime congruent to 1 modulo
3, or the square of a prime congruent to 2 modulo 3.

Hence there exists such a choice of ρi with n =
∏

N(ρi ) if
and only if all the mi are even.

For representations a2 + 3b2, we simply observe that every
irreducible element in O√−3 is associate to one in Z[

√
−3], so

all statements about representability also hold for a2 + 3b2.



Factorization in O√−3, IX

Proof (continued):

For the counting, since the factorization of A + Bω is unique,
to find the number of possible pairs (A,B), we need only
count the number of ways to select terms for A + Bω and
A + Bω from the factorization of n over O√−3, which is

n = (−1)k(
√
−3)2k(π1π1)n1 · · · (πkπk)nkqm1

1 · · · q
md
d .

Up to associates, we must choose

A + Bω = (
√
−3)k(πa11 π1

b1) · · · (πakk πk
bk )q

m1/2
1 · · · qmd/2

d ,
where ai + bi = ni for each 1 ≤ i ≤ k.

Since there are ni + 1 ways to choose the pair (ai , bi ), and 6
ways to multiply A + Bω by a unit, the total number of ways
to write n as A2 + AB + B2 is 6(n1 + 1) · · · (nk + 1), as
claimed.



Factorization in O√−3, X

Example: Determine whether 21, 101, and 292 can be written in
the form a2 + 3b2 for integers a and b.

We have 21 = 3 · 7. Since all of the primes are either 3 or
congruent to 1 modulo 3, 21 is of the form a2 + 3b2.

The integer 101 is prime and congruent to 2 modulo 3.
Therefore, it cannot be written in the form a2 + 3b2.

We have 292 = 22 · 73. Since 73 is congruent to 1 modulo 3
and since 2 occurs to an even power, 292 is of the form
a2 + 3b2.
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Some More Diophantine Equations, I

Example: Find all integer solutions to the Diophantine equation
x2 + y2 = z5 where x and y are relatively prime.

Since squares are 0 or 1 modulo 4, one of x , y must be odd
and the other is even, and also z is odd.

Now factor the equation inside Z[i ], which as we have shown
is a unique factorization domain, as (x + iy)(x − iy) = z5.

Claim: x + iy and x − iy are relatively prime inside Z[i ].

To see this, observe that any common divisor must necessarily
divide the sum 2x and the difference 2iy , but since x and y
are relatively prime integers, this means that the gcd must
divide 2 = −i(1 + i)2. Thus the only possible Gaussian prime
divisor of the gcd is 1 + i , but 1 + i does not divide x + iy
because x and y have opposite parity.
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Some More Diophantine Equations, II

Example: Find all integer solutions to the Diophantine equation
x2 + y2 = z5 where x and y are relatively prime.

So, with (x + iy)(x − iy) = z5, we just showed x + iy and
x − iy are relatively prime inside Z[i ]. Since their product is a
fifth power (namely, z5) and Z[i ] is a UFD, this means that
each term must be a fifth power up to a unit factor.

But since the only units are ±1,±i and these are all fifth
powers (of themselves), we must have
x+iy = (a+bi)5 = (a5−10a3b2+5b4)+(5a4b−10a2b3+b5)i .
Then the conjugate x − iy is (a− bi)5, and
z5 = (x + iy)(x − iy) = (a2 + b2)5.

Since all such tuples work, the solutions are of the form
(x , y , z) = (a5 − 10a3b2 + 5b4, 5a4b − 10a2b3 + b5, a2 + b2)
for relatively prime integers a and b.



Some More Diophantine Equations, III

Example: Show that the only integer solutions to the Diophantine
equation y2 = x3 − 2 are (3,±5).

First, observe that y must be odd, for if y were even then we
would x3 ≡ 2 (mod 4), which is impossible.

Now we rearrange the equation and factor it inside Z[
√
−2] as

(y +
√
−2)(y −

√
−2) = x3.

Claim: y +
√
−2 and y −

√
−2 are relatively prime in Z[

√
−2].

To see this, observe that any common divisor must divide
(y +

√
−2)− (y −

√
−2) = 2

√
−2 = −(

√
−2)3, so the only

possible irreducible factor of the difference is
√
−2.

But y +
√
−2 cannot be divisible by

√
−2 since this would

require y to be even.

Thus, y +
√
−2 and y −

√
−2 are relatively prime.



Some More Diophantine Equations, III
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√
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√
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√
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√
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Some More Diophantine Equations, IV

Example: Show that the only integer solutions to the Diophantine
equation y2 = x3 − 2 are (3,±5).

We showed y +
√
−2 and y −

√
−2 are relatively prime.

Since their product is a cube (namely, x3) and Z[
√
−2] is a

UFD, this means that each term must be a cube up to a unit
factor. But since the only units are ±1 and these are both
cubes, we must have
y +
√
−2 = (a + b

√
−2)3 = (a3 − 6ab2) + (3a2b − 2b3)

√
−2,

which requires 3a2b − 2b3 = 1.

Factoring yields b(3a2 − 2b2) = 1 and so since a, b are
integers, we see that b = ±1 and then 3a2 = 2± 1, which has
the two solutions (a, b) = (±1,−1).

Then y = a3 − 6ab2 = ±5 and then x = 3, and so we obtain
the solutions (x , y) = (3,±5) as claimed.



Some More Diophantine Equations, V

Example: Show that the Diophantine equation 4y2 = x3 − 3 has
no integer solutions.

First note that y cannot be divisible by 3, since then x would
also have to be divisible by 3, but in that case 3 = x3 − 4y2

would be divisible by 9, impossible.

Now rearrange the equation and factor it inside the UFD
O√−3 as (2y +

√
−3)(2y −

√
−3) = x3.

Any common divisor of 2y +
√
−3 and 2y −

√
−3 must divide

their difference 2
√
−3, which is the product of the irreducible

elements
√
−3 and 2. Clearly 2 cannot divide 2y +

√
−3, and√

−3 cannot divide it either because y is not divisible by 3.

Therefore, 2y +
√
−3 and 2y −

√
−3 are relatively prime.



Some More Diophantine Equations, V
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Some More Diophantine Equations, VI

Example: Show that the Diophantine equation 4y2 = x3 − 3 has
no integer solutions.

We’ve shown 2y +
√
−3 and 2y −

√
−3 are relatively prime.

Since their product is a cube and O√−3 is a UFD, this means
that each term must be a cube up to a unit factor.

By rescaling and conjugating if necessary, we either have
2y +

√
−3 = (a + b

√
−3)3 or

(2y +
√
−3) · −1+

√
−3

2 = (a + b
√
−3)3 for some a, b ∈ Z.

However, the second case cannot occur, because the
coefficients of the product on the LHS are not integers.

So we must have 2y +
√
−3 = (a + b

√
−3)3. Expanding and

comparing coefficients of
√
−3 yields 1 = 3a2b− 3b3, which is

impossible since the right-hand side is a multiple of 3.

Thus, there are no integer solutions, as claimed.



Some More Diophantine Equations, VII

We can, with a nontrivial amount of work, also establish the n = 3
case of Fermat’s conjecture, which was first settled by Euler.

For convenience in organizing the proof, we first establish a lemma
(which is itself another example of solving a Diophantine equation):

Lemma (Cubes of the Form m2 + 3n2)

Suppose that m, n are relatively prime integers of opposite parity.
If m2 + 3n2 = r3, then there exist positive integers a and b with
m = a3 − 9ab2 and n = 3a2b − 3b3.

The expressions for m and n come from comparing coefficients in
m + n

√
−3 = (a + b

√
−3)3.



Some More Diophantine Equations, VIII

Proof:

Let m, n be relatively prime, opposite parity, m2 + 3n2 = r3.

First, if 3|m so that m = 3k , then we obtain 9k2 + 3n2 = r3:
this forces 3|r , but then dividing by 3 shows that
n3 = (r/3)3 − 3k2 so that 3 would also divide n, which is
impossible. Thus, 3 - m.

Now factor the equation m2 + 3n2 = r3 in O√−3 as

(m + n
√
−3)(m − n

√
−3) = r3.

Any common divisor of m + n
√
−3 and m − n

√
−3 must also

divide 2m and 2n
√
−3, and since m, n are relatively prime,

this means the common divisor must divide 2
√
−3.

Since 2 and
√
−3 are irreducible in O√−3, we can see 2 does

not divide m + n
√
−3 because m, n have opposite parities,

and
√
−3 does not divide m + n

√
−3 because 3 - m.



Some More Diophantine Equations, IX

Proof (continued):

So, m + n
√
−3 and m − n

√
−3 are relatively prime.

Then since O√−3 is a UFD, we see that m + n
√
−3 must be a

unit times a cube: say m + n
√
−3 = u · (a + b

√
−3)3. By

negating, conjugating, and replacing a + b
√
−3 with an

associate as necessary, we may assume a, b ∈ Z and that the

unit u is either 1 or −1+
√
−3

2 .

However, if m + n
√
−3 = −1+

√
−3

2 · (a + b
√
−3)3 then since

m, n are integers, both a and b must be odd. But then
(−1 +

√
−3)(a + b

√
−3) has integer coefficients that are

even, as does (a + b
√
−3)2, so the product m + n

√
−3 would

have both m and n even, contrary to assumption.

Therefore, we must have
m + n

√
−3 = (a+ b

√
−3)3 = (a3− 9ab2) + (3a2b− 3b3)

√
−3

and so m = a3 − 9ab2 and n = 3a2b − 3b3, as claimed.



Some More Diophantine Equations, X

We can now essentially give Euler’s treatment of the n = 3 case of
Fermat’s equation:

Theorem (Euler’s p = 3 Case of Fermat’s Theorem)

There are no solutions to the Diophantine equation x3 + y3 = z3

with xyz 6= 0.

As with the n = 4 case that we did a month and a half ago, the
idea is to use a descent argument: by assuming there is a
nontrivial solution, we will construct a smaller solution, which
yields a contradiction if we assume that we start with the solution
having the minimal possible |z |.



Some More Diophantine Equations, XI

Proof:

Assume x , y , z 6= 0 and suppose we have a solution to the
equation with |z | minimal.

If two of x , y , z are divisible by a prime p then the third must
be also, in which case we could divide x , y , z by p and obtain
a smaller solution.

Thus, without loss of generality, we may assume x , y , z are
relatively prime, and so two are odd and the other is even.

By rearranging and negating, suppose that x and y are odd
and relatively prime. Set x + y = 2p and x − y = 2q, so that
x = p + q and y = p − q, where p, q are necessarily relatively
prime of opposite parity. We then obtain a factorization
z3 = x3 + y3 = (x + y)(x2 − xy + y2) = 2p · (p2 + 3q2).

We now proceed in two cases: where 3 - p and where 3|p.



Some More Diophantine Equations, XII

Proof (Case 3 - p, Start):

Suppose 3 - p. Since p2 + 3q2 is odd, any common divisor of
2p and p2 + 3q2 necessarily divides p and p2 + 3q2, hence
also divides p and 3q2. Furthermore, since 3 - p this means
any common divisor of p and 3q2 divides both p and q2, but
these elements are relatively prime.

Thus, 2p and p2 + 3q2 are relatively prime, so since their
product is a cube, each must be a cube up to a unit factor in
Z, hence are actually cubes.

By the lemma, we then have p = a3 − 9ab2 and
q = 3a2b − 3b3 for some a, b ∈ Z, and we also know
2p = 2a(a− 3b)(a + 3b) is a cube.



Some More Diophantine Equations, XIII

Proof (Case 3 - p, Finish):

We have p = a3 − 9ab2 and q = 3a2b − 3b3 for some
a, b ∈ Z, and 2p = 2a(a− 3b)(a + 3b) is a cube.

We see that 2a, a− 3b, a + 3b must be pairwise relatively
prime, since any common divisor would necessarily divide 2a
and 6b hence divide 6, but a cannot be divisible by 3 (since
then p, q would both be divisible by 3) and a, b cannot have
the same parity (since then both p, q would be even).

Therefore, since their product is a cube in Z, each of 2a,
a− 3b, and a + 3b must be a cube in Z. But then if 2a = z31 ,
a− 3b = x31 , and a + 3b = y31 , we have x31 + y31 = z31 , and
clearly we also have 0 < |z1| < |a| < |r | < |z |.
We have therefore found a solution to the equation with a
smaller value of z , which is a contradiction.



Some More Diophantine Equations, XIV

Proof (Case 3|p, Start):

The case 3|p is similar: write p = 3s and note q, s are
relatively prime of opposite parity with z3 = 18s · (3s2 + q2).

Since q cannot be divisible by 3 and 3s2 + q2 is odd, any
common divisor of 18s and 3s2 + q2 must divide s and
3s2 + q2 hence divides s and q2, but these are relatively prime.

Thus 18s and 3s2 + q2 are relatively prime, so they are each
cubes.

By the lemma again, we have q = a3 − 9ab2 and
s = 3a2b− 3b3, where 18s = 33 · 2b(a− b)(a + b) is a perfect
cube.



Some More Diophantine Equations, XV

Proof (Case 3|p, Finish):

We have q = a3 − 9ab2 and s = 3a2b − 3b3, where
18s = 33 · 2b(a− b)(a + b) is a perfect cube.

Like before, any common divisor of any pair of 2b, a− b,
a + b must divide 2a and 2b hence divide 2, but a, b must
have opposite parity since otherwise q, s would both be even.

Thus, 2b, a− b, and a + b are all perfect cubes. But then if
a + b = z31 , a− b = x31 , and 2b = y31 , we have x31 + y31 = z31 ,
and clearly we also have 0 < |z1| = |a + b| < |s| < |z |.
We have again found a solution to the equation with a smaller
value of z , which is a contradiction. Since we have reached a
contradiction in both cases, we are done.



Summary

We characterized the primes in O√−3, described how to compute
factorizations in O√−3, and characterized the integers of the form

a2 + ab + b2 and a2 + 3b2.

We solved some Diophantine equations using factorization in
quadratic integer rings.

We established that the Fermat equation x3 + y3 = z3 has no
nontrivial integer solutions.

Next lecture: Cubic reciprocity.


