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Quadratic Integer Rings + Euclidean Domains

Quadratic Integer Rings

Euclidean Domains

This material represents §8.1.5-8.1.6 from the course notes.



Quadratic Integer Rings, I

We now have enough background to discuss some facts about the
rings that we will be analyzing in this chapter. First, we
(re-)introduce quadratic fields:

Definition

Let D be a squarefree integer not equal to 1. The quadratic field
Q(
√

D) is the set of complex numbers of the form a + b
√

D,
where a and b are rational numbers.

Recall that an integer is squarefree if it is not divisible by the
square of any prime, and not equal to 1.

We lose nothing here by assuming that D is a squarefree
integer, since two different integers differing by a square factor
would generate the same set of complex numbers a + b

√
D.



Quadratic Integer Rings, II

For explicitness, the operations in Q(
√

D) are as follows:
(a + b

√
D) + (c + d

√
D) = (a + c) + (b + d)

√
D, and

(a + b
√

D)(c + d
√

D) = (ac + Dbd) + (ad + bc)
√

D.

Since Q(
√

D) is clearly closed under subtraction and
multiplication, and contains 0 = 0 + 0

√
D, it is a subring of C

and hence an integral domain, since it contains 1.

It is in fact a field (justifying the name “quadratic field”)

because we can write (a + b
√

D)−1 =
a− b

√
D

a2 − Db2
, and

a2−Db2 6= 0 provided that a and b are not both zero because√
D is irrational by the assumption that D is squarefree and

not equal to 1.



Quadratic Integer Rings, III

We can also construct this ring1 as a quotient ring of a polynomial
ring.

Specifically, Q(
√

D) is isomorphic to the quotient ring Q[x ]
modulo the principal ideal (x2 − D).

The isomorphism is given explicitly by mapping p(x) ∈ Q[x ]
to p(

√
D) ∈ Q(

√
D).

This “evaluation map” can be seen to be a ring
homomorphism, and its kernel is the ideal (x2 − D) of Q[x ].

Since the evaluation map is clearly surjective, the first
isomorphism theorem tells us that Q(

√
D) is isomorphic to

the quotient ring Q[x ]/(x2 − D), as claimed.

1Or, depending on how pedantic you wish to be, a ring isomorphic to it.



Quadratic Integer Rings, IV

We have already made use of the field norm, but we record its
definition again here:

Definition

The field norm N : Q(
√

D)→ Q is defined to be the function
N(a + b

√
D) = a2 − Db2 = (a + b

√
D)(a− b

√
D).

The fundamental property of the field norm is that it is
multiplicative (i.e., that N(xy) = N(x)N(y) for all x , y ∈ Q(

√
D)),

as we showed back during the first week of class.



Quadratic Integer Rings, V

A fundamental subring of the quadratic field Q(
√

D) is its
associated “quadratic integer ring”.

The most obvious choice for an analogy of the integers Z
inside Q(

√
D) would be Z[

√
D] = {a + b

√
D : a, b ∈ Z}.

However, notice that if D ≡ 1 (mod 4), then the slightly

larger subset Z[1+
√
D

2 ] = {a + b 1+
√
D

2 : a, b ∈ Z} is actually
also a subring: closure under subtraction is obvious, and for

multiplication we can write (a + b 1+
√
D

2 )(c + d 1+
√
D

2 ) =

(ac + D−1
4 bd) + (ad + bc + bd)1+

√
D

2 .

One reason that this larger set turns out to give a slightly
better analogy for the integers Z when D ≡ 1 (mod 4) is that
1+
√
D

2 satisfies a monic polynomial with integer coefficients:

specifically, it is a root of x2 − x + 1−D
4 = 0.



Quadratic Integer Rings, VI

So, with this minor enlargement when D ≡ 1 (mod 4), we have
our definition of a quadratic integer ring:

Definition

The ring of integers OQ(
√
D) in the quadratic field Q(

√
D) is

defined as Z[
√

D] if D ≡ 2 or 3 (mod 4) and as Z[1+
√
D

2 ] when
D ≡ 1 (mod 4). Each of these rings is an integral domain.

For D ≡ 2, 3 (mod 4), observe that N(a + b
√

D) = a2 − Db2

is an integer for every a + b
√

D ∈ O√D .

Likewise, if D ≡ 1 (mod 4), we have

N(a + b 1+
√
D

2 ) = a2 + ab + 1−D
4 b2 is also an integer for every

a + b 1+
√
D

2 ∈ OQ(
√
D).

Thus, the field norm N is always integer-valued on OQ(
√
D).



Quadratic Integer Rings, VII

Since the field norm is integer-valued on OQ(
√
D), we can use it to

identify units:

Proposition (Units in OQ(
√
D))

An element r in the ring OQ(
√
D) is a unit if and only if N(r) = ±1.

Example:

The units in OQ(
√
−1) = Z[i ] are {±1,±i}: for r = a + bi we

have N(r) = a2 + b2, and a2 + b2 = ±1 has four solutions
yielding the four listed units.

We essentially proved this result already, but let’s do it again.



Quadratic Integer Rings, VIII

Proof:

Suppose r = a + b
√

D and let r = a− b
√

D, so that
N(r) = r r .

Note that r = 2a− r , so that even when D ≡ 1 (mod 4)
(with a and b possibly half-integers), r is still in OQ(

√
D).

If N(r) = ±1, then we see that r r = ±1, so (by multiplying
by −1 if necessary) we obtain a multiplicative inverse for r .

Conversely, suppose r is a unit and rs = 1. Taking norms
yields N(r)N(s) = N(rs) = 1. Since N(r) and N(s) are both
integers, we see that N(r) must either be 1 or −1.



Quadratic Integer Rings, IX

Example: Find the units in OQ(
√
−3) = Z[(1 +

√
−3)/2].

For r = a + b
1 +
√
−3

2
we see N(r) = a2 + ab + b2.

We must therefore solve a2 + ab + b2 = 1 in Z.

By multiplying by 4 and completing the square, this equation
is equivalent to (2a + b)2 + 3b2 = 4, which has six solutions
corresponding to r = 1, −1, ω, −ω, ω2, −ω2, where

ω =
1 +
√
−3

2
is seen to be a sixth root of unity satisfying

ω6 = 1. (If you prefer, you can also think of this list as
{1, ω, ω2, ω3, ω4, ω5}.)
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Quadratic Integer Rings, X

By using norms, we can also study possible factorizations and
establish the irreducibility of elements. The following special case
is often helpful:

Proposition (Some Irreducibles in OQ(
√
D))

If r ∈ OQ(
√
D) has N(r) = ±p where p is a prime number, then r

is irreducible in OQ(
√
D).

Examples:

1. The elements 1 + i and 2 + i in Z[i ] are irreducible, since their
norms are 2 and 5 respectively.

2. The elements
5 +
√

5

2
and 4 +

√
5 in OQ(

√
5) are irreducible

since their norms are 5 and 11 respectively.



Quadratic Integer Rings, XI

Proof:

Suppose N(r) = ±p and we had a factorization r = s1s2.

Taking norms yields ±p = N(s1s2) = N(s1)N(s2).

But since p is prime and N(s1) and N(s2) are integers, the
only possibility is to have one of N(s1) and N(s2) equal to ±1.

By our result earlier, this means that s1 or s2 is a unit.

Then r is indeed irreducible, as claimed.



Quadratic Integer Rings, XII

We remark that the proposition is not an if-and-only-if, as there
can exist irreducible elements of non-prime norm as well.

Examples:

3. The element 3 ∈ Z[i ] has N(3) = 9, but 3 is irreducible
because any factorization 3 = z1z2 would require
9 = N(3) = N(z1)N(z2), but since there are no elements of
norm 3 in Z[i ], the only possible factorizations require N(z1)
or N(z2) to equal 1.

4. The element 1 +
√
−5 ∈ OQ(

√
−5) has N(1 +

√
−5) = 6, but

1 +
√
−5 is irreducible because any factorization would have

to be into a product of an element of norm 2 and an element
of norm 3, but there are no such elements in OQ(

√
−5).



Quadratic Integer Rings, XIII

We will return to discuss these rings after we have developed some
additional results about ideals and factorizations in integral
domains, which is our next major topic.

For notational convenience, I will often write O√D as shorthand for
OQ(

√
D), since it is marginally faster to typeset.



Euclidean Domains, I

Our next goal is to discuss what it means for an integral domain to
possess a “division algorithm”:

Definition

If R is an integral domain, any function N : R → {0, 1, 2, . . . }
such that N(0) = 0 is called a norm on R.

The purpose of the norm function is to allow us to compare the
size of the remainder to the size of the original element.

Definition

A Euclidean domain (or domain with a division algorithm) is an
integral domain R that possesses a norm N with the property that,
for every a and b in R with b 6= 0, there exist some q and r in R
such that a = qb + r and either r = 0 or N(r) < N(b).



Euclidean Domains, II

A few comments:

The norm property is fairly weak, and any given domain may
possess many different norms. Also, the use of the word
“norm” has very little to do with the field norm on Q(

√
D).

Also, note that the quotient and remainder are not required to
be unique! There may be multiple pairs (q, r) with a = qb + r
and N(r) < N(b).

Examples:

1. Any field is a Euclidean domain, because any norm will satisfy
the defining condition. This follows because for every a and b
with b 6= 0, we can write a = qb + 0 with q = a · b−1.

2. The integers Z are a Euclidean domain with N(n) = |n|.
3. If F is a field, then the polynomial ring F [x ] is a Euclidean

domain with norm given by N(p) = deg(p) for p 6= 0.



Euclidean Domains, III

The reason Euclidean domains have that name is that we can
perform the Euclidean algorithm in such a ring:

Definition

If R is a Euclidean domain and a, b ∈ R with b 6= 0, the
Euclidean algorithm in R consists of repeatedly applying the
division algorithm to a and b until a remainder of zero is obtained:

a = q1b + r1
b = q2r1 + r2
r1 = q3r2 + r3

...

rk−1 = qk rk + rk+1

rk = qk+1rk+1.

Since N(r1) > N(r2) > · · · ≥ 0, this sequence must eventually
terminate with a zero remainder.



Euclidean Domains, IV

The Gaussian integers provide another important example of a
Euclidean domain:

Proposition (Z[i ] is Euclidean)

The Gaussian integers Z[i ] are a Euclidean domain under the norm
N(a + bi) = a2 + b2.

To prove this theorem we will explain how to compute the quotient
and remainder and establish that they have the required property.

Explicitly, given a + bi and c + di in Z[i ], we will show how to
produce q, r ∈ Z[i ] such that a + bi = q(c + di) + r and

N(r) ≤ 1

2
N(c + di).

This is even stronger than is needed (once we note that the
only element of norm 0 is 0).



Euclidean Domains, IV

Proof:

Suppose we are dividing a + bi by c + di .

If c + di 6= 0, then we can write
a + bi

c + di
= x + iy for reals

x = (ac + bd)/(c2 + d2) and y = (bc − ad)/(c2 + d2).

Now we define q = s + ti where s is the integer closest to x
and t is the integer closest to y , and set
r = (a + bi)− q(c + di). Clearly, (a + bi) = q(c + di) + r .

All we need to do now is show N(r) ≤ 1
2N(c + di).

First observe that r
c+di = a+bi

c+di − q = (x − s) + (y − t)i .

Then because |x − s| ≤ 1
2 and |y − t| ≤ 1

2 by construction, we

have
∣∣∣ r
c+di

∣∣∣ ≤ ∣∣1
2 + 1

2 i
∣∣ =

√
2
2 .

Squaring and rearranging gives N(r) ≤ 1
2N(c + di), as desired.



Euclidean Domains, V

It is reasonable to ask about other quadratic integer rings O√D .

For such rings, the function N(a + b
√

D) =
∣∣a2 − Db2

∣∣ is
always a norm, but it does not in general give a division
algorithm.

In our proof, we needed to know that the remainder had a
smaller size than c + di , which required an estimate on the
ratio r/(c + di). For other values of D, the resulting estimate
will end up being greater than 1, and so we don’t get a
Euclidean norm.

The proof does, however, adapt fairly easily to show that
O√D is a Euclidean domain for a few other small values of D,
such as D = −7, −3, −2, and 2.



Euclidean Domains, VI

The polynomial ring F [x ] is also a Euclidean domain:

Theorem (F [x ] is Euclidean)

If F is a field, the polynomial ring F [x ] is a Euclidean domain with
norm given by the degree map N(p) = deg(p).

We require F to be a field to be able to divide by arbitrary
nonzero coefficients. (Over Z, for instance, we cannot divide
x2 by 2x and get a remainder that is a constant polynomial.)

The proof is just the usual long-division algorithm for
polynomials.



Euclidean Domains, VII

Proof:

We induct on the degree n of a(x).

The base case is trivial, as we may take q = r = 0 if a = 0.

Now suppose the result holds for all polynomials a(x) of
degree ≤ n − 1. If deg(b) > deg(a) then we can simply take
q = 0 and r = a, so now also assume deg(b) ≤ deg(a).

Write a(x) = anxn + an−1xn−1 + · · ·+ a0 and
b(x) = bmxm + · · ·+ b0, where bm 6= 0 since b(x) 6= 0.

Observe that a†(x) = a(x)− an
bm

xn−mb(x) has degree less than
n, since we have cancelled the leading term of a(x). (Here we
are using the fact that F is a field, so that an

bm
also lies in F .)

By the induction hypothesis, a†(x) = q†(x)b(x) + r †(x) for
some q†(x) and r †(x) with r † = 0 or deg(r †) < deg(b).

Then a(x) = [q†(x) + an
bm

xn−m]b(x) + r †(x), so

q(x) = q†(x) + an
bm

xn−m and r(x) = r †(x) work as claimed.



Euclidean Domains, VIII

As in Z, the main significance of the Euclidean algorithm in a
Euclidean domain is that we can use it to compute gcds:

Theorem (Bézout’s Theorem)

If R is a Euclidean domain and a and b are arbitrary elements with
b 6= 0, then the last nonzero remainder d arising from the
Euclidean Algorithm applied to a and b is a greatest common
divisor of a and b. (In particular, any two elements in a Euclidean
domain always possess at least one gcd.) Furthermore, there exist
elements x , y ∈ R such that d = ax + by.

The ideas in the proof are the same as for Z.



Euclidean Domains, IX

Proof:

By an easy induction (starting with rk = qk+1rk+1), we see
that d = rk+1 divides ri for each 1 ≤ i ≤ k .

Thus, d |a and d |b, so the last nonzero remainder is a
common divisor of a and b.

Now suppose d ′ is some other common divisor of a and b.

By another easy induction (starting with d ′|(a− q1b) = r1), it
is easy to see that d ′ divides ri for each 1 ≤ i ≤ k + 1, and
therefore d ′|d . Hence d is a greatest common divisor.

For the existence of x and y with d = ax + by , we simply
observe (by yet another easy induction starting with
r1 = a− q1b) that each remainder can be written in the form
ri = xia + yib for some xi , yi ∈ R.



Euclidean Domains, X

Example: Inside Z, find a gcd of 1598 and 4879 using the
Euclidean algorithm, and write it explicitly as a linear combination.

First, we use the Euclidean algorithm:

4879 = 3 · 1598 + 85

1598 = 18 · 85 + 68

85 = 1 · 68 + 17

68 = 4 · 17

and so the gcd is 17.

For the linear combination, we solve for the remainders:

85 = = 1 · 4879− 3 · 1598
68 = 1598− 18 · 85 = −18 · 4879 + 55 · 1598
17 = 85− 1 · 68 = 19 · 4879− 58 · 1598

so we obtain 17 = 19 · 4879− 58 · 1598.
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Euclidean Domains, XI

Example: In Z[i ], find a greatest common divisor of 50− 50i and
43− i , and write it explicitly as a linear combination.

We use the Euclidean algorithm. Dividing 43− i into 50− 50i

yields
50− 50i

43− i
=

44

37
− 42

37
i , so rounding to the nearest

Gaussian integer yields the quotient q = 1− i . The remainder
is then 50− 50i − (1− i)(43− i) = (8− 6i).

Next, dividing 8− 6i into 43− i yields
43− i

8− 6i
=

7

2
+

5

2
i , so

rounding to the nearest Gaussian integer (there are four
possibilities so we just choose one) yields the quotient
q = 3 + 2i . The remainder is then
43− i − (3 + 2i)(8− 6i) = (7 + i).

Finally, dividing 7 + i into 8− 6i yields
8− 6i

7 + i
= 1− i , so the

quotient is 1− i and the remainder is 0.
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Euclidean Domains, XI

Example: In Z[i ], find a greatest common divisor of 50− 50i and
43− i , and write it explicitly as a linear combination.

We can summarize these calculations more compactly:

50− 50i = (1− i) · (43− i) + (8− 6i)

43− i = (3 + 2i) · (8− 6i) + (7 + i)

8− 6i = (1− i) · (7 + i)

To find the linear combination, solve for the remainders:

8− 6i = 1 · (50− 50i)− (1− i) · (43− i)

7 + i = (43− i)− (3 + 2i)(8− 6i)

= (43− i)− (3 + 2i) · (50− 50i) + (3 + 2i)(1− i) · (43− i)

= (−3− 2i) · (50− 50i) + (6− i) · (43− i).



Euclidean Domains, XII

Example: In F3[x ], find a greatest common divisor of p = x6 + 2
and q = x8 + 2, and write it explicitly as a linear combination.

We apply the Euclidean algorithm: we have

x8 + 2 = x2(x6 + 2) + (x2 + 2)

x6 + 2 = (x4 + x2 + 1)(x2 + 2)

and so the last nonzero remainder is x2 + 2.

By back-solving, we see that x2 + 2 = 1 · (x8 + 2)− x2(x6 + 2).

Of course, most situations require more than one step, in which
case we would solve the equations for the remainders from the top
down.
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Euclidean Domains, XIII

The ideals of Euclidean domains are particularly simple:

Theorem (Ideals of Euclidean Domains)

Every ideal of a Euclidean domain is principal.

Proof:

Clearly (0) is principal, so suppose I 6= (0) and let d be a
nonzero element of I of smallest possible norm. (Such an
element must exist by the well-ordering axiom of Z.)

Since d ∈ I we have (d) ⊆ I . If a ∈ I is any other element, by
the division algorithm we can write a = qd + r for some r
where either r = 0 or N(r) < N(d).

However, since r = a− qd ∈ I since both a and qd are in I ,
and N(d) is minimal, we must have r = 0. Therefore, a = qd
and thus a ∈ (d). Thus I ⊆ (d) and so I = (d) is principal.



Euclidean Domains, XIV

Corollary

Every ideal of Z, F [x ], and Z[i ] is principal, for any field F .

Proof:

Each of these rings is a Euclidean domain.

From this result, we see that any ring containing a non-principal
ideal is not Euclidean with respect to any norm.

Examples:

1. The ring Z[x ] is not a Euclidean domain, since the ideal (2, x)
is not principal.

2. The ring Z[
√
−5] is not a Euclidean domain, since the ideal

(2, 1 +
√
−5) is not principal.



Euclidean Domains, XV

Having a Euclidean algorithm in a domain R is very useful, as we
have seen, since it allows us to compute greatest common divisors,
and it also implies that every ideal in R is principal.

However, most integral domains are not Euclidean. In some
cases, however, we can still salvage a criterion that is close
enough to being Euclidean to allow us to deduce most of the
nice facts about divisibility and GCDs that we got for
Euclidean domains.

The condition we investigate next is that of having every ideal
be principal, which leads to the class of principal ideal
domains. We will discuss these rings, and their properties,
next time.



Summary

We defined the quadratic integer rings and discussed some of their
properties.

We introduced Euclidean domains and established some of their
properties.

Next lecture: Principal ideal domains and unique factorization
domains.


