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Principal Ideal Domains + Unique Factorization Domains

Principal Ideal Domains

Unique Factorization Domains

This material represents §8.1.7-8.1.8 from the course notes.



Recall, I

Last time, we discussed Euclidean domains:

Definition

A Euclidean domain (or domain with a division algorithm) is an
integral domain R that possesses a norm N with the property that,
for every a and b in R with b 6= 0, there exist some q and r in R
such that a = qb + r and either r = 0 or N(r) < N(b).

Some Euclidean domains are Z, Z[i ], and F [x ] for F a field. We
can compute gcds in Euclidean domains using the Euclidean
algorithm.

We also showed that every ideal in a Euclidean domain is principal.



Principal Ideal Domains, I

We have seen that every ideal in a Euclidean domain is principal.
We now expand our attention to the more general class of rings in
which every ideal is principal.

Definition

A principal ideal domain (PID) is an integral domain in which
every ideal is principal.

Examples:

1. Every Euclidean domain is a PID, so Z, Z[i ], and F [x ] are all
PIDs.

2. Z[x ] is not a PID because (2, x) is not principal.

3. Z[
√
−5] is not a PID because (2, 1 +

√
−5) is not principal.

4. There exist PIDs that are not Euclidean domains (although
this is not so easy to prove). One example is the quadratic
integer ring O√−19 = Z[(1 +

√
−19)/2].



Principal Ideal Domains, II

Like in Euclidean domains, we can show that any two elements in a
PID have a greatest common divisor.

The substantial advantage of a Euclidean domain over a
general PID is that we have an algorithm for computing
greatest common divisors in Euclidean domains, rather than
merely knowing that they exist, as is the case in PIDs.



Principal Ideal Domains, III

Proposition (GCDs in PIDs)

If R is a principal ideal domain and a, b ∈ R are nonzero, then any
generator d of the principal ideal (a, b) is a greatest common
divisor of a and b. (In particular, any two elements in a principal
ideal domain always possess at least one gcd.) Furthermore, there
exist elements x , y ∈ R such that d = ax + by.

Proof:

We showed already that if (a, b) is principal, then any
generator is a gcd of a and b. This shows the first two
statements.

Furthermore, if (a, b) = (d) then d ∈ (a, b) implies that
d = ax + by for some x , y ∈ R by our description of the ideal
(a, b).



Principal Ideal Domains, IV

Our goal now is to show that principal ideal domains (like the
prototypical examples Z and F [x ]) have the property that every
nonzero element can be written as a finite product of irreducible
elements, up to associates and reordering.

To show this, we will use essentially the same structure of
argument as in Z and F [x ]: first we will prove that every
element can be factored into a product of irreducibles, and
then we will prove that the factorization is unique.



Principal Ideal Domains, V

So, we must show that (i) factorizations exist, and (ii) are unique.

For the existence, if r is a reducible element then we can write
r = r1r2 where neither r1 nor r2 is a unit. If both r1 and r2 are
irreducible, we are done: otherwise, we can continue factoring
(say) r1 = r1,1r1,2 with neither term a unit. If r1,1 and r1,2 are
both irreducible, we are done: otherwise, we factor again.

We need to ensure that this process will always terminate: if
not, we would obtain an infinite ascending chain of ideals
(r) ⊂ (r1) ⊂ (r1,1) ⊂ · · · , so first we will prove that this
cannot occur.

Then to establish uniqueness, we use the same argument as in
Z and F [x ]: this requires showing that if p is irreducible, then
p|ab implies p|a or p|b: in other words, that p is prime.



Principal Ideal Domains, VI

First we establish the necessary result about ascending chains of
ideals:

Theorem (Ascending Chains in PIDs)

If R is a principal ideal domain and the ideals
I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ · · · form an ascending chain, then there
exists some positive integer N after which the chain is stationary:
In = IN for all n ≥ N.

Remark: A ring satisfying this “ascending chain condition” is
called Noetherian, after Emmy Noether, who pioneered much of
commutative algebra.

Noetherian rings are quite important because of this finiteness
property, which is (in a sense that one can make precise) a
sort of algebraic version of compactness.



Principal Ideal Domains, VII

Proof:

Suppose that I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ · · · is an ascending
chain in a PID R, and let J be the union of the ideals in the
chain.

On your last homework, you showed that that the union of an
ascending chain of ideals is also an ideal, so J is an ideal.

Since R is a PID, we see J = (a) for some a ∈ R. But since J
is a union, this means a ∈ IN for some N.

But now, for each n ≥ N, we see (a) = IN ⊆ In ⊆ J = (a).

We must have equality everywhere, so In = IN for all n ≥ N,
and the chain stabilizes.



Principal Ideal Domains, VIII

Next, we show that irreducible elements are prime:

Proposition (Irreducibles are Prime in a PID)

Every irreducible element in a principal ideal domain is prime.

Proof:

Suppose that p is irreducible. We show that (p) is prime.

So suppose (a) is an ideal containing (p): then p ∈ (a) so
p = ra for some r ∈ R. But since p is irreducible, we either
have p|r or p|a, which is to say, either r ∈ (p) or a ∈ (p).

If a ∈ (p) then (a) ⊆ (p) and so (a) = (p).

Otherwise, if r ∈ (p) then r = sp for some s ∈ R, and then
p = ra implies p = spa, so since p 6= 0 we see sa = 1 and
therefore a is a unit, and so (a) = R.

Thus, (a) is either (p) or R, meaning that (p) is a maximal
ideal, hence also a prime ideal.



Principal Ideal Domains, IX

In fact, our proof shows more than we claimed; namely, that
nonzero prime ideals are maximal in PIDs:

Proposition (Prime Implies Maximal in a PID)

Every nonzero prime ideal in a principal ideal domain is maximal.

Proof:

Suppose that I = (p) is a nonzero prime ideal of R, and
suppose that (a) is an ideal containing I .

Since p ∈ (a), we see that p = ra for some r ∈ R. But then
ra ∈ (p), so since (p) is a prime ideal we either have r ∈ (p)
or a ∈ (p).

By the same argument as on the previous slide, this means (a)
is either (p) or R, meaning that (p) is a maximal ideal.



Principal Ideal Domains, X

Now we can establish that principal ideal domains have unique
factorization:

Theorem (Unique Factorization in PIDs)

If R is a principal ideal domain, then every nonzero nonunit r ∈ R
can be written as a finite product of irreducible elements.
Furthermore, this factorization is unique up to associates: if
r = p1p2 · · · pd = q1q2 · · · qk for irreducibles pi and qj , then d = k
and there is some reordering of the factors such that pi is associate
to qi for each 1 ≤ i ≤ k.

This is just a matter of putting together the pieces we have already
established and doing some bookkeeping.



Principal Ideal Domains, XI

Proof:

Suppose r ∈ R is not zero and not a unit.

If r is irreducible, we already have the required factorization.
Otherwise, r = r1r2 for some nonunits r1 and r2. If both r1
and r2 are irreducible, we are done: otherwise, we can
continue factoring (say) r1 = r1,1r1,2 with neither term a unit.
If r1,1 and r1,2 are both irreducible, we are done: otherwise, we
factor again.

We claim that this process must terminate eventually:
otherwise (as follows by the axiom of choice), we would have
an infinite chain of elements x1, x2, x3, ... , such that x1|r ,
x2|x1, x3|x2, and so forth, where no two elements are
associates.



Principal Ideal Domains, XII

Proof (continued):

But if we have x1|r , x2|x1, x3|x2, and so forth, where no two
elements are associates, then we get an infinite chain of ideals
(r) ⊂ (x1) ⊂ (x2) ⊂ · · · with each ideal properly contained in
the next. But this is impossible, since every ascending chain
of ideals in R must become stationary.

Thus, the factoring process must terminate, and so r can be
written as a product of irreducibles.

We establish uniqueness by induction on the number of
irreducible factors of r = p1p2 · · · pn.

If n = 1, then r is irreducible. If r had some other nontrivial
factorization r = qc with q irreducible, then q would divide r
hence be associate to r (since irreducibles are prime). But this
would mean that c is a unit, which is impossible.



Principal Ideal Domains, XIII

Proof (continued more):

Now suppose n ≥ 2 and that r = p1p2 · · · pd = q1q2 · · · qk has
two factorizations into irreducibles.

Since p1|(q1 · · · qk) and p1 is irreducible hence prime,
repeatedly applying the fact that p irreducible and p|ab
implies p|a or p|b shows that p1 must divide qi for some i .

By rearranging we may assume q1 = p1u for some u: then
since q1 is irreducible (and p1 is not a unit), u must be a unit,
so p1 and q1 are associates.

Cancelling then yields the equation p2 · · · pd = (uq2) · · · qk ,
which is a product of fewer irreducibles.

By the induction hypothesis, such a factorization is unique up
to associates. This immediately yields the desired uniqueness
result for r as well, so we are done.



Principal Ideal Domains, XIV

So, we have just established that every principal ideal domain has
unique factorization, in the precise sense that every nonzero
nonunit can be uniquely written as a product of irreducible
elements up to associates.

Of course, this theorem does not actually tell us how to
compute these factorizations: it just assures us that if we
simply start factoring an element, we will eventually be able to
terminate with a factorization into irreducibles, and this
factorization will be unique up to associates.

In general, how we could actually go about computing
factorizations will depend on the ring.

Consider, for example, how different the questions of factoring
the integer 11729581 in Z, the element 97 + 65i inside Z[i ],
the polynomial x2021 + 7x + 9 inside F11[x ], and the
polynomial x5 + 4x + 2 inside C[x ] are....



Unique Factorization Domains, I

Now we will study the more general class of integral domains
having unique factorization:

Definition

An integral domain R is a unique factorization domain (UFD) if
every nonzero nonunit r ∈ R can be written as a finite product
r = p1p2 · · · pd of irreducible elements, and this factorization is
unique up to associates: if r = p1p2 · · · pd = q1q2 · · · qk for
irreducibles pi and qj , then d = k and there is some reordering of
the factors such that pi is associate to qi for each 1 ≤ i ≤ k.

Examples:

1. Every principal ideal domain is a unique factorization domain:
thus Z, F [x ], and Z[i ] are unique factorization domains.

2. As we essentially proved already, the polynomial ring Z[x ] is a
UFD, even though it is not a PID.



Unique Factorization Domains, II

There are two ways an integral domain can fail to be a unique
factorization domain: one way is for some element to have two
inequivalent factorizations, and the other way is for some element
not to have any factorization.

Both of these situations can occur independently of one
another, as I will show via example.



Unique Factorization Domains, III

Examples:

3. The ring Z[
√
−5] is not a unique factorization domain

because we have a non-unique factorization given by
6 = (1 +

√
−5)(1−

√
−5) = 2 · 3.

Note that each of 1±
√
−5, 2, and 3 is irreducible in

Z[
√
−5] since their norms are 6, 4, and 9 respectively

and there are no elements in Z[
√
−5] of norm 2 or 3.

Also, none of 2, 3, and 1±
√
−5 are associate to one

another, since the only units in Z[
√
−5] are ±1.

Thus, 6 has two inequivalent factorizations into
irreducibles in Z[

√
−5].



Unique Factorization Domains, IV

Examples:

4. The ring Z[2i ] is not a unique factorization domain because
we have a non-unique factorization 4 = 2 · 2 = 2i · 2i .

Note that both 2 and 2i are irreducible since their norms
are both 4 and there are no elements in Z[2i ] of norm 2.

Also, 2 and 2i are not associate since i 6∈ Z[2i ].

Thus, 4 has two inequivalent factorizations into
irreducibles in Z[2i ].



Unique Factorization Domains, V

Examples:

5. The ring Z + xQ[x ] of polynomials with rational coefficients
and integral constant term is not a unique factorization
domain because not every element has a factorization.

This is a little trickier to see.

Explicitly, the element x is not irreducible since

x = 2 · 1

2
x and neither 2 nor

1

2
x is a unit.

However, x cannot be written as a finite product of
irreducible elements: any such factorization would
necessarily consist of a product of constants times a
rational multiple of x , but no rational multiple of x is
irreducible in Z + xQ[x ].

So, no matter how much we attempt to factor x , we can
never finish.



Unique Factorization Domains, VI

We showed last time that in a PID, the irreducible elements are
the same as the prime elements. This turns out also to be true in
unique factorization domains:

Proposition (Irreducibles are Prime in a UFD)

Every irreducible element in a unique factorization domain is prime.

Thus, we may interchangeably refer to “prime factorizations” or
“irreducible factorizations” in a UFD, since these amount to the
same thing.



Unique Factorization Domains, VII

Proof:

Suppose that p is an irreducible element of R and that p|ab
for some elements a, b ∈ R. We must show that p|a or p|b.

Since R is a unique factorization domain, we may write
a = q1q2 · · · qd and b = r1r2 · · · rk for some irreducibles qi and
rj : then q1q2 · · · qd r1r2 · · · rk = ab.

But since the factorization of ab into irreducibles is unique, we
see that p must be associate to one of the qi or one of the rj .

If p is associate to one of the qi , then it necessarily divides a,
and if it is associate to one of the ri , it necessarily divides b.
Thus, p|a or p|b, as required.



Unique Factorization Domains, VIII

Like in Z, we can also describe greatest common divisors in terms
of prime factorizations:

Proposition (Divisibility in UFDs)

If a and b are nonzero elements in a unique factorization domain
R, then there exist units u and v and prime elements p1, p2, . . . , pk

no two of which are associate so that a = upa1
1 pa2

2 · · · p
ak
k and

b = vpb1
1 pb2

2 · · · p
bk
k for some nonnegative integers ai and bi .

Furthermore, a divides b if and only if ai ≤ bi for all 1 ≤ i ≤ k,

and the element d = p
min(a1,b1)
1 · · · pmin(ak ,bk )

k is a greatest common
divisor of a and b.

This is, up to mild wrangling with units, exactly the same
statement as the standard formula for the gcd in terms of prime
factorizations in Z. The proof is just bookkeeping.



Unique Factorization Domains, IX

Proof:

Since R is a UFD, we can write a as a product of irreducibles.
As follows from a trivial induction, we can then “collapse”
these factorizations by grouping together associates and
factoring out the resulting units to obtain a factorization of
the form a = upa1

1 pa2
2 · · · p

ad
d .

We can repeat the process with b, and then add any further
irreducibles that appear in its factorization to the end of the
list, to obtain the desired factorizations a = upa1

1 pa2
2 · · · p

ak
k

and b = vpb1
1 pb2

2 · · · p
bk
k for nonnegative integers ai and bi .



Unique Factorization Domains, X

Proof (continued):

So we have a = upa1
1 pa2

2 · · · p
ak
k and b = vpb1

1 pb2
2 · · · p

bk
k .

If a|b then we have b = ar for some r ∈ R, so that
vpb1

1 pb2
2 · · · p

bk
k = upa1

1 pa2
2 · · · p

ak
k r .

But since pi divides the right-hand side at least ai times, by
cancellation we see that pi must also divide the left-hand side
at least ai times.

Furthermore, since each of the terms excluding pi is not
associate to pi , by a trivial induction we conclude that bi ≥ ai
for each i .

Conversely, if ai ≤ bi for each i , then we can just write
r = vu−1pb1−a1

1 · · · pbk−ak
k and then b = ar .



Unique Factorization Domains, XI

Proof (finally):

So we have a = upa1
1 pa2

2 · · · p
ak
k and b = vpb1

1 pb2
2 · · · p

bk
k .

Finally, to compute the gcd, it is easy to see by the previous

result that d = p
min(a1,b1)
1 · · · pmin(ak ,bk )

k divides both a and b.

If d ′ is any other common divisor, then since d ′ divides a we
see that any irreducible occurring in the prime factorization of
d ′ must be associate to those appearing in the prime
factorization of a, hence (by collapsing the factorization as
above) we can write d ′ = wpd1

1 pd2
2 · · · p

dk
k for some

nonnegative integers di and some unit w .

Then since d ′ is a common divisor of both a and b we see that
di ≤ ai and di ≤ bi , whence di ≤ min(ai , bi ) for each i : then
d ′ divides d , so d is a greatest common divisor as claimed.



Unique Factorization Domains, XII

We also recover one of the other fundamental properties of
relatively prime elements and gcds:

Corollary (Relatively Prime Elements and GCDs)

In any unique factorization domain, d is a gcd of a and b if and
only if a/d and b/d are relatively prime. Furthermore, if a and b
are relatively prime and a|bc, then a|c.

Example:

Inside Z[i ], 1 + i is a gcd of 3 + i and 4 + 6i , because 1 + i is
a common divisor, and the two elements
(3 + i)/(1 + i) = 2− i and (4 + 6i)/(1 + i) = 5 + i are
relatively prime because 5 + i − (2 + i)(2− i) = i is a unit.



Unique Factorization Domains, XIII

Proof:

Apply the previous proposition to write a = upa1
1 pa2

2 · · · p
ak
k

and b = vpb1
1 pb2

2 · · · p
bk
k for some nonnegative integers ai and

bi , irreducibles pi , and units u and v .

Then d = p
min(a1,b1)
1 · · · pmin(ak ,bk )

k is a gcd of a and b, and it
is easy to see that the exponent of pi in a/d or b/d is zero for
each i : thus, the only common divisors of a/d and b/d are
units, so a/d and b/d are relatively prime.

Inversely, if d ′ = wpd1
1 pd2

2 · · · p
dk
k is any other common divisor

of a and b, and di < min(ai , bi ) for some i , then pi is a
common divisor of a/d ′ and b/d ′ and thus the latter are not
relatively prime.

For the second statement, consider the irreducible factors of
bc: since a and b have no irreducible factors in common,
every irreducible factor of c must divide a.



Roadmap

We’ve now developed enough of the general theory of various kinds
of rings to be able to dig back into number-theoretic questions
about the quadratic integer rings in a more serious way.

We will get more into this topic next time.

But our goal for the rest of the chapter is to work out a lot of
very explicit things about the quadratic integer rings: the
structure of their maximal and prime ideals, the relationship
between ideals and factorizations, when these rings have
non-unique factorizations, etc.



Summary

We introduced principal ideal domains and established some of
their properties.

We introduced unique factorization domains and established some
of their properties.

Next lecture: The Chinese Remainder Theorem for rings,
factorization in quadratic integer rings.


