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Factorization in Z[i ], Z[
√
−2], and O√−3.

Factorization in Z[i ] and Sums of Two Squares

Factorization in Z[
√
−2], and O√−3

This material represents §8.3.1-8.3.2 from the course notes.



Recall

Last time, we proved the Kummer-Dedekind factorization theorem:

Theorem (Factorization of (p) in OD)

Let p be a prime and let

q(x) =

{
x2 − D for D ≡ 2, 3 mod 4

x2 − x − (D − 1)/4 for D ≡ 1 mod 4
, where

ω =

{√
D for D ≡ 2, 3 mod 4

(1 +
√
D)/2 for D ≡ 1 mod 4

is a root of q(x).

If the polynomial q(x) has a repeated root r modulo p then the
ideal (p) = (p, ω − r)2 is the square of a prime ideal of norm p in
OD , if q(x) is irreducible modulo p then the ideal (p) is prime in
OD of norm p2, and if q(x) is reducible with distinct roots r , r ′

modulo p, then (p) = (p, ω − r) · (p, ω − r ′) factors as the product
of two distinct ideals in OD each of norm p.

This theorem tells us how to find prime ideals in OD .



Factorization in Z[i ], I

Now we will discuss factorization in the Gaussian integers Z[i ],
which we have already shown to be a Euclidean domain, a principal
ideal domain, and a unique factorization domain.

We need only analyze the factorization of primes p, which is
fully determined by the ideal factorization of (p) inside Z[i ].

Because N(a + bi) = a2 + b2, factorization in Z[i ] is closely
related to the question of writing an integer as the sum of two
squares, and so by analyzing prime factorizations in Z[i ], we
can classify the integers that can be written as the sum of two
squares.



Factorization in Z[i ], II

Our first task is to write down the irreducible elements in Z[i ]:

Theorem (Irreducibles in Z[i ])

Up to associates, the irreducible elements in Z[i ] are as follows:

1. The element 1 + i (of norm 2).

2. The primes p ∈ Z congruent to 3 modulo 4 (of norm p2).

3. The distinct irreducible factors a+ bi and a− bi (each of norm
p) of p = a2 + b2 where p ∈ Z is congruent to 1 modulo 4.

There are various ways to prove this result using modular
arithmetic (which I usually discuss in Math 3527), but we can
establish this result directly from our theorem on factoring the
ideal (p).



Factorization in Z[i ], III

Proof:

Since Z[i ] is Euclidean, we may equivalently find the ideal
factors of the ideals (p) for integer primes p, which we may do
by factoring q(x) = x2 + 1 modulo p.

For p = 2 we have x2 + 1 ≡ (x − 1)2 mod 2. This gives the
ideal factorization (2) = (2, i + 1)2, yielding the element
factorization 2 = −(i + 1)2.

For p ≡ 3 mod 4, we claim x2 + 1 is irreducible modulo p.

To see this note that

(
−1

p

)
≡ (−1)(p−1)/2 ≡ −1 (mod p) by

Euler’s criterion, so −1 is not a square mod p.

Thus, (p) is prime in Z[i ], so the element p is irreducible and
its norm is p2.



Factorization in Z[i ], IV

Proof (continued):

Finally, suppose p ≡ 1 mod 4: then
(
−1
p

)
≡ (−1)(p−1)/2 ≡ 1

(mod p) by Euler’s criterion, so x2 + 1 factors modulo p, say
as x2 + 1 ≡ (x − r)(x + r) (mod p).

This gives the ideal factorization (p) = (p, i − r) · (p, i + r).

Since Z[i ] is a PID, the ideal (p, i + r) is principal, say
(a + bi) for some a, b which we can compute by applying the
Euclidean algorithm to p and i + r . Then the conjugate ideal
(p, r − i) = (p, i − r) is equal to (a− bi).

This yields the ideal factorization (p) = (a + bi)(a− bi) and
so we get the element factorization p = (a + bi)(a− bi) up to
a unit factor, which by rescaling we may assume is 1.

This means p = (a + bi)(a− bi) = a2 + b2, and we have
N(a + bi) = a2 + b2 = p = N(a− bi), so both irreducible
factors have norm p as claimed.



Factorization in Z[i ], V

With the list of prime elements in hand, we can give a procedure
for finding the prime factorization of an arbitrary Gaussian integer:

First, find the prime factorization of N(a + bi) = a2 + b2 over
the integers Z, and write down a list of all (rational) primes
p ∈ Z dividing N(a + bi).

Second, for each p on the list, find the factorization of p over
the Gaussian integers Z[i ].

Finally, use trial division to determine which of these
irreducible elements divide a + bi in Z[i ], and to which
powers. (The factorization of N(a + bi) can be used to
determine the expected number of powers.)



Factorization in Z[i ], V

Example: Find the factorization of 7− 11i into irreducibles in Z[i ].

We compute N(7− 11i) = 72 + (−11)2 = 170 = 2 · 5 · 17.

Over Z[i ], we find the factorizations 2 = −i(1 + i)2,
5 = (2 + i)(2− i), and 17 = (4 + i)(4− i).

Now we just do trial division to find the correct elements
dividing 4 + 22i : we will get one copy of 1 + i , one element
from {2 + i , 2− i}, and one from {4 + i , 4− i}.
Doing the trial division yields the factorization
7− 11i = −i(1 + i)(2− i)(4 + i).
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Factorization in Z[i ], VI

Example: Find the factorization of 4 + 22i into irreducibles in Z[i ].

We compute N(4 + 22i) = 42 + 222 = 22 · 53. The primes
dividing N(4 + 22i) are 2 and 5.

Over Z[i ], we find the factorizations 2 = −i(1 + i)2 and
5 = (2 + i)(2− i).

Now we just do trial division to find the correct powers of
each of these elements dividing 4 + 22i .

Since N(4 + 22i) = 22 · 53, we should get two copies of (1 + i)
and three elements from {2 + i , 2− i}.
Doing the trial division yields the factorization
4 + 22i = −i · (1 + i)2 · (2 + i)3. (Note that in order to have
powers of the same irreducible element, we left the unit −i in
front of the factorization.)



Factorization in Z[i ], VI
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Factorization in Z[i ], VII

The primes appearing in the example above were small enough to
factor over Z[i ] by inspection, but if p ≡ 1 (mod 4) is large then it
is not so obvious how to factor p in Z[i ]. We briefly explain how to
find this expression algorithmically.

We have the ideal factorization (p) = (p, i + r) · (p, i − r) and
then use the Euclidean algorithm to write
(p, i + r) = (a + bi). Thus, all we need to do is find a root r
of the polynomial x2 + 1 (mod p), which is equivalent to
finding a square root of −1 modulo p.

We can do this using Euler’s criterion: for any quadratic
nonresidue u modulo p, Euler’s criterion tells us that
u(p−1)/2 ≡ −1 (mod p), and so u(p−1)/4 will be a square root
of −1.



Factorization in Z[i ], VIII

There is no general formula for identifying a quadratic nonresidue
modulo an arbitrary prime p, but we can just search small residue
classes (or random residue classes) until we find one.

Indeed, we don’t even need to test whether u is a quadratic
residue: we can just try calculating u(p−1)/4, which will either
be a square root of −1 or a square root of +1, but in the
latter case we will get ±1 and thus know we need to try a
different u.

Then, as noted on the last slide, to compute the solution to
p = a2 + b2 we can use the Euclidean algorithm in Z[i ] to find
a greatest common divisor of p and r + i in Z[i ]: the result
will be an element π = a + bi with a2 + b2 = p.



Factorization in Z[i ], IX

Example: Express the prime p = 3329 as the sum of two squares
using the fact that 3(p−1)/4 ≡ 1729 (mod p).

Our discussion on the last slides tells us that 1729 is a square
root of −1 modulo p: indeed, we can double-check by
computing 17292 + 1 = 898 · 3329.

Now we compute the gcd of 1729 + i and 3329 in Z[i ] using
the Euclidean algorithm:

3329 = 2(1729 + i) + (−129− 2i)

1729 + i = −13(−129− 2i) + (52− 25i)

−129− 2i = (−2− i)(52− 25i)

The last nonzero remainder is 52− 25i , and indeed we can see
that 3329 = 522 + 252.
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Sums of Two Squares, I

As a corollary to our characterization of the irreducible elements in
Z[i ], we can deduce the following theorem of Fermat on when an
integer is the sum of two squares:

Theorem (Fermat’s Characterization of Sums of Two Squares)

Let n be a positive integer, and write n = 2kpn11 · · · p
nk
k qm1

1 · · · q
md
d ,

where p1, · · · , pk are distinct primes congruent to 1 modulo 4 and
q1, · · · , qd are distinct primes congruent to 3 modulo 4. Then n
can be written as a sum of two squares in Z if and only if all the
mi are even. Furthermore, in this case, the number of ordered
pairs of integers (A,B) such that n = A2 + B2 is equal to
4(n1 + 1)(n2 + 1) · · · (nk + 1).



Sums of Two Squares, II

Proof:

Observe that the question of whether n can be written as the
sum of two squares n = A2 + B2 is equivalent to the question
of whether n is the norm of a Gaussian integer A + Bi .

Write A + Bi = ρ1ρ2 · · · ρr as a product of irreducibles
(unique up to units), and take norms to obtain
n = N(ρ1) · N(ρ2) · · · · · N(ρr ).

By our classification, if ρ is irreducible in Z[i ], then N(ρ) is
either 2, a prime congruent to 1 modulo 4, or the square of a
prime congruent to 3 modulo 4. Hence there exists such a
choice of ρi with n =

∏
N(ρi ) if and only if all the mi are

even.



Sums of Two Squares, III

Proof (continued):

For the counting, since the factorization of A + Bi is unique,
to find the number of possible pairs (A,B), we need only
count the number of ways to select terms for A + Bi and
A− Bi from the factorization of n over Z[i ], which is
n = i−k(1 + i)2k(π1π1)n1 · · · (πkπk)nkqm1

1 · · · q
md
d .

Up to associates, we must choose

A + Bi = (1 + i)k(πa11 π1
b1) · · · (πakk πk

bk )q
m1/2
1 · · · qmd/2

d ,
where ai + bi = ni for each 1 ≤ i ≤ k.

Since there are ni + 1 ways to choose the pair (ai , bi ), and 4
ways to multiply A + Bi by a unit, the total number of ways is
4(n1 + 1) · · · (nk + 1), as claimed.



Sums of Two Squares, IV

Example: Find all ways of writing n = 6649 = 61 · 109 as the sum
of two squares.

Note n is the product of two primes each congruent to 1
modulo 4, so it can be written as the sum of two squares in
16 different ways.

We compute 61 = 52 + 62 and 109 = 102 + 32 (either by the
algorithm earlier or by inspection), so the 16 ways can be
found from the different ways of choosing one of 5± 6i and
multiplying it with 10± 3i .

Explicitly: (5 + 6i)(10 + 3i) = 32 + 75i , and
(5 + 6i)(10− 3i) = 68 + 45i , so we obtain the sixteen ways of
writing 6649 as the sum of two squares as (±32)2 + (±75)2,
(±68)2 + (±45)2, and the eight other decompositions with
the terms interchanged.
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Factorization in Z[
√
−2], I

We can use a similar approach to the one we used in Z[i ] to study

factorization in O√−2 = Z[
√

2] and O√−3 = Z[1+
√
−3

2 ], which in

turn allows us to characterize the integers of the form a2 + 2b2 and
a2 + 3b2.

We will start with Z[
√
−2].

By using a similar proof to the one we used for Z[i ], we can
establish that O√−2 is a Euclidean domain, hence is also a
PID and a UFD.

Also, the units in O√−2 are simply ±1.



Factorization in Z[
√
−2], II

Our first task is to write down the irreducible elements:

Theorem (Irreducibles in O√−2)

Up to associates, the irreducible elements in O√−2 are as follows:

1. The element
√
−2 (of norm 2).

2. The primes p ∈ Z congruent to 5 or 7 modulo 8 (of norm p2).

3. The distinct irreducible factors a + b
√
−2 and a− b

√
−2

(each of norm p) of p = a2 + 2b2 where p ∈ Z is congruent to
1 or 3 modulo 8.

The proof of this theorem is essentially the same as the one for the
Gaussian integers, except that we have to factor x2 + 2 modulo p
rather than x2 + 1.



Factorization in Z[
√
−2], III

Proof:

Since Z[
√
−2] is Euclidean, we may equivalently find the ideal

factors of the ideals (p) for integer primes p, which we may do
by factoring q(x) = x2 + 2 modulo p.

For p = 2 we have x2 + 2 ≡ x2 mod 2, so we get the ideal
factorization (2) = (

√
−2)2, yielding the element factorization

2 = −(
√
−2)2.

For p ≡ 5 or 7 mod 8, the polynomial x2 + 2 is irreducible
modulo p: from one of the “secondary” relations from
quadratic reciprocity, we know that −2 is a square modulo p if
and only if p is congruent to 1 or 3 mod 8. Thus, for p ≡ 5 or
7 mod 8, the ideal (p) is prime, so the element p is also prime.



Factorization in Z[
√
−2], IV

Proof (continued):

If p ≡ 1 or 3 mod 8, the polynomial x2 + 2 factors modulo p,
say as x2 + 2 ≡ (x − r)(x + r) (mod p). Then we get the
ideal factorization (p) = (p,

√
−2− r) · (p,

√
−2 + r).

Since Z[
√
−2] is a PID, we have (p,

√
−2 + r) = (a + b

√
−2)

for some a, b that we can compute by applying the Euclidean
algorithm to p and

√
−2 + r . The conjugate ideal

(p, r −
√
−2) = (p,

√
−2− r) is then (a− b

√
−2).

This yields the ideal factorization
(p) = (a + b

√
−2)(a− b

√
−2) and so we get the element

factorization p = (a + b
√
−2)(a− b

√
−2) up to a unit factor,

which by rescaling we may assume is 1.

Then p = (a + b
√
−2)(a− b

√
−2) = a2 + 2b2, and we have

N(a + b
√
−2) = a2 + 2b2 = p = N(a− b

√
−2), so both

irreducible factors have norm p as claimed.



Factorization in Z[
√
−2], V

We can use the same general factorization procedure as in Z[i ] to
compute element factorizations in Z[

√
−2].

First, find the prime factorization of N(a + b
√
−2) = a2 + 2b2

over the integers Z, and write down a list of all (rational)
primes p ∈ Z dividing N(a + b

√
−2).

Second, for each p on the list, find the factorization of p in
the ring in Z[

√
−2], which we can do by solving p = a2 + 2b2

in integers a, b for p ≡ 1, 3 (mod 8).

We can find this factorization by inspection for small p, and
for large p we can find a solution by solving the quadratic
r2 ≡ −D (mod p) and then using the Euclidean algorithm to
compute the gcd a + b

√
−D of p and

√
−D + r in O√−D .

Finally, use trial division to determine which irreducible
elements divide a + b

√
−D in O√−D and to which powers.



Factorization in Z[
√
−2], VI

Example: Find the prime factorization of 47 + 32
√
−2 in Z[

√
−2].

We compute N(47 + 32
√
−2) = 472 + 2 · 322 = 32 · 11 · 43, so

the primes dividing the norm are 3, 11, and 43.

Over Z[
√
−2], we find the factorizations

3 = 12 + 2 · 12 = (1 +
√
−2)(1−

√
−2),

11 = 32 + 2 · 12 = (3 +
√
−2)(3−

√
−2) and

43 = 52 + 2 · 32 = (5 + 3
√
−2)(5− 3

√
−2).

Now we just do trial division to find the correct powers of
each of these elements dividing 47 + 32

√
−2: we will get two

of 1±
√
−2 and one each of 3±

√
−2 and 5± 3

√
−2.

Doing the trial division yields the factorization
47 + 32

√
−2 = (1 +

√
−2)2(3−

√
−2)(5− 3

√
−2).
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√
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√
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√
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Factorization in Z[
√
−2], VII

We can use our characterization of primes in Z[
√
−2] to describe

the integers that can be represented by the quadratic form
a2 + 2b2:

Theorem (Integers of the Form a2 + 2b2)

Let n be a positive integer, and write n = 2kpn11 · · · p
nk
k qm1

1 · · · q
md
d ,

where p1, · · · , pk are distinct primes congruent to 1 or 3 modulo 8
and q1, · · · , qd are distinct primes congruent to 5 or 7 modulo 8.
Then n can be written in the form a2 + 2b2 for integers a, b if and
only if all the mi are even. Furthermore, in this case, the number
of ordered pairs of integers (A,B) such that n = A2 + 2B2 is equal
to 2(n1 + 1)(n2 + 1) · · · (nk + 1).



Factorization in Z[
√
−2], VIII

Proof:

The question of whether n can be written as n = A2 + 2B2 is
equivalent to the question of whether n is the norm of an
element A + B

√
−2 ∈ Z[

√
−2].

Write A + B
√
−2 = ρ1ρ2 · · · ρr as a product of irreducibles

(unique up to units), and take norms to obtain
n = N(ρ1) · N(ρ2) · · · · · N(ρr ).

By the classification of primes in Z[
√
−2], if ρ is irreducible in

Z[
√
−2], then N(ρ) is either 2, a prime congruent to 1 or 3

modulo 8, or the square of a prime congruent to 5 or 7
modulo 8. Hence there exists such a choice of ρi with
n =

∏
N(ρi ) if and only if all the mi are even.



Factorization in Z[
√
−2], IX

Proof (continued):

For the counting, since the factorization of A + B
√
−2 is

unique, to find the number of possible pairs (A,B), we need
only count the number of ways to select terms for A + B

√
−2

and A− B
√
−2 from the factorization of n over Z[

√
−2],

which is n = (−1)k(
√
−2)2k(π1π1)n1 · · · (πkπk)nkqm1

1 · · · q
md
d .

Up to associates, we must choose

A + B
√
−2 = (

√
−2)k(πa11 π1

b1) · · · (πakk πk
bk )q

m1/2
1 · · · qmd/2

d ,
where ai + bi = ni for each 1 ≤ i ≤ k.

Since there are ni + 1 ways to choose the pair (ai , bi ), and 2
ways to multiply A + B

√
−2 by a unit, the total number of

ways is 2(n1 + 1) · · · (nk + 1), as claimed.



Factorization in Z[
√
−2], X

Example: Determine whether 21, 101, and 292 can be written in
the form a2 + 2b2 for integers a and b.

We have 21 = 3 · 7. Since there is a prime congruent to 7 mod
8 that occurs to an odd power, 21 is not of the form a2 + 2b2.

The integer 101 is prime, and it is congruent to 5 modulo 8.
Therefore, it cannot be written in the form a2 + 2b2.

We have 292 = 22 · 73. Since 73 is congruent to 1 modulo 8,
each odd prime is congruent to 1 or 3 modulo 8, so 292 can
be written in the form a2 + 2b2.
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Summary

We characterized the primes in Z[i ], described how to compute
factorizations in Z[i ], and characterized the integers that are sums
of two squares.

We characterized the primes in Z[
√
−2], described how to compute

factorizations in Z[
√
−2], and characterized the integers of the

form a2 + 2b2.

Next lecture: Factorization in O√−3, Diophantine equations


