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Recall, I

Last time, we discussed maximal ideals:

Definition

If R is a ring, a maximal ideal of R is an ideal M 6= R with the
property that the only ideals of R containing M are M and R.

Commutative rings with 1 always have maximal ideals, and we can
detect them using quotient rings:

Proposition (Maximal Ideals and Quotients)

If R is a commutative ring with 1, then the ideal M is maximal if
and only if R/M is a field.
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In addition to maximal ideals, we have another important class of
ideals in commutative rings:

Definition

If R is a commutative ring with 1, a prime ideal of R is an ideal
P 6= R with the property that for any a, b ∈ R with ab in P, at
least one of a and b is in P.

As naturally suggested by the name, prime ideals are a
generalization of the idea of a prime number in Z.

Explicitly, for n > 1, the ideal nZ is a prime ideal of Z
precisely when ab ∈ nZ implies a ∈ nZ or b ∈ nZ.

Equivalently (in the language of divisibility) this means n|ab
implies n|a or n|b, and this is precisely the condition that n is
either a prime number (or zero).
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Examples:

1. The prime ideals of Z are (0) and the ideals pZ where p is a
prime number.

2. In R = F [x ], the ideal (p) is prime precisely when p is not a
unit and p|ab implies p|a or p|b. This latter condition, per
facts about polynomial factorization, is equivalent to saying
that p is either irreducible or zero.

3. The prime ideals of F [x ] are (0) and the ideals (p) where p is
an irreducible polynomial of positive degree.



Prime Ideals, III

Like with maximal ideals, there is an easy way to test whether an
ideal is prime using quotient rings:

Proposition (Prime Ideals and Quotients)

If R is a commutative ring with 1, then the ideal P is prime if and
only if R/P is an integral domainab.

aRecall that an integral domain is a commutative ring with 1 6= 0 that has
no zero divisors.

bRecall that a zero divisor is a nonzero element x such that there exists a
nonzero element y with xy = 0

The proof is essentially just a restatement of the definition of a
prime ideal using residue classes in the quotient ring.

The key is to observe that r ∈ P if and only if r = 0 in R/P.



Prime Ideals, IV

Proof:

If R is commutative with 1 and P 6= R, then R/P is also
commutative with 1, so we need only test for zero divisors.

If P is a prime ideal, then ab ∈ P implies a ∈ P or b ∈ P. In
the quotient ring R/P, this says that ab = 0 implies a = 0 or
b = 0, which is precisely the statement that R/P has no zero
divisors.

Conversely, if R/P has no zero divisors, then ab = 0 implies
a = 0 or b = 0, which is to say, ab ∈ P implies a ∈ P or
b ∈ P. Furthermore, since R/P is not the zero ring (since this
possibility is excluded by the definition of integral domain), we
see P 6= R, and therefore P is a prime ideal of R.
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Our characterization of prime ideals yields two nice corollaries:

Corollary (Characterization of Domains)

A commutative ring with 1 is an integral domain if and only if (0)
is a prime ideal.

Proof:

Note that (0) is prime if and only if the quotient ring
R/0 ∼= R is an integral domain.

Corollary (Maximal Ideals are Prime)

In a commutative ring with 1, every maximal ideal is prime.

Proof:

If M is a maximal ideal, then R/M is a field. Every field is an
integral domain, so M is a prime ideal.
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Example: Determine whether the ideals (x), (x2), and (x2 + 1) in
Z[x ] are prime ideals.

By the division algorithm, the residue classes in Z[x ]/(x) are
of the form a for a ∈ Z. This means Z[x ]/(x) is an integral
domain (it is isomorphic to Z, as can be shown directly or via
the first isomorphism theorem), so (x) is a prime ideal.

On the other hand, also by the division algorithm, we see that
the residue classes in Z[x ]/(x2) are of the form a + bx where
a, b ∈ Z. Since x · x = 0 but x 6= 0, we see that Z[x ]/(x2) has
zero divisors, and so (x2) is not a prime ideal.

Finally, as we showed before, Z[x ]/(x2 + 1) is isomorphic to
the Gaussian integers Z[i ], which is an integral domain, so
(x2 + 1) is a prime ideal.
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Example: For R = Z[
√

3] with the ideal I = (2), identify explicitly
the residue classes and operations in the quotient ring R/I , and
determine whether I is (a) prime, and (b) maximal.

Note that I consists of the multiples of 2, so, explicitly,
I = {2a + 2b

√
3 : a, b ∈ Z}.

There are then four residue classes in R/I : they are
0 + I = {2a + 2b

√
3 : a, b ∈ Z},

1 + I = {(2a + 1) + 2b
√

3 : a, b ∈ Z},√
3 + I = {2a + (2b + 1)

√
3 : a, b ∈ Z},

1 +
√

3 + I = {(2a + 1) + (2b + 1)
√

3 : a, b ∈ Z}.
The addition operations are straightforward: we just add up
the coefficients using the relation 2 = 0.

Thus for example,
(
√

3 + I ) + (1 +
√

3 + I ) = 1 + 2
√

3 + I = 1 + I .
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Example: For R = Z[
√

3] with the ideal I = (2), identify explicitly
the residue classes and operations in the quotient ring R/I , and
determine whether I is (a) prime, and (b) maximal.

For multiplication, the nontrivial cases are
(
√

3 + I ) · (
√

3 + I ) = 3 + I = 1 + I ,
(1 +

√
3 + I ) · (

√
3 + I ) = 3 +

√
3 + I = (1 +

√
3) + I , and

(1 +
√

3 + I ) · (1 +
√

3 + I ) = 4 + 2
√

3 + I = 0 + I .

From this, we can see that the element 1 +
√

3 + I is a zero
divisor, meaning that I is neither prime nor maximal.

Remark: From this calculation, we can see that the quotient

ring R/I contains the nontrivial ideal (1 +
√

3). This means I
is contained in the ideal I ′ = (2, 1 +

√
3); in fact, I ′ is

maximal. Our goal in this chapter is to understand how to
make calculations like this systematically.



Arithmetic in Integral Domains, I

Our next goal is to translate a number of fundamental properties
of arithmetic into general integral domains.

In fact, I have already implicitly used this language a number
of times (but informally).

Today, we will start by formulating notions of divisibility,
common divisors, and factorization in integral domains, and
we will relate them to the language of ideals we have
developed.

We will then study various types of integral domains having
various convenient properties: the existence of a Euclidean
algorithm, having every ideal be principal, and having unique
factorization (respectively).

We will also pose the Chinese remainder theorem in great
generality using our ring language.



Arithmetic in Integral Domains, II

First, we make a number of definitions precise:

Definition

Suppose that R is an integral domain and a, b, d ∈ R.

1. We say that d divides a, written d |a, if there exists some
r ∈ R such that a = rd.

2. We say d is a common divisor of a and b if d |a and d |b.

3. We say that a common divisor d ∈ R is a
greatest common divisor of a and b if d 6= 0 and for any other
common divisor d ′, it is true that d ′|d.

4. If 1 is a greatest common divisor of a and b, then we say a
and b are relatively prime.

5. If a = ub for some unit u, then we say a and b are associates.



Arithmetic in Integral Domains, II

Examples:

1. Inside Z, we have 2|6, 5| − 10, 3|0, and 0|0.
1 is a common divisor of 6 and 16, and 2 is a greatest
common divisor (as is −2).
3 and 5 are relatively prime.
6 and −6 are associates.

2. Inside Z[i ], we have (1 + i)|2 because 2 = (1 + i)(1− i).
1 + i is a common divisor of 2 and 3 + i , since
(3 + i) = (1 + i)(2− i).
In fact, 1 + i is a greatest common divisor of 2 and 3 + i ,
although this is harder to show.
The elements 2 + i , −1 + 2i = i(2 + i), −2− i , and 1− 2i are
all associates.



Arithmetic in Integral Domains, III

We will focus more tightly on the question of how to compute
greatest common divisors later.

In the definition we gave, it is not at all clear how one would
establish that a particular value of d is a greatest common
divisor of the elements a and b.

One could resort to the method of writing down all possible
divisors of a and b and then searching for a greatest one. But
of course, if the ring R is complicated, this might be very
difficult. (For example: try writing down all the divisors of
95 + 67i inside Z[i ].)

In fact, an even worse scenario exists: it can happen that elements
a and b do not have a greatest common divisor at all!
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Example: Show that 2 + 2
√
−5 and 6 do not possess a greatest

common divisor in Z[
√
−5].

First, observe that 2 and 1 +
√
−5 are both common divisors

of 2 + 2
√
−5 and 6.

Now suppose that 2 + 2
√
−5 and 6 had a gcd d : then d

would divide 2(1 +
√
−5) and 6, and also be divisible by 2 and

1 +
√
−5.

By taking norms, we see that N(d) divides both
N(2 + 2

√
−5) = 24 and N(6) = 36, hence divides 12.

Also, N(d) would also necessarily be a multiple of N(2) = 4
and N(1 +

√
−5) = 6, hence be a multiple of 12.

The only possibility is N(d) = 12... but there are no elements
of norm 12 in Z[

√
−5], since there are no integer solutions to

a2 + 5b2 = 12. This is a contradiction, so 2 + 2
√
−5 and 6 do

not possess a greatest common divisor in Z[
√
−5].
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The point of this last example is that greatest common divisors are
a bit more subtle in arbitrary integral domains.

You might also recall from a few lectures ago when I
mentioned a non-principal ideal (2, 1 +

√
−5) in this same

ring, and identified a non-unique factorization
2 · 3 = 6 = (1 +

√
−5)(1−

√
−5).

Given this reminder, you might then notice that the elements
appearing there and in this last example, namely, 2(1 +

√
−5)

and 6, seem very suspiciously similar.

Indeed, the lack of greatest common divisors in this example
is quite intimately tied to the existence of a non-principal ideal
in this ring. (We will return to this question later.)
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We have some basic properties of divisibility:

Proposition (Properties of Divisibility)

Let R be an integral domain. Then for any elements a, b, d ∈ R,
the following are true:

1. The element d divides a if and only if the principal ideal (a) is
contained in the principal ideal (d).

2. The elements a and b are associate if and only if a|b and b|a,
if and only if (a) = (b).

3. If a and b have a gcd d, the collection of greatest common
divisors of a and b is precisely the set of associates of d.

4. The element d is a gcd of a and b if and only if (d) is the
smallest principal ideal containing (a, b). In particular, if (a, b)
is a principal ideal, then any generator is a gcd of a and b.
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1. The element d divides a if and only if the principal ideal (a) is
contained in the principal ideal (d).

Proof:

Note (a) ⊆ (d) if and only if a ∈ (d) if and only if a = dk for
some k ∈ R.

2. The elements a and b are associate if and only if a|b and b|a,
if and only if (a) = (b).

Proof:

Note (a) = (b) if and only if (a) ⊆ (b) and (b) ⊆ (a), which
is equivalent to a|b and b|a by (1).

Also, a = ub for some unit u clearly implies a|b and b|a.

Conversely if a|b and b|a, then a = rb and b = sa: then
a = rsa. If a = 0 then b = 0 also and we are done; otherwise
we may cancel to see rs = 1 and so r is a unit.
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3. If a and b have a gcd d , then then the collection of greatest
common divisors of a and b is precisely the set of associates
of d .

Proof:

If d is a gcd of a and b and u is any unit, then (ud)|a and
(ud)|b, and also if d ′|d then d ′|(ud) so ud is also a gcd.

Furthermore, if d and e are both gcds of a and b, then d |e
and e|d so that d and e are associates by (2).
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4. The element d is a gcd of a and b if and only if (d) is the
smallest principal ideal containing (a, b). In particular, if (a, b)
is a principal ideal, then any generator is a gcd of a and b.

Proof:

By (1), d is a common divisor of a and b if and only if (d)
contains both (a) and (b), which is equivalent to saying
(a, b) ⊆ (d).

Then by (1) again, if d is a gcd of a and b and d ′ is any other
common divisor, we must have (d) ⊆ (d ′): thus, d is a gcd of
a and b if and only if (d) is the smallest principal ideal
containing (a, b).

Finally, if (a, b) = (d) is itself principal, then clearly (d) is the
smallest principal ideal containing (a, b).
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Now that we have established some basic properties of divisibility,
we can talk about factorizations.

Definition

Let R be an integral domain. A nonzero element r ∈ R is
irreducible if it is not a unit and, for any “factorization” r = bc
with b, c ∈ R, one of b and c must be a unit. A ring element that
is not irreducible and not a unit is called reducible: it can be
written as r = ab where neither a nor b is a unit.

Examples:

1. The irreducible elements of Z are precisely the prime numbers
(and their negatives).

2. The irreducible elements of F [x ] are the irreducible
polynomials of positive degree.
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Examples:

3. The element 5 is reducible in Z[i ], since we can write
5 = (2 + i)(2− i) and neither 2 + i nor 2− i is a unit in Z[i ].

4. The element 2 + i is irreducible in Z[i ]: if 2 + i = bc for some
z ,w ∈ Z[i ], then taking norms yields
5 = N(2 + i) = N(b)N(c), and since 5 is a prime number,
one of N(b) and N(c) would necessarily be ±1, and then b or
c would be a unit. Likewise, 2− i is also irreducible.

5. The element 2 is irreducible in Z[
√
−5]: if 2 = bc then taking

norms yields 4 = N(2) = N(b)N(c), and since there are no
elements of norm 2 in Z[

√
−5], one of N(b) and N(c) would

necessarily be ±1, and then b or c would be a unit.
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Inside Z, the irreducible elements are the prime numbers. However,
we have a different notion of a prime element in an arbitrary
integral domain:

Definition

Let R be an integral domain. A nonzero element p ∈ R is prime if
p is nonzero and not a unit, and for any a, b ∈ R, if p|ab then p|a
or p|b. Equivalently, p is prime if p is nonzero and the ideal (p) is
a prime ideal of R.
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Examples:

1. The prime elements of Z are precisely the prime numbers (and
their negatives).

2. The prime elements of F [x ] are the irreducible polynomials of
positive degree.

3. The element 2 + i is prime in Z[i ]: if ab ∈ (2 + i) then
2 + i = bc for some z ,w ∈ Z[i ]. Taking norms yields
5 = N(2 + i) = N(b)N(c), and since 5 is a prime number,
one of N(b) and N(c) would necessarily be ±1, and then b or
c would be a unit.

4. The element 2 is not prime in Z[
√
−5]: note that

6 = (1 +
√
−5)(1−

√
−5) is divisible by 2, but neither

1 +
√
−5 nor 1−

√
−5 is divisible by 2.
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As suggested by the examples above, prime elements are always
irreducible, but irreducible elements are not necessarily prime:

Proposition (Primes are Irreducible)

In an integral domain, prime elements are always irreducible.

Proof:

Suppose p ∈ R is a prime element.

If p = bc then since p|bc, we conclude that p|b or p|c ;
without loss of generality suppose b = pr .

Then p = prc , so since p 6= 0 we may cancel to conclude
rc = 1, so that c is a unit. Thus, p is irreducible.

Later, we will discuss under what conditions irreducible elements
will be prime.



Quadratic Integer Rings, I

We now have enough background to discuss some facts about the
rings that we will be analyzing in this chapter. First, we
(re-)introduce quadratic fields:

Definition

Let D be a squarefree integer not equal to 1. The quadratic field
Q(
√

D) is the set of complex numbers of the form a + b
√

D,
where a and b are rational numbers.

Recall that an integer is squarefree if it is not divisible by the
square of any prime, and not equal to 1.

We lose nothing here by assuming that D is a squarefree
integer, since two different integers differing by a square factor
would generate the same set of complex numbers a + b

√
D.
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For explicitness, the operations in Q(
√

D) are as follows:
(a + b

√
D) + (c + d

√
D) = (a + c) + (b + d)

√
D, and

(a + b
√

D)(c + d
√

D) = (ac + Dbd) + (ad + bc)
√

D.

Since Q(
√

D) is clearly closed under subtraction and
multiplication, and contains 0 = 0 + 0

√
D, it is a subring of C

and hence an integral domain, since it contains 1.

It is in fact a field (justifying the name “quadratic field”)

because we can write (a + b
√

D)−1 =
a− b

√
D

a2 − Db2
, and

a2−Db2 6= 0 provided that a and b are not both zero because√
D is irrational by the assumption that D is squarefree and

not equal to 1.
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We can also construct this ring1 as a quotient ring of a polynomial
ring.

Specifically, Q(
√

D) is isomorphic to the quotient ring Q[x ]
modulo the principal ideal (x2 − D).

The isomorphism is given explicitly by mapping p(x) ∈ Q[x ]
to p(

√
D) ∈ Q(

√
D).

This “evaluation map” can be seen to be a ring
homomorphism, and its kernel is the ideal (x2 − D) of Q[x ].

Since the evaluation map is clearly surjective, the first
isomorphism theorem tells us that Q(

√
D) is isomorphic to

the quotient ring Q[x ]/(x2 − D), as claimed.

1Or, depending on how pedantic you wish to be, a ring isomorphic to it.
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We have already made use of the field norm, but we record its
definition again here:

Definition

The field norm N : Q(
√

D)→ Q is defined to be the function
N(a + b

√
D) = a2 − Db2 = (a + b

√
D)(a− b

√
D).

The fundamental property of the field norm is that it is
multiplicative (i.e., that N(xy) = N(x)N(y) for all x , y ∈ Q(

√
D)),

as we showed back during the first week of class.
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A fundamental subring of the quadratic field Q(
√

D) is its
associated “quadratic integer ring”.

The most obvious choice for an analogy of the integers Z
inside Q(

√
D) would be Z[

√
D] = {a + b

√
D : a, b ∈ Z}.

However, notice that if D ≡ 1 (mod 4), then the slightly

larger subset Z[1+
√
D

2 ] = {a + b 1+
√
D

2 : a, b ∈ Z} is actually
also a subring: closure under subtraction is obvious, and for

multiplication we can write (a + b 1+
√
D

2 )(c + d 1+
√
D

2 ) =

(ac + D−1
4 bd) + (ad + bc + bd)1+

√
D

2 .

One reason that this larger set turns out to give a slightly
better analogy for the integers Z when D ≡ 1 (mod 4) is that
1+
√
D

2 satisfies a monic polynomial with integer coefficients:

specifically, it is a root of x2 − x + 1−D
4 = 0.
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So, with this minor enlargement when D ≡ 1 (mod 4), we have
our definition of a quadratic integer ring:

Definition

The ring of integers OQ(
√
D) in the quadratic field Q(

√
D) is

defined as Z[
√

D] if D ≡ 2 or 3 (mod 4) and as Z[1+
√
D

2 ] when
D ≡ 1 (mod 4). Each of these rings is an integral domain.

For D ≡ 2, 3 (mod 4), observe that N(a + b
√

D) = a2 − Db2

is an integer for every a + b
√

D ∈ O√D .

Likewise, if D ≡ 1 (mod 4), we have

N(a + b 1+
√
D

2 ) = a2 + ab + 1−D
4 b2 is also an integer for every

a + b 1+
√
D

2 ∈ OQ(
√
D).

Thus, the field norm N is always integer-valued on OQ(
√
D).
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Since the field norm is integer-valued on OQ(
√
D), we can use it to

identify units:

Proposition (Units in OQ(
√
D))

An element r in the ring OQ(
√
D) is a unit if and only if N(r) = ±1.

Example:

The units in OQ(
√
−1) = Z[i ] are {±1,±i}: for r = a + bi we

have N(r) = a2 + b2, and a2 + b2 = ±1 has four solutions
yielding the four listed units.

We essentially proved this result already, but let’s do it again.
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Proof:

Suppose r = a + b
√

D and let r = a− b
√

D, so that
N(r) = r r .

Note that r = 2a− r , so that even when D ≡ 1 (mod 4)
(with a and b possibly half-integers), r is still in OQ(

√
D).

If N(r) = ±1, then we see that r r = ±1, so (by multiplying
by −1 if necessary) we obtain a multiplicative inverse for r .

Conversely, suppose r is a unit and rs = 1. Taking norms
yields N(r)N(s) = N(rs) = 1. Since N(r) and N(s) are both
integers, we see that N(r) must either be 1 or −1.
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Example: Find the units in OQ(
√
−3) = Z[(1 +

√
−3)/2].

For r = a + b
1 +
√
−3

2
we see N(r) = a2 + ab + b2.

We must therefore solve a2 + ab + b2 = 1 in Z.

By multiplying by 4 and completing the square, this equation
is equivalent to (2a + b)2 + 3b2 = 4, which has six solutions
corresponding to r = 1, −1, ω, −ω, ω2, −ω2, where

ω =
1 +
√
−3

2
is seen to be a sixth root of unity satisfying

ω6 = 1. (If you prefer, you can also think of this list as
{1, ω, ω2, ω3, ω4, ω5}.)



Quadratic Integer Rings, IX

Example: Find the units in OQ(
√
−3) = Z[(1 +

√
−3)/2].

For r = a + b
1 +
√
−3

2
we see N(r) = a2 + ab + b2.

We must therefore solve a2 + ab + b2 = 1 in Z.

By multiplying by 4 and completing the square, this equation
is equivalent to (2a + b)2 + 3b2 = 4, which has six solutions
corresponding to r = 1, −1, ω, −ω, ω2, −ω2, where

ω =
1 +
√
−3

2
is seen to be a sixth root of unity satisfying

ω6 = 1. (If you prefer, you can also think of this list as
{1, ω, ω2, ω3, ω4, ω5}.)



Quadratic Integer Rings, X

In general, determining the full set of units in OQ(
√
D) is a

nontrivial computation.

When D < 0 it is not too difficult to see (by completing the
square in a similar way to above when D ≡ 1 (mod 4)) that if
D 6= −1,−3, then the only units in OQ(

√
D) are ±1.

When D > 0 and D ≡ 2, 3 (mod 4), solving N(α) = ±1 is
equivalent to solving Pell’s equation x2 − Dy2 = ±1, which
we have already described at length.

For D > 0 with D ≡ 1 (mod 4), we see N(a+b
√
D

2 ) = ±1 is
equivalent to the Pell’s equation a2 − Db2 = ±4, whose
solutions can also be found using continued fractions.

In particular, the same sort of analysis we gave for
x2 − Dy2 = ±1 will show that the solutions are of the form
±un where u is the fundamental unit.



Quadratic Integer Rings, XI

We will return to discuss these rings after we have developed some
additional results about ideals and factorizations in integral
domains, which is our next major topic.

For notational convenience, I will often write O√D as shorthand for
OQ(

√
D), since it is marginally faster to typeset.



Summary

We discussed some properties of arithmetic and factorization in
integral domains.

We defined the quadratic integer rings and remarked on some of
their basic properties.

Next lecture: Euclidean domains, principal ideal domains.


