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This material represents §8.2.2-8.2.3 from the course notes.



Recap, I

Last time, we introduced divisibility of ideals:

Definition

If I and J are ideals of OD , we say that I divides J, written I |J, if
there is some ideal K such that J = IK .

Proposition (Properties of Ideal Divisibility)

Suppose I and J are ideals of OD and r ∈ OD.

1. If I divides J, then I contains J.

2. We have I |J and J|I if and only if I = J.

3. The principal ideal (r) divides I if and only if (r) contains I .

4. If (r)J = (r)K and r 6= 0, then J = K.

5. If IJ = IK and I 6= 0, then J = K.

6. The ideal I divides J if and only if I contains J.



Recap, II

We then proved that every nonzero ideal has a unique factorization
as a product of prime ideals:

Theorem (Uniqueness of Prime Ideal Factorization in OD)

Every nonzero ideal in OD can be written as the product of prime
ideals of OD . Furthermore, this representation is unique up to
rearrangement: if I = P1P2 · · ·Pn = Q1Q2 · · ·Qk , then n = k and
there is some rearrangement of the Qi so that Pi = Qi .

Our goal now is to discuss how to identify the prime ideals inside
OD .
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In fact, we can narrow down the possible norms of prime ideals in
OD quite substantially, and they all arise from primes in Z.

Proposition (Prime Ideals in OD)

If P is a nonzero prime ideal of OD , then P ∩ Z = pZ for a unique
prime p ∈ Z (we say P “lies above” the prime ideal pZ of Z).
Furthermore, every prime ideal in OD lying above pZ divides the
ideal (p) in OD , and the norm of any prime ideal is either p or p2.

As a consequence, since (p) is a product of prime ideals, either (p)
itself is prime (and has norm p2) or (p) splits as the product of two
prime ideals (p) = P1P2 each of norm p.
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Proof:

Let ϕ : Z→ OD be the inclusion homomorphism, and observe
that ϕ−1(P) = P ∩ Z is then an ideal of Z, since the inverse
image contains 0 and is closed under subtraction and arbitrary
multiplication.

Furthermore, if ab ∈ ϕ−1(P) then ϕ(a)ϕ(b) = ϕ(ab) ∈ P, so
since P is prime we see ϕ(a) ∈ P or ϕ(b) ∈ P: thus, either a
or b is in ϕ−1(P).

Also, since ϕ maps 1Z to 1OD
, ϕ−1(P) does not contain 1,

and since P contains the nonzero integer N(P), we conclude
that ϕ−1(P) = P ∩ Z is a nonzero prime ideal of Z.
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Proof (continued):

The result of the last slide says that P ∩ Z = pZ for a unique
prime p ∈ Z.

Thus, P contains p ∈ Z hence P contains (p), so by the
equivalence of divisibility and containment, we see that P
divides (p).

For the last statement, since P divides (p) we see that N(P)
divides N((p)) = N(p) = p2, so since N(P) > 1 we must have
N(p) = p or N(p) = p2.
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This last result tells us that we can find all the prime ideals in OD

by studying the factorization of the ideal (p) in OD .

Let’s work out some examples in the case OD = Z[i ]. Since
Z[i ] is a PID, we just need to look at factorizations of the
prime numbers p inside Z[i ].

Moreover, as we noted earlier, either p itself is prime, or it
splits as the product of two prime ideals. If one of these ideals
is (a + bi) then we must have (a + bi)(a− bi) = (p) and so
a2 + b2 = p (up to a unit factor, but this unit must be 1).

So in fact we are reduced to determining whether p is the sum
of two squares.
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Examples: Find the factorizations of the ideals (2), (3), (5), (7),
(11), (13), (17), (19), (23), and (29) in Z[i ].

We just have to decide which primes are the sum of two
squares, and write the corresponding products of ideals.

We see 2 = 12 + 12, 5 = 22 + 12, 13 = 32 + 22, 17 = 42 + 12,
and 29 = 52 + 22, yielding the ideal factorizations
(2) = (1 + i)(1− i) = (1 + i)2,
(5) = (2 + i)(2− i),
(13) = (3 + 2i)(3− 2i),
(17) = (4 + i)(4− i), and
(29) = (5 + 2i)(5− 2i).

Also, the other primes 3, 7, 11, 19, 23 are visibly not the sum
of two squares (they are all 3 mod 4) and so each of the ideals
(3), (7), (11), (19), (23) is prime in Z[i ].



Unique Factorization of Ideals in OD , XVIII

Examples: Find the factorizations of the ideals (2), (3), (5), (7),
(11), (13), (17), (19), (23), and (29) in Z[i ].

We just have to decide which primes are the sum of two
squares, and write the corresponding products of ideals.

We see 2 = 12 + 12, 5 = 22 + 12, 13 = 32 + 22, 17 = 42 + 12,
and 29 = 52 + 22, yielding the ideal factorizations
(2) = (1 + i)(1− i) = (1 + i)2,
(5) = (2 + i)(2− i),
(13) = (3 + 2i)(3− 2i),
(17) = (4 + i)(4− i), and
(29) = (5 + 2i)(5− 2i).

Also, the other primes 3, 7, 11, 19, 23 are visibly not the sum
of two squares (they are all 3 mod 4) and so each of the ideals
(3), (7), (11), (19), (23) is prime in Z[i ].



Unique Factorization of Ideals in OD , XIX

Based on these examples, we can make some fairly natural
conjectures about what the prime ideals in Z[i ] are. (We will do all
of this rigorously later, of course; this discussion is just
motivation.) So here are some reasonable guesses:

There is a unique prime ideal (1 + i) above 2, with
(2) = (1 + i)2 decomposing as a product with repeated
factors.

If p ≡ 3 mod 4 then the ideal (p) remains prime in Z[i ].

If p ≡ 1 mod 4 then (p) = (π)(π) factors as the product of
distinct ideals.

What we would like to do is reformulate these statements in a way
that might be generalizable to other quadratic integer rings,
because these statements really rely on unique factorization of
elements.
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We can give another way of describing the prime ideals and their
behavior in Z[i ] in terms of the behavior of the polynomial
q(x) = x2 + 1 modulo p, which (it just so happens) is the minimal
polynomial of the generator i ∈ Z[i ].

If the polynomial q(x) has a repeated root modulo p (which
only happens with p = 2) then the ideal (p) decomposes as a
product with repeated factors.

If the polynomial q(x) is irreducible modulo p (which is
equivalent to saying that −1 is not a square modulo p, which
occurs when p ≡ 3 mod 4) then (p) remains prime in Z[i ].

If the polynomial q(x) factors with distinct roots modulo p
(which is equivalent to saying that −1 is a square modulo p,
which occurs when p ≡ 1 mod 4) then (p) factors as the
product of two distinct conjugate ideals.

This is a statement that we can generalize to other OD .
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Here is the main result, which is a special case of a general theorem
of a result known as the Dedekind-Kummer factorization theorem:

Theorem (Factorization of (p) in OD)

Let p be a prime and let

q(x) =

{
x2 − D for D ≡ 2, 3 mod 4

x2 − x − (D − 1)/4 for D ≡ 1 mod 4
, where

ω =

{√
D for D ≡ 2, 3 mod 4

(1 +
√
D)/2 for D ≡ 1 mod 4

is a root of q(x).

If the polynomial q(x) has a repeated root r modulo p then the
ideal (p) = (p, ω − r)2 is the square of a prime ideal of norm p in
OD , if q(x) is irreducible modulo p then the ideal (p) is prime in
OD of norm p2, and if q(x) is reducible with distinct roots r , r ′

modulo p, then (p) = (p, ω − r) · (p, ω − r ′) factors as the product
of two distinct ideals in OD each of norm p.
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Some comments before I launch into this long proof:

Understanding the technical details of how this proof works
are not at all necessary in order to understand how to use the
results of the theorem. For the purposes of this class, it is fine
if you want to view this theorem as akin to a “black box”, the
details of whose internal workings are entirely opaque.

The starting point of the proof is the observation that if q(x)
is the minimal polynomial of the generator of OD , then as
rings we have an isomorphism Z[x ]/(q(x)) ∼= OD .

This follows by applying the first isomorphism theorem to the
evaluation homomorphism ϕ : p 7→ p(α).

We then make a bunch of manipulations of the quotient ring
(in particular, we will use the Chinese remainder theorem
when q(x) factors) and use the ring isomorphism theorems.



Computing Ideal Factorizations in OD , III

Theorem (Second Isomorphism Theorem)

If A is a subring of R and B is an ideal of R, then
A + B = {a + b : a ∈ A, b ∈ B} is a subring of A, A ∩ B is an
ideal of A, and (A + B)/B is isomorphic to A/(A ∩ B).

Theorem (Third Isomorphism Theorem)

If I and J are ideals of R with I ⊆ J, then J/I is an ideal of R/I
and (R/I )/(J/I ) is isomorphic to R/J.

Theorem (Fourth/Lattice Isomorphism Theorem)

If I is an ideal of R, then there is an inclusion-preserving bijection
between subrings A of R containing I and the subrings A = A/I of
R/I . Furthermore, a subring A of R containing I is an ideal of R if
and only if A/I is an ideal of R/I .
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Proof:

Observe that OD
∼= Z[x ]/(q(x)).

Thus, by the isomorphism theorems we see that

OD/(p) ∼= [Z[x ]/(q(x))] /(p)
∼= Z[x ]/(p, q(x))
∼= [Z[x ]/(p)] /(q(x))
∼= Fp[x ]/(q(x)).

Thus, the ring structure of OD/(p) is the same as the ring
structure of Fp[x ]/(q(x)).

Our task is now to unravel the structure of this ring.
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Proof (continued):

We have OD/(p) ∼= Fp[x ]/(q(x)).

The ideal (p) is prime (equivalently, maximal) in OD precisely
when the quotient ring is a field, and this occurs exactly when
q(x) is irreducible in Fp[x ]. In this case, N((p)) = p2 so (p) is
prime of norm p2.

If (p) is not prime, then since N((p)) = p2, we see that (p)
must factor as the product of two prime ideals I and I ′ each
of norm p.

Furthermore, since I · I = (N(I )) = (p), by uniqueness of the
prime ideal factorization we see that I ′ = I , so the ideals in
the factorization are conjugates.
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Proof (continued2):

We have OD/(p) ∼= Fp[x ]/(q(x)) and are analyzing the case
where (p) = I I .

If I 6= I then I + I = OD because I is maximal and I + I 6= I .

This means I and I are comaximal, so the Chinese remainder
theorem implies that OD/(p) ∼= OD/I ×OD/I is the direct
product of two fields, and has no nonzero nilpotent elements.

On the other hand, if I = I , then OD/(p) = OD/I
2 has a

nonzero nilpotent element (namely, the class of any element
in I but not in I 2).

Now we look at the ring Fp[x ]/(q(x)).
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Proof (continued3):

We have OD/(p) ∼= Fp[x ]/(q(x)), where q(x) factors modulo
p. There are two possible factorizations: either
q(x) = (x − r)2 or q(x) = (x − r)(x − r ′) with r 6= r ′.

If q(x) = (x − r)(x − r ′) in Fp[x ], then the quotient ring
OD/(p) ∼= Fp[x ]/(q(x)) ∼= Fp[x ]/(x − r)× Fp[x ]/(x − r ′) ∼=
Fp × Fp is a direct product of two fields by the Chinese
remainder theorem, and has no nonzero nilpotent elements.

If q(x) = (x − r)2 in Fp[x ], then OD/(p) ∼= Fp[x ]/(x − r)2

does have a nonzero nilpotent element (namely x − r).

Thus, comparing the ring structures in the two cases
immediately shows that the case where I = I corresponds to
the case where q(x) has a repeated root, and I 6= I
corresponds to the case where q(x) has distinct roots.
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Proof (continued4):

For the remaining statements, if r is a root of q(x) in Fp,
then (p, ω − r) divides (p) since it contains (p), and since
ω − r 6∈ (p) we see that (p, ω − r) is a proper divisor of (p).

Furthermore, N((p, ω − r)) is the greatest common divisor of
N(p) = p2, tr(p(ω − r)) = ptr(ω − r), and
N(ω − r) = q(r) ≡ 0 mod p. Since each of the terms is
divisible by p, the gcd cannot be 1, and therefore (p, ω − r) is
a proper ideal. By the uniqueness of the prime ideal
factorization, (p, ω − r) must be a prime ideal dividing (p).

If (p) is the square of a prime ideal, then (p) = (p, ω − r)2,
while if (p) is the product of distinct ideals, we see that (p) is
divisible by both (p, ω − r) and (p, ω − r ′), and since these
ideals are comaximal we conclude (p) = (p, ω− r) · (p, ω− r ′).
This establishes everything, so we are done.
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Example: Find the prime ideal factorizations of (2), (3), (5), and
(7) in O7 = Z[

√
7].

For (2) we consider x2 − 7 modulo 2: since it has a repeated
root 1, we see (2) = (2,

√
7− 1)2 in Z[

√
7].

For (3) we consider x2 − 7 modulo 3: since its roots are 1 and
2, we get (3) = (3,

√
7− 1) · (3,

√
7− 2).

For (5) we consider x2− 7 modulo 5: since it has no roots, we
see that (5) remains prime in Z[

√
7].

For (7) we consider x2 − 7 modulo 7: since it has a repeated
root 0, we see (7) = (7,

√
7)2 = (

√
7)2.
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Example: Find the prime ideal factorizations of (2), (3), (5), (7),
and (11) in O√5 = Z[α] where α = (1 +

√
5)/2.

For (2) we consider x2 − x − 1 modulo 2. It has no roots, so
(2) remains prime in O√5.

For (3) we consider x2 − x − 1 modulo 3. It has no roots, so
(3) remains prime in O√5.

For (5) we consider x2 − x − 1 modulo 5. It has a repeated

root 3, so (5) = (5, α− 3)2 = (5, −5+
√
5

2 )2 = (
√

5)2.

For (7) we consider x2 − x − 1 modulo 7. It has no roots, so
(7) remains prime in O√5.

For (11) we consider x2 − x − 1 modulo 11. It has roots −3
and 4, so
(11) = (11, α+ 3)(11, α− 4) = (11, 7+

√
5

2 )(11, 7−
√
5

2 ) in O√5.
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Example: Compute the ideal factorization of (6) inside Z[
√
−5].

Then show that the two element factorizations 6 = 2 · 3 and
6 = (1 +

√
−5) · (1−

√
−5) yield the same ideal factorization.

We have (6) = (2)(3) so we must factor the ideals (2) and
(3). The minimal polynomial of the generator

√
−5 is

m(x) = x2 + 5.

Modulo 2, we have x2 + 5 = (x − 1)2, so we get the ideal
factorization (2) = (2, 1 +

√
−5)2.

Modulo 3, we have x2 + 5 = (x + 1)(x − 1), so we get the
ideal factorization (3) = (3, 1 +

√
−5)(3, 1−

√
−5).

Thus, (6) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5).
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Example: Compute the ideal factorization of (6) inside Z[
√
−5].

Then show that the two element factorizations 6 = 2 · 3 and
6 = (1 +

√
−5) · (1−

√
−5) yield the same ideal factorization.

We have (6) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5).

Then (2, 1 +
√
−5)(3, 1 +

√
−5)

= (6, 2 + 2
√
−5, 3 + 3

√
−5, −4 + 2

√
−5) = (1 +

√
−5),

since the ideal contains 1 +
√
−5 and all its generators are

divisible by 1 +
√
−5.

By taking conjugates and noting

(2, 1 +
√
−5) = (2, 1−

√
−5) = (2, 1 +

√
−5), we also have

(2, 1 +
√
−5)(3, 1−

√
−5) = (1−

√
−5).

So, both element factorizations reduce to the same ideal
factorization, just regrouped.
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To finish our discussion here, we will note that almost all of our
analysis of the quadratic integer rings OD can be extended to
general rings of integers of algebraic number fields, as pioneered by
Kummer, Dedekind, and Noether in their original development of
the theory of rings and modules as applied to number theory.

Explicitly, an algebraic number is a complex number that
satisfies a polynomial with rational coefficients (such as i/2,
3
√

2, and the roots of x5 − x − 1 = 0).

An algebraic integer is an algebraic number that satisfies a
monic polynomial with integer coefficients (such as i and 3

√
2,

but not i/2).

An algebraic number field is a subfield of C that is a
finite-dimensional vector space over Q (examples include
Q(
√
D) and Q( 3

√
2)); all its elements are algebraic numbers.
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It can be shown that the set of algebraic integers in an algebraic
number field K is a subring of K , which is called the
ring of integers of the number field. (For example, the ring of
integers of Q(

√
D) is OD .)

Essentially all of the results we have proven then carry over to
general rings of integers: ideal divisibility is equivalent to
containment, nonzero prime ideals are maximal, nonzero
ideals factor as a unique product of prime ideals, and nonzero
prime ideals are precisely the ideal factors of (p).

In number-theoretic language, if a prime ideal (p) remains
prime in a ring of integers, we say (p) is inert. If (p) factors
as a product of distinct prime ideals, we say (p) splits, while if
(p) has repeated prime factors, we say that p ramifies. The
question of when primes split, remain inert, or ramify is a
fundamental object of study in algebraic number theory.



Summary

We proved a criterion for computing prime ideals in a quadratic
integer ring.

We gave examples of how to compute the splitting of the ideal (p)
in OD .

Next lecture: Applications of ideal factorizations in OD .


