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The Chinese Remainder Theorem + Factorization in OD

The Chinese Remainder Theorem for Rings
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Ideals in OD

This material represents §8.1.9-8.2.1 from the course notes.



Recap

We have now successfully1 studied general ring versions of many
classical constructions from elementary number theory in Z:

1. Our construction of quotient rings generalizes the notion of
modular arithmetic to arbitrary rings.

2. Our analysis of Euclidean domains generalizes the notion of a
division-with-remainder algorithm to arbitrary domains.

3. Our analysis of principal ideal domains generalizes properties
of GCDs and linear combinations to arbitrary domains.

4. Our analysis of unique factorization domains generalizes the
notion of unique factorization to arbitrary domains.

We now conclude our tour by studying the generalization of the
Chinese remainder theorem to arbitrary rings.

1Your level of success may vary



The Chinese Remainder Theorem, I

We first require a few preliminary definitions:

Definition

If R is commutative with 1 and I and J are ideals of R, then the
sum I + J = {a + b : a ∈ I , b ∈ J} is defined to be the set of all
sums of elements of I and J, and the product
IJ = {a1b1 + · · ·+ anbn, : ai ∈ I , bi ∈ J} is the set of finite sums
of products of an element of I with an element of J.

It is not difficult to verify2 that I + J and IJ are both ideals of
R, and that IJ contains the intersection I ∩ J.

If I and J are finitely generated, with I = (a1, a2, . . . , an) and
J = (b1, b2, . . . , bm), it is also not hard to see that
I + J = (a1, a2, . . . , an, b1, b2, . . . , bm) and
IJ = (a1b1, a1b2, . . . , a1bm, a2b1, . . . , a2bm, . . . , anbm).

2This is code for “This appears on the homework”.



The Chinese Remainder Theorem, II

Examples:

1. If I = (a) and J = (b) inside Z, then I + J = (a, b) = (d)
where d = gcd(a, b) and IJ = (ab).

2. If I = (x) and J = (x2) inside F [x ], then
I + J = (x , x2) = (x) = I and IJ = (x3).

3. If I = (x) and J = (x + 1) inside F [x ], then
I + J = (x , x + 1) = (1) = F [x ] and IJ = (x2 + x).

We can also speak of sums and products of more than two ideals.

These are defined recursively, so that (for example)
I + J + K = (I + J) + K and IJK = (IJ)K .

One can verify easily that these operations are associative,
commutative, obey the distributive law, etc.



The Chinese Remainder Theorem, III

We also need the analogous notion of coprimality for ideals, which
is defined as follows:

Definition

If R is commutative with 1, the ideals I and J are comaximal if
I + J = R.

Note that aZ + bZ = Z precisely when a and b are relatively
prime.

The appropriate notion in general rings is not “primality” but
“maximality”, so we use the term comaximal rather than
coprime.



The Chinese Remainder Theorem, IV

We can now state the general Chinese remainder theorem:

Theorem (Chinese Remainder Theorem for Rings)

Let R be commutative with 1 and I1, I2, . . . , In be ideals of R.
Then the map ϕ : R → (R/I1)× (R/I2)× · · · × (R/In) defined by
ϕ(r) = (r + I1, r + I2, . . . , r + In) is a ring homomorphism with
kernel I1 ∩ I2 ∩ · · · ∩ In. If all of the ideals I1, I2, . . . , In are pairwise
comaximal, then ϕ is surjective and I1 ∩ I2 ∩ · · · ∩ In = I1I2 · · · In,
and thus R/(I1I2 · · · In) ∼= (R/I1)× (R/I2)× · · · × (R/In).

To prove that the given map is an isomorphism, we will invoke the
first isomorphism theorem. Everything else is just some careful
bookkeeping.



The Chinese Remainder Theorem, V

Proof:

First, ϕ is a homomorphism since
ϕ(a + b) = (a + b + I1, . . . , a + b + In) =
(a + I1, . . . , a + In) + (b + I1, . . . , b + In) = ϕ(a) + ϕ(b) and
similarly ϕ(ab) = (ab + I1, . . . , ab + In) =
(a + I1, . . . , a + In) · (b + I1, . . . , b + In) = ϕ(a)ϕ(b).

The kernel of ϕ is the set of elements r ∈ R such that
ϕ(r) = (0 + I1, . . . , 0 + In), which is equivalent to requiring
r ∈ I1, r ∈ I2, ... , and r ∈ In: thus, kerϕ = I1 ∩ I2 ∩ · · · ∩ In.

This establishes the first part of the theorem.

For the second part, we will prove the results for two ideals
and then deduce the general statement via induction.



The Chinese Remainder Theorem, VI

Proof (continued):

So suppose I and J are ideals of R and
ϕ : R → (R/I )× (R/J) has ϕ(r) = (r + I , r + J). We must
show that if I + J = R, then I ∩ J = IJ and ϕ is surjective.

If I + J = R then by definition there exist elements x ∈ I and
y ∈ J with x + y = 1.

Then for any r ∈ I ∩ J, we can write r = r(x + y) = rx + yr ,
and both rx and yr are in IJ: hence I ∩ J ⊆ IJ, and since
IJ ⊆ I ∩ J we conclude IJ = I ∩ J.



The Chinese Remainder Theorem, VII

Proof (continued more):

So suppose I and J are ideals of R and
ϕ : R → (R/I )× (R/J) has ϕ(r) = (r + I , r + J), with
I + J = R. We just showed that I ∩ J = IJ and must now
show that ϕ is surjective.

For any a, b ∈ R we can write
ay + bx = a(1− x) + bx = a + (b − a)x so ay + bx ∈ a + I ,
and likewise ay + bx = ay + b(1− y) = b + (a− b)y ∈ b + J.

Then
ϕ(ay + bx) = (ay + bx + I , ay + bx + J) = (a + I , b + J),
and therefore ϕ is surjective as claimed.

Finally, the statement that R/IJ ∼= (R/I )× (R/J) then
follows immediately by the first isomorphism theorem. This
establishes all of the results for two ideals.



The Chinese Remainder Theorem, VIII

Proof (continueder morer):

Finally, we establish the general statement by on n. We just
did the base case n = 2.

For the inductive step, it is enough to show that the ideals I1
and I2 · · · In are comaximal, since then we may write
R/(I1I2 · · · In) ∼= (R/I1)× (R/I2 · · · In) and apply the induction
hypothesis to R/I2 · · · In.

If I1 and Ii are comaximal for 2 ≤ i ≤ n, then there exist
elements xi ∈ I1 and yi ∈ Ii such that xi + yi = 1. Then
1 = (x2 + y2)(x3 + y3) · · · (xn + yn) ≡ y2y3 · · · yn modulo I1.
But since y2y3 · · · yn is in I2I3 · · · In, this means that
I1 + I2I3 · · · In contains 1 and is therefore all of R, as required.



The Chinese Remainder Theorem, IX

This result really is a direct generalization of the result we give the
same name about solving simultaneous congruences.

Explicitly, if m1,m2, . . .mn are relatively prime positive
integers, then ϕ : Z→ (Z/m1Z)× (Z/m2Z)× · · · × (Z/mnZ)
given by ϕ(a) = (a mod m1, a mod m2, . . . , a mod mn) is a
surjective homomorphism with kernel m1m2 · · ·mnZ.

The fact that this map is surjective says that the system of
simultaneous congruences x ≡ a1 mod m1, x ≡ a2 mod m2,
... , x ≡ an mod mn always has a solution in Z. Furthermore,
the characterization of the kernel says that the solution is
unique modulo m1m2 · · ·mn.

This is exactly the statement of the classical Chinese
remainder theorem as we usually pose it for Z.



The Chinese Remainder Theorem, X

We record our observations from the last slide, which allow us to
decompose Z/mZ as a direct product when m is composite.

Corollary (Chinese Remainder Theorem for Z)

If m is a positive integer with prime factorization
m = pa1

1 pa2
2 · · · pan

n , then Z/mZ ∼= (Z/pa1
1 Z)× · · · × (Z/pan

n Z).

By counting the units in the Cartesian product, we see that the
number of units in Z/mZ is m(1− 1/p1)(1− 1/p2) · · · (1− 1/pn).

This gives us a formula for the Euler ϕ-function ϕ(m).



Overview, I

As we have seen, some of the quadratic integer rings (like Z[i ]) are
unique factorization domains, while others (like Z[

√
−5]) are not.

More specifically, by extending the argument used for Z[i ], it
can be shown that the quadratic integer ring

OD = OQ(
√
D) =

{
Z[
√

D] for D ≡ 2, 3 (mod 4)

Z[(1 +
√

D)/2] for D ≡ 1 (mod 4)
is

Euclidean (with norm given by the field norm) for a known list
of negative D = −1,−2,−3,−7,−11 and for various positive
D, including D = 2, 3, 5, 6, 7, 11, . . . .

We would like to know whether it is possible to recover some
sort of “unique factorization” property in the quadratic integer
rings, even when they are not unique factorization domains.



Overview, II

The question of when OD is a UFD was (and is) of substantial
interest in applications to solving equations in number theory.

As we already saw in our study of Pell’s equation, the
characterization of the ring structure and the units in Z[

√
D]

tells us how to solve x2 − Dy2 = r .

Likewise, we can sometimes use properties of rings (e.g., Z[i ])
to characterize the solutions to other Diophantine equations,
as we saw earlier in the case of the equation a2 + b2 = c2.



Overview, III

As another example, if p is an odd prime, we may study the
Fermat equation xp + yp = zp in the ring
Z[ζp] = {a0 + a1ζp + · · ·+ ap−1ζ

p−1
p : ai ∈ Z} where

ζp = e2πi/p = cos(2π/p) + i sin(2π/p) is a nonreal pth root of
unity (satisfying ζpp = 1).

We may rearrange the equation as zp − yp = xp and then
factor the left-hand side as the product
(z − y)(z − ζpy)(z − ζ2py) · · · (z − ζp−1p y) of linear terms
inside Z[ζp].

If Z[ζp] were a unique factorization domain, then since the
terms on the left-hand side are essentially relatively prime,
each of them would have to be a pth power in Z[ζp], up to
some small factors. This can be shown not to be possible
unless y = 0, which would show that Fermat’s equation
xp + yp = zp has no nontrivial integer solutions.



Overview, IV

Unfortunately, the ring Z[ζp] is not always a unique factorization
domain.

But the study of Diophantine equations in number theory, and
associated questions about unique factorization, were
(historically speaking) the impetus for much of the
development of modern algebra, including ring theory.

We will touch on a number of these topics, although we will
primarily focus our attention on quadratic integer rings, since
we can give concrete arguments in these cases.



Factorization in OD , I

As a first step, we show that every nonzero element in OD does
possess at least one factorization:

Proposition (Element Factorizations in OD)

If R = OD is a quadratic integer ring, then every nonzero nonunit
in R has at least one factorization as a product of irreducible
elements.

As a consequence, this result means that the failure of OD to be a
UFD lies entirely with non-uniqueness.



Factorization in OD , II

Proof:

We show the result by (strong) induction on the absolute
value of the norm N(r). If N(r) = 0 then r = 0, while if
N(r) = ±1 then r is a unit.

For the base case we take |N(r)| = 2: then r is irreducible,
since the absolute value of its norm is a prime.

For the inductive step, suppose that |N(r)| = n for n ≥ 3. If r
is irreducible we are done: otherwise we have r = ab for some
a, b with 1 < |N(a)| , |N(b)| < n.

By the inductive hypothesis, both a and b have factorizations
as a product of irreducibles, so r does too.



Factorization in OD , III

It would appear that we are essentially at an impasse regarding
factorization of elements, beyond simply computing their norms
and attempting to search for possible elements that could appear
in a factorization.

However, if we shift our focus instead to ideals, it turns out
that these rings do possess unique prime factorizations on the
level of ideals, rather than elements.

In fact, this is where the name “ideal” originally arose: in
Kummer’s study of unique factorization, he constructed “ideal
numbers” (essentially as sets of linear combinations of
elements of OD) and proved that they did possess unique
prime factorization. These “ideal numbers” were the
prototype of the modern definition of an ideal.



Factorization in OD , IV

To illustrate using an example I have already discussed, the
element 6 ∈ Z[

√
−5] has two different factorizations into

irreducibles, as 2 · 3 = 6 = (1 +
√
−5) · (1−

√
−5).

This yields the equivalent ideal factorization
(6) = (2) · (3) = (1 +

√
−5) · (1−

√
−5).

However, as ideals, we can factor further: explicitly, one can
verify that (2) = (2, 1 +

√
−5)2, that

(1±
√
−5) = (2, 1 +

√
−5) · (3, 1±

√
−5), and that

(3) = (3, 1 +
√
−5) · (3, 1−

√
−5).



Factorization in OD , V

Here is an example of one of these calculations:

We have (2, 1 +
√
−5) · (3, 1 +

√
−5)

= (6, 2 + 2
√
−5, 3 + 3

√
−5,−4 + 2

√
−5) by properties of

ideal products.

We can reduce the generating set by observing that this ideal
contains (3 + 3

√
−5)− (2 + 2

√
−5) = 1 +

√
−5, and that

each of the four generators of the product ideal is a multiple
of 1 +

√
−5.

Thus, in fact, (2, 1 +
√
−5) · (3, 1 +

√
−5) = (1 +

√
−5), as

claimed. The other calculations are similar.



Factorization in OD , VI

On the level of ideals, therefore, we see that these two
factorizations 6 = 2 · 3 and 6 = (1 +

√
−5) · (1−

√
−5) are really

“the same”.

Explicitly, both of them reduce to the factorization
(6) = (2, 1 +

√
−5)2 · (3, 1 +

√
−5) · (3, 1−

√
−5); we have

just regrouped the factors in the computations above using
(2) = (2, 1 +

√
−5)2,

(1±
√
−5) = (2, 1 +

√
−5) · (3, 1±

√
−5), and

(3) = (3, 1 +
√
−5) · (3, 1−

√
−5).

Furthermore, each of the ideals (2, 1 +
√
−5), (3, 1 +

√
−5),

and (3, 1−
√
−5) can be shown to be prime (the quotient ring

of Z[
√
−5] by each is isomorphic to Z/2Z, Z/3Z, and Z/3Z

respectively).

Thus, we have found a factorization of the ideal (6) as a
product of prime ideals of Z[

√
−5].



Factorization in OD , VII

Our goal is to show that the behavior in this last example holds in
general: namely, that we can write any nonzero ideal in a quadratic
integer ring as a product of prime ideals, and that this factorization
is unique up to rearrangement.

After first establishing some important properties of prime
ideals, our model will be similar to our proofs that PIDs have
unique factorization: we will discuss some properties of
divisibility, show that every nonzero ideal can be written as a
product of prime ideals, and then show that the factorization
is unique.

We will then give some applications of unique factorization
into prime ideals, and in particular describe how to compute
the prime ideals of OD .



Ideals in OD , VII

To begin our study of ideals in OD , we show that every ideal in
OD is generated by at most 2 elements:

Proposition (Ideal Generators in OD)

If R = OD is a quadratic integer ring, then every ideal in R is of

the form (n, a + b · 1 +
√

D

2
) for some a, b, n ∈ Z.

(Note that if D ≡ 2, 3 (mod 4) then b is necessarily even.)

There is a short proof of this fact that uses some facts about
finitely generated abelian groups. It goes as follows: the additive
group of OD is isomorphic to Z× Z, and since an ideal of R is a
subgroup, it is generated by at most 2 elements as a subgroup,
hence also as an ideal. (One can then obtain the proposition by
taking R-linear combinations of the generators.)



Ideals in OD , VIII

Proof:

Let I be an ideal of OD , and define I0 = I ∩ Z and I1 to be
the set of r ∈ Z such that there exists some s ∈ Z with

s + r · 1 +
√

D

2
∈ I .

Observe that I0 and I1 are both ideals of Z since they clearly
contain 0, are closed under subtraction, and are closed under
arbitrary Z-multiplication. So suppose I0 = (n) and I1 = (b):
then n ∈ I , and by definition of I1, there exists a ∈ Z such

that a + b · 1 +
√

D

2
∈ I .

We claim that n and a + b · 1 +
√

D

2
generate I .



Ideals in OD , IX

Proof (continued):

We claim that n and a + b · 1 +
√

D

2
generate I .

So, suppose s + r · 1 +
√

D

2
is an arbitrary element of I .

By definition of I1 we see that r ∈ I1, whence r = yb for some
y ∈ Z. Then[(

s + r · 1 +
√

D

2

)
− y ·

(
a + b · 1 +

√
D

2

)]
= s − ay is in

I ∩ Z = I0, so this quantity is equal to xn for some x ∈ Z.

Thus, s + r · 1 +
√

D

2
= xn + y

(
a + b · 1 +

√
D

2

)
, and so n

and a + b · 1 +
√

D

2
generate I as claimed.



Ideals in OD , X

As a corollary, nonzero prime ideals of OD are maximal:

Corollary (Quotients of OD)

If R = OD is a quadratic integer ring and I is a nonzero ideal, then
OD/I is finite. Thus, every nonzero prime ideal of OD is maximal.

To prove this we first require a lemma:

Lemma (Finite Integral Domains are Fields)

A finite integral domain is a field.

Proof:

Suppose R is a finite domain and let r ∈ R be nonzero.

Then the set {1, r , r2, . . . , rn, . . . } is finite. If ra = rb with
a < b, since r 6= 0 we may cancel to see rb−a = 1, and so
rb−a−1 is a multiplicative inverse of r .

Hence every nonzero element of R is a unit, so R is a field.



Ideals in OD , XI

Proof (of corollary):

For the first statement, if I is a nonzero ideal in OD , then
I ∩ Z is nonzero (since if r ∈ I is any nonzero element,
N(r) ∈ I is a nonzero integer) and so by our proposition,

I = (n, a + b · 1+
√
D

2 ) where n 6= 0 is a generator of I ∩ Z.

There are finitely many residue classes in OD/(n), since each
residue class has (exactly) one representative by an element of

the form s + t · 1+
√
D

2 for some integers 0 ≤ s, t ≤ n − 1.

It is a general fact3 that OD/I ∼= [OD/(n)]/[I/(n)]. The
latter expression is a quotient of a finite ring, hence also finite.

For the second statement, if P is a nonzero prime ideal of
OD , then OD/P is a finite integral domain, hence is a field.

3This is called the third isomorphism theorem: for a general ring R and
ideals I and J containing I , it is true that R/J is isomorphic to (R/I )/(J/I ).



Ideals in OD , XII

We also require a few additional properties about the conjugation
map in OD :

Definition

If a + b
√

D is an element of OD , its conjugate is

a + b
√

D = a− b
√

D. For any r ∈ OD , we have N(r) = r · r , and
we also define the trace of r as tr(r) = r + r .

Examples:

1. In Z[i ], we have 2 + i = 2− i , N(2 + i) = (2 + i)(2− i) = 5,
and tr(2 + i) = (2 + i) + (2− i) = 4.

2. In O√13, we have 1 +
√

13 = 1−
√

13,

N(1 +
√

13) = (1 +
√

13)(1−
√

13) = −12, and
tr(1 +

√
13) = (1 +

√
13) + (1−

√
13) = 2.

3. In O√13, 3+
√
13

2 = 3−
√
13

2 and tr(3+
√
13

2 ) = 3.



Ideals in OD , XIII

For any r ∈ OD , both N(r) and tr(r) are integers.

Conversely, the elements r ∈ Q(
√

D) with the property that
N(r) and tr(r) are both in Z are precisely the elements of OD .

To see this, if r = a + b
√

D ∈ Q(
√

D), then N(r) = a2 − Db2

and tr(r) = 2a. If both of these values are integers, then 2a is
an integer, and then 4N(r)− (2a)2 = −4Db2 is also an
integer. Since D is squarefree, this means 4b2 hence 2b is an
integer as well.

Finally, if D ≡ 2, 3 (mod 4) then N(r) will only be an integer
when a and b are themselves integers, while if D ≡ 1 (mod 4)
then N(r) will be an integer when 2a and 2b are integers of
the same parity. In both cases, we see r ∈ OD as claimed.



Ideals in OD , XIV

We can also apply the conjugation map to ideals:

Definition

If I is an ideal of OD , then its conjugate is the ideal
I = {r : r ∈ I}.

It is straightforward to see that the conjugate of an ideal is also an
ideal.

More specifically, if I = (r , s), then I = (r , s).

Thus, for example, in Z[
√
−5] we have

(3, 1 +
√
−5) = (3, 1−

√
−5).

Likewise, it is a straightforward calculation that for any ideals

I and J, we have IJ = I · J and I = I .



Ideals in OD , XV

Our first key result is that the product of an ideal with its
conjugate is always principal:

Theorem (Ideals and Conjugates in OD)

If I is any ideal of OD , then I · I is always principal.

Example: In Z[
√
−5], for I = (3, 1 +

√
−5), show that I I is

principal.

Since I = (3, 1−
√
−5) we have

I I = (3, 1+
√
−5) ·(3, 1−

√
−5) = (9, 3+3

√
−5, 3−3

√
−5, 6).

This ideal contains 9− 6 = 3, but in fact, every element is a
multiple of 3. Thus we see I I = (3).



Ideals in OD , XV

Our first key result is that the product of an ideal with its
conjugate is always principal:

Theorem (Ideals and Conjugates in OD)

If I is any ideal of OD , then I · I is always principal.

Example: In Z[
√
−5], for I = (3, 1 +

√
−5), show that I I is

principal.

Since I = (3, 1−
√
−5) we have

I I = (3, 1+
√
−5) ·(3, 1−

√
−5) = (9, 3+3

√
−5, 3−3

√
−5, 6).

This ideal contains 9− 6 = 3, but in fact, every element is a
multiple of 3. Thus we see I I = (3).



Ideals in OD , XVI

Proof:

If I = 0 we are done. Otherwise, suppose that I = (r , s) for
some nonzero r , s ∈ OD : then I = (r , s) and
I · I = (r r , rs, rs, ss).

We claim in fact that
I · I = (r r , rs + rs, ss) = (N(r), tr(rs), N(s)).

This will imply the desired result (namely that I I is principal),
because N(r), tr(rs), and N(s) are each in Z.

Explicitly, if we let their greatest common divisor in Z be d ,
then d = xN(r) + ytr(rs) + zN(s) for some x , y , z ∈ Z.

Then (d) = (N(r), tr(rs), N(s)) in OD since d divides each
of N(r), tr(rs), and N(s).



Ideals in OD , XVII

Proof (continued):

In order to show that I · I = (r r , rs + rs, ss), we must show
that rs is in the ideal (r r , rs + rs, ss) = (d).

Observe that tr(rs/d) =
rs + rs

d
=

tr(rs)

d
is an integer, as is

N(rs/d) =
rs

d
· rs

d
=

N(r)

d
· N(s)

d
, since d divides each of

N(r), tr(rs), and N(s).

Then, by our characterization of the elements in OD as those
having integral trace and norm, we conclude that rs/d is in
OD , so that rs ∈ (d).

Therefore,
I · I = (r r , rs + rs, ss) = (N(r), tr(rs), N(s)) = (d) is
principal, as claimed.



Summary

We proved the general Chinese remainder theorem for rings.

We started our discussion of factorization in quadratic integer
rings.

Next lecture: Factorization of ideals in OD .


