Math 4527 (Number Theory 2)
Lecture #28 of 37 ~ March 29, 2021

Factorization in Z[i], Z[v=2], and O .
e Factorization in Z[i] and Sums of Two Squares
o Factorization in Z[/=2], and O ,—
This material represents §8.3.1-8.3.2 from the course notes.



Recall

Last time, we proved the Kummer-Dedekind factorization theorem:

Theorem (Factorization of (p) in Op)

Let p be a prime and let

x2—D for D = 2,3 mod 4
a(x) =19 , , where
x*—x—(D—-1)/4 for D=1 mod 4
v D for D=2,3 mod 4 .
w= is a root of q(x).
(1++vD)/2 for D=1 mod 4

If the polynomial q(x) has a repeated root r modulo p then the
ideal (p) = (p,w — r)? is the square of a prime ideal of norm p in
Op, if q(x) is irreducible modulo p then the ideal (p) is prime in
Op of norm p?, and if q(x) is reducible with distinct roots r, '
modulo p, then (p) = (p,w — r) - (p,w — r') factors as the product
of two distinct ideals in Op each of norm p.

<

This theorem tells us how to find prime ideals in Op.



Factorization in Z[i], |

Now we will discuss factorization in the Gaussian integers Z[i],
which we have already shown to be a Euclidean domain, a principal
ideal domain, and a unique factorization domain.

@ We need only analyze the factorization of primes p, which is
fully determined by the ideal factorization of (p) inside Z[i].

@ Because N(a+ bi) = a® + b?, factorization in Z[i] is closely
related to the question of writing an integer as the sum of two
squares, and so by analyzing prime factorizations in Z[i], we
can classify the integers that can be written as the sum of two
squares.



Factorization in Z[i], 1l

Our first task is to write down the irreducible elements in Z[i]:

Theorem (Irreducibles in Z[i])

Up to associates, the irreducible elements in Z[i] are as follows:

1. The element 1 + i (of norm 2).
2. The primes p € 7 congruent to 3 modulo 4 (of norm p?).

3. The distinct irreducible factors a+ bi and a— bi (each of norm
p) of p = a® + b? where p € 7 is congruent to 1 modulo 4.

V.

There are various ways to prove this result using modular
arithmetic (which | usually discuss in Math 3527), but we can
establish this result directly from our theorem on factoring the

ideal (p).



Factorization in Z[i], Il

Proof:

e Since Z[i] is Euclidean, we may equivalently find the ideal
factors of the ideals (p) for integer primes p, which we may do
by factoring g(x) = x? + 1 modulo p.

o For p =2 we have x> + 1 = (x — 1)? mod 2. This gives the
ideal factorization (2) = (2, i + 1)?, yielding the element
factorization 2 = —(i + 1)2.

@ For p =3 mod 4, we claim x? 4 1 is irreducible modulo p.
-1
@ To see this note that <> = (—1)(P~1)/2 = 1 (mod p) by
p
Euler's criterion, so —1 is not a square mod p.

@ Thus, (p) is prime in Z[i], so the element p is irreducible and
its norm is p.



Factorization in Z[i], IV

Proof (continued):

o Finally, suppose p =1 mod 4: then (%1) = (—1)(f’_1)/2 =1
(mod p) by Euler’s criterion, so x2 + 1 factors modulo p, say
as x> +1=(x—r)(x+r) (mod p).

e This gives the ideal factorization (p) = (p,i —r) - (p,i + r).

@ Since Z[i] is a PID, the ideal (p, i+ r) is principal, say
(a+ bi) for some a, b which we can compute by applying the
Euclidean algorithm to p and i + r. Then the conjugate ideal
(p,r—1i)=(p,i —r) is equal to (a — bi).

@ This yields the ideal factorization (p) = (a + bi)(a — bi) and
so we get the element factorization p = (a + bi)(a — bi) up to
a unit factor, which by rescaling we may assume is 1.

o This means p = (a + bi)(a — bi) = a®> + b?, and we have
N(a+ bi) = a®> + b> = p = N(a — bi), so both irreducible
factors have norm p as claimed.



Factorization in Z[i], V

With the list of prime elements in hand, we can give a procedure
for finding the prime factorization of an arbitrary Gaussian integer:

o First, find the prime factorization of N(a + bi) = a® + b? over
the integers Z, and write down a list of all (rational) primes
p € Z dividing N(a + bi).

@ Second, for each p on the list, find the factorization of p over
the Gaussian integers Z[i].

o Finally, use trial division to determine which of these
irreducible elements divide a + bi in Z[i], and to which
powers. (The factorization of N(a+ bi) can be used to
determine the expected number of powers.)



Factorization in Z[i], V

Example: Find the factorization of 7 — 11/ into irreducibles in Z[i].



Factorization in Z[i], V

Example: Find the factorization of 7 — 11/ into irreducibles in Z[i].
o We compute N(7 — 11j) =72 + (-11)2 =170 =2-5- 17.
o Over Z[i], we find the factorizations 2 = —i(1 + i),
5=02+i)(2—1i),and 17 = (4+1)(4 — ).
@ Now we just do trial division to find the correct elements
dividing 4 + 22j: we will get one copy of 1 + i, one element
from {2+ 1,2 — i}, and one from {4 +i,4 — i}.

@ Doing the trial division yields the factorization
7—11i=—i(L+i)(2—i)(4+1).



Factorization in Z[i], VI

Example: Find the factorization of 4 + 22 into irreducibles in Z[i].



Factorization in Z[i], VI

Example: Find the factorization of 4 + 22 into irreducibles in Z[i].

o We compute N(4 + 22) = 42 4222 = 22.53. The primes
dividing N(4 + 22/) are 2 and 5.

o Over Z[i], we find the factorizations 2 = —i(1 + i)? and
5=02+1i)(2—1).

@ Now we just do trial division to find the correct powers of
each of these elements dividing 4 + 22;.

@ Since N(4+22i) = 22 .53, we should get two copies of (14 i)
and three elements from {2 47,2 — i}.

@ Doing the trial division yields the factorization
44+ 22i = —j-(1+i)? (24 i)3 (Note that in order to have
powers of the same irreducible element, we left the unit —/ in
front of the factorization.)



Factorization in Z[i], VII

The primes appearing in the example above were small enough to
factor over Z[i] by inspection, but if p =1 (mod 4) is large then it
is not so obvious how to factor p in Z[i]. We briefly explain how to
find this expression algorithmically.

@ We have the ideal factorization (p) = (p,i+r) - (p,i — r) and
then use the Euclidean algorithm to write
(p,i+r)=(a+ bi). Thus, all we need to do is find a root r
of the polynomial x? 4+ 1 (mod p), which is equivalent to
finding a square root of —1 modulo p.

@ We can do this using Euler’s criterion: for any quadratic

nonresidue u modulo p, Euler’s criterion tells us that

u(P=1)/2 = _1 (mod p), and so u(P~1)/* will be a square root
of —1.



Factorization in Z[i], VIII

There is no general formula for identifying a quadratic nonresidue
modulo an arbitrary prime p, but we can just search small residue
classes (or random residue classes) until we find one.

@ Indeed, we don't even need to test whether v is a quadratic
residue: we can just try calculating u(P~1)/4, which will either
be a square root of —1 or a square root of +1, but in the
latter case we will get =1 and thus know we need to try a
different u.

@ Then, as noted on the last slide, to compute the solution to
p = a* + b? we can use the Euclidean algorithm in Z][i] to find
a greatest common divisor of p and r + i in Z[i]: the result
will be an element 7 = a + bi with a® + b?> = p.



Factorization in Z[i], IX

Example: Express the prime p = 3329 as the sum of two squares
using the fact that 3(P~1/4 = 1729 (mod p).



Factorization in Z[i], IX

Example: Express the prime p = 3329 as the sum of two squares
using the fact that 3(P~1/4 = 1729 (mod p).

@ Our discussion on the last slides tells us that 1729 is a square
root of —1 modulo p: indeed, we can double-check by
computing 1729 4+ 1 = 898 - 3329.

e Now we compute the ged of 1729 + j and 3329 in Z[i] using
the Euclidean algorithm:

3329 = 2(1729 + i) + (—129 — 2/)
1720+ = —13(—129 — 2i) + (52 — 25/)
~129-2i = (—2—1i)(52— 25i)

@ The last nonzero remainder is 52 — 25/, and indeed we can see
that 3329 = 522 + 252



Sums of Two Squares, |

As a corollary to our characterization of the irreducible elements in
Z]i], we can deduce the following theorem of Fermat on when an
integer is the sum of two squares:

Theorem (Fermat’s Characterization of Sums of Two Squares)

Let n be a positive integer, and write n = 2%p* - plkq™ - - - g7,

where p1,--- , px are distinct primes congruent to 1 modulo 4 and
g1, - ,qq are distinct primes congruent to 3 modulo 4. Then n
can be written as a sum of two squares in 7 if and only if all the
m; are even. Furthermore, in this case, the number of ordered
pairs of integers (A, B) such that n = A?> 4+ B2 is equal to

4(!71 + 1)(”2 + 1) ce (I’Ik + 1)




Sums of Two Squares, Il

Proof:

@ Observe that the question of whether n can be written as the
sum of two squares n = A? 4+ B? is equivalent to the question
of whether n is the norm of a Gaussian integer A + Bi.

Write A+ Bi = p1p2- - pr as a product of irreducibles
(unique up to units), and take norms to obtain

n=N(p1) - N(p2)----- N(pr).

By our classification, if p is irreducible in Z[i], then N(p) is
either 2, a prime congruent to 1 modulo 4, or the square of a
prime congruent to 3 modulo 4. Hence there exists such a
choice of p; with n = [[ N(p;) if and only if all the m; are
even.



Sums of Two Squares, Ill

Proof (continued):

@ For the counting, since the factorization of A 4+ Bi is unique,
to find the number of possible pairs (A, B), we need only
count the number of ways to select terms for A+ Bi and
A — Bi from the factorization of n over Z[i], which is
n—= i*k(l 4 ,')2k(7rl7?1)nl .. (kak)nkqi"l . q[,"".

@ Up to associates, we must choose
A+ Bi = (1+ )K(xfg?) - - (e g™ 2 - g,
where a; + b; = n; for each 1 < < k.

@ Since there are n; + 1 ways to choose the pair (a;, b;), and 4
ways to multiply A+ Bi by a unit, the total number of ways is
4(n1+1)---(nk + 1), as claimed.



Sums of Two Squares, IV

Example: Find all ways of writing n = 6649 = 61 - 109 as the sum
of two squares.



Sums of Two Squares, IV

Example: Find all ways of writing n = 6649 = 61 - 109 as the sum
of two squares.

@ Note n is the product of two primes each congruent to 1
modulo 4, so it can be written as the sum of two squares in
16 different ways.

e We compute 61 = 52 + 62 and 109 = 102 + 32 (either by the
algorithm earlier or by inspection), so the 16 ways can be
found from the different ways of choosing one of 5+ 6/ and
multiplying it with 10 &+ 3/.

e Explicitly: (5+ 6/)(10 + 3/) = 32 + 75/, and
(54 6i)(10 — 3/) = 68 + 45/, so we obtain the sixteen ways of
writing 6649 as the sum of two squares as (4:32)? + (£75)?,
(£68)2 + (£45)2, and the eight other decompositions with
the terms interchanged.



Factorization in Z[v/—2], |

We can use a similar approach to the one we used in Z[i] to study
factorization in O =5 = Z[v/2] and O — = Z[**¥=2], which in
turn allows us to characterize the integers of the form a® + 2b? and
a% + 3p2.

o We will start with Z[v/=2].

@ By using a similar proof to the one we used for Z[i], we can

establish that Oﬁ is a Euclidean domain, hence is also a
PID and a UFD.

@ Also, the units in O, ,— are simply £1.



Factorization in Z[v/—2], Il

Our first task is to write down the irreducible elements:

Theorem (Irreducibles in O )

Up to associates, the irreducible elements in O ,— are as follows:

1. The element /—2 (of norm 2).
2. The primes p € 7 congruent to 5 or 7 modulo 8 (of norm p?).

3. The distinct irreducible factors a + b\/—2 and a — by/—2
(each of norm p) of p = a® + 2b? where p € 7 is congruent to
1 or 3 modulo 8.

v

The proof of this theorem is essentially the same as the one for the
Gaussian integers, except that we have to factor x? + 2 modulo p
rather than x? + 1.



Factorization in Z[v/—2], llI

Proof:

e Since Z[\/—2] is Euclidean, we may equivalently find the ideal
factors of the ideals (p) for integer primes p, which we may do
by factoring g(x) = x? + 2 modulo p.

@ For p =2 we have x?> + 2 = x? mod 2, so we get the ideal
factorization (2) = (v/—2)?, yielding the element factorization
2 =—(v=2)>2

@ For p=5 or 7 mod 8, the polynomial x? + 2 is irreducible
modulo p: from one of the “secondary” relations from
quadratic reciprocity, we know that —2 is a square modulo p if
and only if p is congruent to 1 or 3 mod 8. Thus, for p="5 or
7 mod 8, the ideal (p) is prime, so the element p is also prime.



Factorization in Z[v/—2], IV

Proof (continued):

o If p=1 or 3 mod 8, the polynomial x> + 2 factors modulo p,
say as x° +2 = (x — r)(x + r) (mod p). Then we get the
ideal factorization (p) = (p, /=2 —r) - (p,v/=2+r).

Since Z[v/=2] is a PID, we have (p,/=2+r) = (a+ by/-2)
for some a, b that we can compute by applying the Euclidean
algorithm to p and v/—2 + r. The conjugate ideal

(p,r —/=2) = (p,v/—2 — r) is then (a — by/-2).

This yields the ideal factorization

(p) = (a + by/—2)(a — by/—=2) and so we get the element
factorization p = (a + bv/—2)(a — by/—2) up to a unit factor,
which by rescaling we may assume is 1.

Then p = (a+ by/—2)(a — by/—2) = a® + 2b?, and we have
N(a+ by/—2) = a? +2b®> = p = N(a — b\/=2), so both
irreducible factors have norm p as claimed.



Factorization in Z[v/—2], V

We can use the same general factorization procedure as in Z[i] to
compute element factorizations in Z[v/—2].

o First, find the prime factorization of N(a+ by/—2) = a° + 2b?
over the integers Z, and write down a list of all (rational)
primes p € Z dividing N(a + byv/—2).

@ Second, for each p on the list, find the factorization of p in
the ring in Z[v/—2], which we can do by solving p = a? + 2b?
in integers a, b for p = 1,3 (mod 8).

@ We can find this factorization by inspection for small p, and
for large p we can find a solution by solving the quadratic
r> = —D (mod p) and then using the Euclidean algorithm to
compute the gcd a+ byv/—D of pand v—D +rin O —p.

o Finally, use trial division to determine which irreducible
elements divide a + by/—D in (’)\/j and to which powers.



Factorization in Z[v/—2], VI

Example: Find the prime factorization of 47 4+ 32/—2 in Z[/—2].



Factorization in Z[v/—2], VI

Example: Find the prime factorization of 47 4+ 32/—2 in Z[/—2].

o We compute N(47 4 32/—2) = 47% +2-322 =32.11-43, so
the primes dividing the norm are 3, 11, and 43.

e Over Z[v/—2], we find the factorizations
3=124+2-12=(1+vV=-2)(1 -V-2),
11=32+2-12=3++v/-2)(3-+v-2) and

43=52+2.32=(5+3y/-2)(5-3vV-2).

@ Now we just do trial division to find the correct powers of
each of these elements dividing 47 4+ 32v/—2: we will get two
of 1 £+/—2 and one each of 3£ +/—2 and 5 £ 3/-2.

@ Doing the trial division yields the factorization

47 +32y/=2 = (1 + v/-2)?(3 — v/-2)(5 — 3v/-2).



Factorization in Z[v/—2], VI

We can use our characterization of primes in Z[v/—2] to describe

the integers that can be represented by the quadratic form
a® + 2b%:

Theorem (Integers of the Form a2 + 2b?)

Let n be a positive integer, and write n = 2%p{* - - plkq™ - - g4,
where p1,-- - , px are distinct primes congruent to 1 or 3 modulo 8
and q1,--- ,qq are distinct primes congruent to 5 or 7 modulo 8.
Then n can be written in the form a®> + 2b? for integers a, b if and
only if all the m; are even. Furthermore, in this case, the number
of ordered pairs of integers (A, B) such that n = A2 + 2B? is equal

to2(n +1)(np+1)---(ng +1).

v



Factorization in Z[v/—2], VIII

Proof:

@ The question of whether n can be written as n = A% + 2B is
equivalent to the question of whether n is the norm of an
element A+ By/=2 € Z[/=2].

e Write A+ B\/—2 = p1p2--- p, as a product of irreducibles
(unique up to units), and take norms to obtain
n=N(p1)-N(p2)---- N(pr).

@ By the classification of primes in Z[\/=2], if p is irreducible in
Z[v/-2], then N(p) is either 2, a prime congruent to 1 or 3
modulo 8, or the square of a prime congruent to 5 or 7
modulo 8. Hence there exists such a choice of p; with
n =[] N(pi) if and only if all the m; are even.



Factorization in Z[v/—2], IX

Proof (continued):

@ For the counting, since the factorization of A+ Bv/—2 is
unique, to find the number of possible pairs (A, B), we need
only count the number of ways to select terms for A+ By/—2
and A — By/—2 from the factorization of n over Z[v/—2],
which is n = (—1)K(v/=2)?K(mym1)™ - - (mice) ™™ - - - gl

@ Up to associates, we must choose
A+ B /5 — ( /_2)k(,ﬂ.i?1ﬂ.—1b1) . (Wikﬂ.—kbk)q{nlﬁ . qZ7d/2’
where a; + b; = n; for each 1 < < k.

@ Since there are n; + 1 ways to choose the pair (aj, b;), and 2
ways to multiply A+ B+/—2 by a unit, the total number of
ways is 2(n1 + 1) - - (ng + 1), as claimed.



Factorization in Z[v/—2], X

Example: Determine whether 21, 101, and 292 can be written in
the form a® + 2b? for integers a and b.



Factorization in Z[v/—2], X

Example: Determine whether 21, 101, and 292 can be written in
the form a® + 2b? for integers a and b.
@ We have 21 = 3-7. Since there is a prime congruent to 7 mod
8 that occurs to an odd power, 21 is not of the form a® + 2b?.
@ The integer 101 is prime, and it is congruent to 5 modulo 8.
Therefore, it cannot be written in the form a2 + 2b2.
o We have 292 = 22 . 73. Since 73 is congruent to 1 modulo 8,

each odd prime is congruent to 1 or 3 modulo 8, so 292 can
be written in the form a® + 252



Summary

We characterized the primes in Z[i], described how to compute
factorizations in Z[i], and characterized the integers that are sums
of two squares.

We characterized the primes in Z[v/—2], described how to compute
factorizations in Z[v/—2], and characterized the integers of the
form a2 + 2b°.

Next lecture: Factorization in (’)\ﬁ, Diophantine equations



