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This material represents §8.2.2-8.2.3 from the course notes.



Recap

Last time, we showed a fact about the ideals of OD :

Proposition (Ideal Generators in OD)

If R = OD is a quadratic integer ring, then every ideal in R is of

the form (n, a + b · 1 +
√

D

2
) for some a, b, n ∈ Z.

(Note that if D ≡ 2, 3 (mod 4) then b is necessarily even.)

We now continue our analysis of the ideals of OD .



Ideals in OD , X

As a corollary, nonzero prime ideals of OD are maximal:

Corollary (Quotients of OD)

If R = OD is a quadratic integer ring and I is a nonzero ideal, then
OD/I is finite. Thus, every nonzero prime ideal of OD is maximal.

To prove this we first require a lemma:

Lemma (Finite Integral Domains are Fields)

A finite integral domain is a field.

Proof:

Suppose R is a finite domain and let r ∈ R be nonzero.

Then the set {1, r , r2, . . . , rn, . . . } is finite. If ra = rb with
a < b, since r 6= 0 we may cancel to see rb−a = 1, and so
rb−a−1 is a multiplicative inverse of r .

Hence every nonzero element of R is a unit, so R is a field.



Ideals in OD , XI

Proof (of corollary):

For the first statement, if I is a nonzero ideal in OD , then
I ∩ Z is nonzero (since if r ∈ I is any nonzero element,
N(r) ∈ I is a nonzero integer) and so by our proposition,

I = (n, a + b · 1+
√
D

2 ) where n 6= 0 is a generator of I ∩ Z.

There are finitely many residue classes in OD/(n), since each
residue class has (exactly) one representative by an element of

the form s + t · 1+
√
D

2 for some integers 0 ≤ s, t ≤ n − 1.

It is a general fact1 that OD/I ∼= [OD/(n)]/[I/(n)]. The
latter expression is a quotient of a finite ring, hence also finite.

For the second statement, if P is a nonzero prime ideal of
OD , then OD/P is a finite integral domain, hence is a field.

1This is called the third isomorphism theorem: for a general ring R and
ideals I and J containing I , it is true that R/J is isomorphic to (R/I )/(J/I ).



Ideals in OD , XII

We also require a few additional properties about the conjugation
map in OD :

Definition

If a + b
√

D is an element of OD , its conjugate is

a + b
√

D = a− b
√

D. For any r ∈ OD , we have N(r) = r · r , and
we also define the trace of r as tr(r) = r + r .

Examples:

1. In Z[i ], we have 2 + i = 2− i , N(2 + i) = (2 + i)(2− i) = 5,
and tr(2 + i) = (2 + i) + (2− i) = 4.

2. In O√13, we have 1 +
√

13 = 1−
√

13,

N(1 +
√

13) = (1 +
√

13)(1−
√

13) = −12, and
tr(1 +

√
13) = (1 +

√
13) + (1−

√
13) = 2.

3. In O√13, 3+
√
13

2 = 3−
√
13

2 and tr(3+
√
13

2 ) = 3.



Ideals in OD , XIII

For any r ∈ OD , both N(r) and tr(r) are integers.

Conversely, the elements r ∈ Q(
√

D) with the property that
N(r) and tr(r) are both in Z are precisely the elements of OD .

To see this, if r = a + b
√

D ∈ Q(
√

D), then N(r) = a2 − Db2

and tr(r) = 2a. If both of these values are integers, then 2a is
an integer, and then 4N(r)− (2a)2 = −4Db2 is also an
integer. Since D is squarefree, this means 4b2 hence 2b is an
integer as well.

Finally, if D ≡ 2, 3 (mod 4) then N(r) will only be an integer
when a and b are themselves integers, while if D ≡ 1 (mod 4)
then N(r) will be an integer when 2a and 2b are integers of
the same parity. In both cases, we see r ∈ OD as claimed.



Ideals in OD , XIV

We can also apply the conjugation map to ideals:

Definition

If I is an ideal of OD , then its conjugate is the ideal
I = {r : r ∈ I}.

It is straightforward to see that the conjugate of an ideal is also an
ideal.

More specifically, if I = (r , s), then I = (r , s).

Thus, for example, in Z[
√
−5] we have

(3, 1 +
√
−5) = (3, 1−

√
−5).

Likewise, it is a straightforward calculation that for any ideals

I and J, we have IJ = I · J and I = I .



Ideals in OD , XV

Our first key result is that the product of an ideal with its
conjugate is always principal:

Theorem (Ideals and Conjugates in OD)

If I is any ideal of OD , then I · I is always principal.

Example: In Z[
√
−5], for I = (3, 1 +

√
−5), show that I I is

principal.

Since I = (3, 1−
√
−5) we have

I I = (3, 1+
√
−5) ·(3, 1−

√
−5) = (9, 3+3

√
−5, 3−3

√
−5, 6).

This ideal contains 9− 6 = 3, but in fact, every element is a
multiple of 3. Thus we see I I = (3).



Ideals in OD , XV
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√
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√
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Ideals in OD , XVI

Proof:

If I = 0 we are done. Otherwise, suppose that I = (r , s) for
some nonzero r , s ∈ OD : then I = (r , s) and
I · I = (r r , rs, rs, ss).

We claim in fact that
I · I = (r r , rs + rs, ss) = (N(r), tr(rs), N(s)).

This will imply the desired result (namely that I I is principal),
because N(r), tr(rs), and N(s) are each in Z.

Explicitly, if we let their greatest common divisor in Z be d ,
then d = xN(r) + ytr(rs) + zN(s) for some x , y , z ∈ Z.

Then (d) = (N(r), tr(rs), N(s)) in OD since d divides each
of N(r), tr(rs), and N(s).



Ideals in OD , XVII

Proof (continued):

In order to show that I · I = (r r , rs + rs, ss), we must show
that rs is in the ideal (r r , rs + rs, ss) = (d).

Observe that tr(rs/d) =
rs + rs

d
=

tr(rs)

d
is an integer, as is

N(rs/d) =
rs

d
· rs

d
=

N(r)

d
· N(s)

d
, since d divides each of

N(r), tr(rs), and N(s).

Then, by our characterization of the elements in OD as those
having integral trace and norm, we conclude that rs/d is in
OD , so that rs ∈ (d).

Therefore,
I · I = (r r , rs + rs, ss) = (N(r), tr(rs), N(s)) = (d) is
principal, as claimed.



Divisibility of Ideals in OD , I

Now we can discuss divisibility of ideals. Our definition is the same
as for divisibility of elements:

Definition

If I and J are ideals of OD , we say that I divides J, written I |J, if
there is some ideal K such that J = IK .

Examples:

1. If I = (a) and J = (b) are principal, then I divides J if and
only if a|b. So in the case of principal ideals, we recover the
usual notion of divisibility of elements.

2. If I = (2) and J = (4, 2 + 2
√

7) inside Z[
√

7], then I divides
J: for K = (2, 1 +

√
7) we have IK = (4, 2 + 2

√
7) = J.

3. If I = (2, 1 +
√
−5) and J = (2) inside Z[

√
−5], then I divides

J: for K = (2, 1−
√
−5), we have

IK = (4, 2(1 +
√
−5), 2(1−

√
−5), 6) = (2) = J.



Divisibility of Ideals in OD , II

Now some properties of ideal divisibility:

Proposition (Properties of Ideal Divisibility)

Suppose I and J are ideals of OD and r ∈ OD.

1. If I divides J, then I contains J.

2. We have I |J and J|I if and only if I = J.

3. The principal ideal (r) divides I if and only if (r) contains I .

4. If (r)J = (r)K and r 6= 0, then J = K .

5. If IJ = IK and I 6= 0, then J = K .

6. The ideal I divides J if and only if I contains J.

The main result is (6), which you can remember using the shorter
statement “to divide is to contain”.



Divisibility of Ideals in OD , III

1. If I divides J, then I contains J.

Proof:

If J = IK then every element in J is a sum of multiples of
elements in I , hence is in I .

2. We have I |J and J|I if and only if I = J.

Proof:

Since I = IR, I = J implies I |J and J|I .

Conversely, if I |J and J|I , then I ⊆ J and J ⊆ I so I = J.

3. The principal ideal (r) divides I if and only if (r) contains I .

Proof:

The forward direction follows from (1). For the reverse, if (r)
contains I = (s, t) then r |s and r |t, so I = (r) · (s/r , t/r).



Divisibility of Ideals in OD , IV

4. If (r)J = (r)K and r 6= 0, then J = K .

Proof:

If s ∈ J, then rs ∈ (r)J: then rs ∈ (r)K and so s ∈ K .

Thus, J ⊆ K , and by the same argument in reverse, K ⊆ J,
so J = K .

5. If IJ = IK and I 6= 0, then J = K .

Proof:

If I 6= 0 then I · I = (r) is a nonzero principal ideal as we
proved earlier.

Then IJ = IK implies (I I )J = (I I )K so that (r)J = (r)K ,
whence J = K by (4).



Divisibility of Ideals in OD , V

6. The ideal I divides J if and only if I contains J.

Proof:

The forward direction is given by (1), and it is easy to see
that the result also holds if I is zero (since every ideal divides
the zero ideal, but the zero ideal only divides itself).

If I and J are nonzero ideals and I contains J, then I · I = (r)
contains J · I .

Then by (3) we see that (r) = I · I divides J · I , so
J · I = I · I · K for some K .

Then since I 6= 0 (whence I 6= 0), by (5) we may cancel to
conclude that J = IK , meaning that I divides J.



Unique Factorization of Ideals in OD , I

We are now tantalizingly close to being able to establish unique
factorization of ideals.

From this description of ideal divisibility, and the fact that
nonzero prime ideals are maximal that we proved earlier, we
can immediately conclude that the “irreducible” ideals
(namely, ideals that have no nontrivial factorization, which is
to say I = JK implies J = OD or K = OD) are the same as
the maximal ideals, which are in turn the same as the nonzero
prime ideals.

To show that factorizations exist, we mimic the proof we gave
earlier for elements by defining an “ideal norm”.

For elements we use the norm N(r) = |r · r |, so a natural
guess for ideals would be to use I · I , which (conveniently) is
principal and generated by an integer.



Unique Factorization of Ideals in OD , II

Definition

If I is an ideal of OD , then the norm N(I ) of I is the nonnegative
integer generator of the principal ideal I · I .

The ideal norm obeys the same properties as the norm on elements:

First, it is multiplicative:
(N(IJ)) = IJ · IJ = I I · JJ = (N(I )N(J)).

Also notice that the only ideal with norm 0 is the zero ideal,
while the only ideal with norm 1 is OD (since I I = (1) implies
that I contains a unit).

Thus, in particular, if N(I ) is a prime integer then I has no
nontrivial factorization, and thus I is a prime ideal.



Unique Factorization of Ideals in OD , III

We can now establish that every ideal has a factorization as a
product of prime ideals:

Proposition (Prime Factorization of Ideals in OD)

Every nonzero ideal in OD can be written as the product of prime
ideals of OD .

As usual, we take the convention that the empty product represents
the multiplicative identity element, which for ideals is OD .



Unique Factorization of Ideals in OD , IV

Proof:

We use (strong) induction on the norm of the ideal. Since
I 6= 0 we have N(I ) ≥ 1.

For the base case N(I ) = 1, we have I = OD so we may take
the empty product of prime ideals.

For the inductive step, suppose the result holds for every ideal
of norm less than n and suppose N(I ) = n.

If I is a prime ideal we are done, so assume I is not prime
(hence not maximal). Then I is properly contained in some
other proper ideal J, so by our results on divisibility we may
write I = JK where J and K are both proper.

Then N(I ) = N(J) · N(K ) and 1 < N(J),N(K ) < n. By the
inductive hypothesis, both J and K are the product of some
number of prime ideals, so I is as well.



Unique Factorization of Ideals in OD , V

As our final step, we show that the factorization is unique. To do
this we require the prime divisibility property of prime ideals:

Proposition (Divisibility and Prime Ideals in OD)

If P is a prime ideal of OD and I and J are any ideals with P|IJ,
then P|I or P|J.

We will reformulate this result into a statement that actually holds
in an arbitrary commutative ring with 1: namely, that if P is prime
and P contains IJ, then P contains I or P contains J.



Unique Factorization of Ideals in OD , VI

Proof:

By the equivalence of divisibility and containment in OD , we
need to show that if P is a prime ideal with P containing IJ,
then P contains I or P contains J.

Suppose that P contains neither I nor J: then there is some
x ∈ I that is not in P and some y ∈ J that is not in P.

But then xy ∈ IJ is contained in P, which contradicts the
assumption that P was prime.

Thus, P contains I or P contains J, as required.



Unique Factorization of Ideals in OD , VII

Now it is just a matter of putting all of our results together and
doing some bookkeeping:

Theorem (Uniqueness of Prime Ideal Factorization in OD)

Every nonzero ideal in OD can be written as the product of prime
ideals of OD . Furthermore, this representation is unique up to
rearrangement: if I = P1P2 · · ·Pn = Q1Q2 · · ·Qk , then n = k and
there is some rearrangement of the Qi so that Pi = Qi .

This result is even a little bit better than our unique factorization
theorem for elements, since we don’t even have to worry about
associates.



Unique Factorization of Ideals in OD , VIII

Proof:

We already proved that every nonzero ideal can be written as
a product of prime ideals. For uniqueness, we induct on the
minimal number of terms n in the prime factorization.
For the base case n = 0, we have I = OD . Every prime ideal
is proper, so I cannot be a nonempty product of prime ideals.
For the inductive step, suppose representations with < n
terms are unique and let I = P1P2 · · ·Pn = Q1Q2 · · ·Qk .
Since P1 is prime and divides Q1Q2 · · ·Qk , we see that P1

must divide one of the Qi ; without loss of generality,
rearrange so that P1 divides Q1.
But since P1 and Q1 are both nonzero prime ideals, they are
maximal. Since P1 divides Q1 we see that P1 contains Q1, but
since Q1 is maximal and P1 6= OD , we must have P1 = Q1.
Cancelling yields P2 · · ·Pn = Q2 · · ·Qk : then the inductive
hypothesis yields the uniqueness of the factorization.



Unique Factorization of Ideals in OD , IX

So, we see that by working with ideals, rather than elements, we
recover the existence of unique factorizations in all of the quadratic
integer rings OD .

As a historical matter, the study of unique factorization of
elements (and its failures) quite substantially predates the
modern notion of a ring.

In fact, it was precisely in trying to “fix” the failure of
numbers to have unique factorization that led Kummer to
develop a new notion of a number, which he called an “ideal
number”, that did provide the missing terms that could further
decompose these non-unique factorizations of elements.

It is exactly Kummer’s “ideal numbers” that were formalized
by Dedekind, who proved that the general class of rings
known as Dedekind domains possess unique factorization of
ideals into products of prime ideals.



Unique Factorization of Ideals in OD , X

Thus, in fact, the modern notion of rings, ideals, and quotient
rings all arose, historically, from this very problem of
non-uniqueness of factorizations we have just been discussing.

Furthermore, the formulation of the general notion of a ring
also brought together the study of these classical questions
from number theory with classical questions from algebraic
geometry about polynomials in several variables2.

A great deal of this synthesis of commutative algebra was
done in the late 19th and early 20th centuries by Dedekind,
Hilbert, and (especially) Noether.

We will use some of these connections shortly to give methods
for calculating factorizations in OD .

2In fact, many of the questions about elliptic curves that we discussed in
the last chapter can be posed about more general algebraic curves.



Unique Factorization of Ideals in OD , XI

As a corollary of the unique factorization of ideals, we can give a
characterization of when OD is a unique factorization domain:

Theorem (Unique Factorization in OD)

The ring OD is a unique factorization domain if and only if it is a
principal ideal domain.

This theorem (in its inverse formulation) tells us that every
example of non-unique factorization of elements in OD ultimately
arises from the presence of nonprincipal ideals, which is something
I remarked on a while ago.



Unique Factorization of Ideals in OD , XII

Proof:

If OD is a PID then it is a UFD.

Now suppose OD is a UFD and let P be a prime ideal. Then
P divides the principal ideal (N(P)).

By the unique factorization of elements in OD , we can write
N(P) = π1π2 · · ·πn for some irreducibles π1, . . . , πn ∈ OD .

Therefore, P divides the ideal product (N(P)) = (π1) · · · (πn),
and hence P divides one of the ideals (πi ).

But since irreducibles are prime in UFDs, the ideal (πi ) is also
prime, and so we must have P = (πi ). Thus, P is principal.

Then any nonzero ideal in OD is a product of prime (hence
principal) ideals hence is also principal. Since the zero ideal is
also principal, every ideal in OD is principal, so it is a PID.



Unique Factorization of Ideals in OD , XIII

Having a general theorem about the existence of unique prime
factorization for ideals is nice, but we would really like to be able
to compute these factorizations.

If we have some ideal I = P1 · · ·Pn, then by taking norms we
see that N(I ) = N(P1) · · ·N(Pn).

Thus, for each i , we see that Pi divides the principal ideal
(N(Pi )), and the integer N(Pi ) is a divisor of the integer N(I ).

Thus, if we can factor the integer N(I ) and then identify all of
the possible prime ideal factors in OD of this integer, we will
have a list of all possible prime ideals that could divide I .

We will discuss this next time.



Summary

We continued our discussion of ideals in quadratic integer rings.

We proved that nonzero ideals in quadratic integer rings can be
factored uniquely as a product of prime ideals.

Next lecture: Computing ideal factorizations in OD .

Note that all classes are cancelled on Wednesday, so our next
lecture is on Thursday. In the spirit of actually taking the day off, I
am also cancelling office hours on Wednesday, and I’m extending
the homework due date by 24 hours.


