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Ideals and Quotient Rings

Quotient Rings

Maximal Ideals and Their Properties

This material represents §8.1.2-8.1.3 from the course notes.



Recall, I

Last time we introduced ideals:

Definition

If R is a commutative ring with 1, a subset I is called a (two-sided)
ideal of R if it contains 0, is closed under subtraction, and is closed
under arbitrary multiplication by elements of R.

Explicitly, I is an ideal if I contains 0 and for any x , y ∈ I and any
r ∈ R, the elements x − y and rx are in I .



Recall, II

We also said some things about generation of ideals:

Definition

Suppose R is a commutative ring with 1 and A is a subset of R.
We define the ideal generated by A, denoted (A), to be the
intersection of all ideals of R containing A. This ideal is the
smallest ideal of R containing A.

Definition

If R is a ring with 1, we say an ideal I is finitely generated if I is
generated by a finite set, and we say I is principal if I is generated
by a single element. Thus, a finitely generated ideal has the form
I = (a1, a2, . . . , an), while a principal ideal has the form I = (a).



More With Ideals, I

As we noted in both of the examples, we always have (1) = R. We
can generalize this statement somewhat:

Proposition (Ideals and Units)

If I is an ideal of the ring R with 1, then I = R if and only if I
contains a unit.

Proof:

If I = R then certainly I contains a unit (namely, 1).

Conversely, if u ∈ I is a unit with ur = 1, then since I is an
ideal we have 1 = ur ∈ I .

Then for any s ∈ R, the element s = 1s is also in I , and so
I = R.



More With Ideals, II

Since every nonzero element in a field is a unit, the only nonzero
ideal of a field F is F itself. The converse is also true:

Corollary (Ideals of Fields)

A commutative ring R with 1 is a field if and only if the only ideals
of R are 0 and R.

Proof:

If F is a field and I 6= (0), then I contains some nonzero r .
Since F is a field, r is a unit, so I = R by the proposition.

Conversely, if the only ideals of R are 0 and R, let r ∈ R be
any nonzero element. Then (r) contains r 6= 0 so it cannot be
the zero ideal, so we must have (r) = R.

By the previous proposition, this means (r) contains 1: then
rs = 1 for some s ∈ R, so r is a unit. Hence every nonzero
element of R is a unit, so R is a field as claimed.



Quotient Rings, I

Now we can get back to constructing quotient rings:

Definition

If I is an ideal of the ring R, then we say a is congruent to b
modulo I , written a ≡ b (mod I ), if a− b ∈ I .

Proposition (Ideal Congruences)

Let I be an ideal of R and a, b, c , d ∈ R. The following are true:

1. a ≡ a (mod I ).

2. a ≡ b (mod I ) if and only if b ≡ a (mod I ).

3. If a ≡ b (mod I ) and b ≡ c (mod I ), then a ≡ c (mod I ).

4. If a ≡ b (mod I ) and c ≡ d (mod I ), then a + c ≡ b + d
(mod I ).

5. If a ≡ b (mod I ) and c ≡ d (mod I ), then ac ≡ bd (mod I ).



Quotient Rings, II

Proofs:

1. a ≡ a (mod I ).

Since a− a = 0 ∈ I , the statement is immediate.

2. a ≡ b (mod I ) if and only if b ≡ a (mod I ).

If a− b ∈ I then −(a− b) = b − a ∈ I since I is closed
under additive inverses, and conversely if b − a ∈ I then
so is −(b − a) = a− b.

3. If a ≡ b (mod I ) and b ≡ c (mod I ), then a ≡ c (mod I ).

We are given a− b ∈ I and b − c ∈ I , so since I is closed
under addition, we see (a− b) + (b − c) = a− c ∈ I .



Quotient Rings, III

Proofs (continued):

4. If a ≡ b (mod I ) and c ≡ d (mod I ), then a + c ≡ b + d
(mod I ).

We are given a− b ∈ I and c − d ∈ I , so since I is closed
under addition, (a− b) + (c − d) = (a + c)− (b + d) ∈ I .

5. If a ≡ b (mod I ) and c ≡ d (mod I ), then ac ≡ bd (mod I ).

We are given a− b ∈ I and c − d ∈ I .
Then since I is closed under arbitrary left and right
multiplication, (a− b)c and b(c − d) are also in I .
Hence ac − bd = (a− b)c + b(c − d) is also in I since I
is closed under addition.



Quotient Rings, IV

Now we can define residue classes:

Definition

If I is an ideal of the ring R, then for any a ∈ R we define the
residue class of a modulo I to be the set
a = a + I = {a + x : x ∈ I}. This set is the left coset of I (under
the addition operation of R) represented by a.

We will use the notation a and a + I interchangeably. (The
latter is intended to evoke the idea of “adding” a to the set I .)

It follows from properties of cosets that two residue classes are
either disjoint or identical and that they partition R:
a = b if and only if a ≡ b (mod I ) if and only if a− b ∈ I .



Quotient Rings, V

All that remains is to verify that the residue classes form a ring.

Theorem (Quotient Rings)

Let I be an ideal of the ring R. Then the collection of residue
classes modulo I forms a ring, denoted R/I (read as “R mod I ”),
under the operations a + b = a + b and a · b = ab. (This ring is
called the quotient ring of R by I .) If R is commutative then so is
R/I , and likewise if R has a 1 then so does R/I .

The notation R/I is intended to emphasize the idea that I
represents a single element (namely, 0) in the quotient ring R/I ,
and the other elements in R/I are “translates” of I . In this way,
R/I is the ring obtained from R by “collapsing” or “dividing out”
by I , whence the name “quotient ring”.



Quotient Rings, VI

Proof:

The proof is essentially bookkeeping, and the only real
content is to show that the operations are well-defined: that
is, if we choose different elements a′ ∈ ā and b′ ∈ b̄, the
residue class of a′ + b′ is the same as that of a + b, and
similarly for the product.

To see this, if a′ ∈ ā then a′ ≡ a (mod I ), and similarly if
b′ ∈ b then b′ ≡ b (mod I ).

Then a′ + b′ ≡ a + b (mod I ), so a′ + b′ = a + b. Likewise,
a′b′ ≡ ab (mod I ), so a′b′ = ab.

Thus, the operations are well-defined.



Quotient Rings, VII

Proof (continued):

Now we just observe that the ring axioms are essentially
inherited from R.

For the ring axioms, we observe that associativity,
commutativity, and the distributive laws follow immediately
from the corresponding properties in R: the additive identity
in R/I is 0̄, the multiplicative identity is 1̄, and the additive
inverse of a is −a.

For example, we have a + b = a + b = b + a = b + a.



Quotient Rings, VIII

We will also occasionally want to mention structure-preserving
maps from one ring to another, which are called homomorphisms:

Definition

A function ϕ : R → S is a ring homomorphism if
ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1 · r2) = ϕ(r1) · ϕ(r2) for all
elements r1 and r2 in R. A homomorphism ϕ : R → S that is a
bijection is called a ring isomorphism.

Examples:

1. The map ϕ : Z→ Z/mZ defined by ϕ(a) = a is a ring
homomorphism.

2. If R is any ring, the map ϕ : R → R × R given by
ϕ(r) = (r , r) is a ring homomorphism.

3. The map ϕ : Z/6Z→ (Z/2Z)× (Z/3Z) given by
ϕ(a) = (a mod 2, a mod 3) is a ring isomorphism.



Quotient Rings, IX

Here are some examples of quotient rings.

Examples:

1. If R is any ring, the quotient ring of R by the zero ideal,
namely R/0, is (isomorphic to) R itself, while the quotient
ring of R by itself, namely R/R, is (isomorphic to) the trivial
ring {0}.

2. If R = Z, then the quotient Z/mZ is simply the ring of residue
classes modulo m, with which we are already quite familiar.



Quotient Rings, X

Examples:

3. In R = Z[x ], with I = (x , 2) describe the structure of the
quotient ring R/I .

Notice that I consists of the polynomials in R whose
constant term is even.
We can therefore see that there are two residue classes
modulo I , namely, the polynomials congruent to 0 and
the polynomials congruent to 1.
Explicitly, the two residue classes are 0 + I (the
polynomials with even constant term) and 1 + I (the
polynomials with odd constant term).
The quotient ring R/I therefore has two elements, and it
is easy to see that the resulting ring structure is
isomorphic to Z/2Z.



Quotient Rings, X

Examples:

4. In R = Z[x ], with I = (x2 + 1) describe the structure of the
quotient ring R/I .

From the division algorithm for polynomials, the residue
classes in R/I are represented uniquely in the form
a + bx where a, b ∈ Z (simply divide a polynomial by
x2 + 1 and consider the remainder).
In R/I , we have x2 + 1 = 0, which is to say, x2 = −1.
The operations in R/I are given by
a + bx + c + dx = (a + c) + (b + d)x and
a + bx · c + dx = (ac − bd) + (ad + bc)x ,
via the distributive law and the fact that x2 = −1.
In this case, the quotient ring is isomorphic to the ring of
Gaussian integers Z[i ], with the isomorphism
ϕ : R/I → Z[i ] given by ϕ(a + bx) = a + bi .



Quotient Rings, XI

Examples:

5. In R = Z/8Z, with I = (4) = {0, 4}, describe the structure of
the quotient ring R/I .

Each residue class has 2 elements, so since R has 8
elements, there are four residue classes. They are
0 = 0 + I = {0, 4},
1 = 1 + I = {1, 5},
2 = 2 + I = {2, 6}, and
3 = 3 + I = {3, 7}.
Notice, for example, that in the quotient ring R/I , we
have 1 + 3 = 0, 2 · 2 = 0, and 2 · 3 = 2.
In fact, we can see that the ring structure of R/I is
isomorphic to Z/4Z (the labelings of the elements are
even the same).



Quotient Rings, XII

Just as with group homomorphisms, the kernel and image of a ring
homomorphism play important roles:

Definition

If ϕ : R → S is a ring homomorphism, the kernel of ϕ, denoted
kerϕ, is the set of elements in R mapped to 0S by ϕ. In other
words, kerϕ = {r ∈ R : ϕ(r) = 0}.

The kernel measures how close ϕ is to being the zero map: if the
kernel is large, then ϕ sends many elements to zero, while if the
kernel is small, ϕ sends fewer elements to zero.

Example: The kernel of the reduction homomorphism
ϕ : Z→ Z/mZ with ϕ(a) = a is mZ.

The kernel of any homomorphism ϕ : R → S is an ideal of R. In
fact, kernels of homomorphisms and ideals are the same objects.



Quotient Rings, XIII

We also have the image:

Definition

If ϕ : R → S is a ring homomorphism, the image of ϕ, denoted
imϕ, is the set of elements in S of the form ϕ(r) for some r ∈ R.

In the context of general functions, the image is often called
the range of ϕ.

Intuitively, the image measures how close ϕ is to being
surjective: indeed (by definition) ϕ is surjective if and only if
imϕ = S .



Quotient Rings, XV

One of the fundamental results about quotient rings is a
relationship between homomorphisms and quotients. The
statement is identical to the corresponding result for groups:

Theorem (First Isomorphism Theorem)

If ϕ : R → S is a homomorphism of rings, then R/ kerϕ is
isomorphic to imϕ.

By definition ϕ is a surjective homomorphism ϕ : R → imϕ.

The idea of the first isomorphism theorem is that if we want
to turn ϕ into an isomorphism, we must “collapse” its kernel
to a single element: this is precisely what the quotient ring
R/ kerϕ represents.



Quotient Rings, XVI

Proof:

Let I = kerϕ. We use ϕ to construct a map ψ : R/I → imϕ,
and then show that it is injective and surjective.

The map is defined as follows: for any residue class r ∈ R/I ,
we define ψ(r) = ϕ(r).

We must verify that this map ψ is well-defined, so suppose
that r ′ is some other representative of the residue class r :
then r ′ − r ∈ I , so ϕ(r ′ − r) = 0 and thus ϕ(r ′) = ϕ(r).

Thus, ψ(r ′) = ϕ(r ′) = ϕ(r) = ψ(r), so the map ψ is
well-defined.



Quotient Rings, XVII

Proof (continutuateatedly):

It is then easy to see ψ is a homomorphism, since
ψ(r + s) = ϕ(r + s) = ϕ(r) + ϕ(s) = ψ(r) + ψ(s) and
likewise ψ(r · s) = ϕ(r · s) = ϕ(r) · ϕ(s) = ψ(r) · ψ(s).

Next, we see that ψ(r) = 0 precisely when ϕ(r) = 0, which is
to say r ∈ ker(ϕ), so that r = 0. Thus, the only element in
kerψ is 0, so ψ is injective.

Finally, if s is any element of imϕ, then by definition there is
some r ∈ R with ϕ(r) = s: then ψ(r) = s, meaning that ψ is
surjective.

Since ψ is a homomorphism that is both injective and
surjective, it is an isomorphism.



Quotient Rings, XVIII

The main utility of the first isomorphism theorem is that we can
use it to construct isomorphisms of rings.

In order to show that R/I is isomorphic to a ring S , we search
for a surjective homomorphism ϕ : R → S whose kernel is I .

The idea above is quite simple, but it is surprisingly powerful.

Now, our course is not entirely about ring theory, but it is not
entirely not about ring theory either, so it is very worthwhile
to become at least moderately comfortable with recognizing
when the first isomorphism theorem might be of use.



Quotient Rings, XIX

Example: Show that Z/12Z is isomorphic to (Z/3Z)× (Z/4Z).

We seek a surjective homomorphism
ϕ : Z→ (Z/3Z)× (Z/4Z) whose kernel is 12Z.

Once this idea is suggested, it is not hard to come up with a
candidate, namely, ϕ(a) = (a mod 3, a mod 4).

It is easy to verify that map is a homomorphism (since the
individual maps of reduction mod 3 and reduction mod 4 are
homomorphisms) and it is likewise fairly easy to see that the
map is surjective by checking that the images of 0, 1, ... , 11
represent all of the elements in (Z/3Z)× (Z/4Z).

Finally, the kernel of the map consists of all integers a with
ϕ(a) = (0, 0), which is not hard to see is precisely 12Z.

Therefore, by the first isomorphism theorem applied to ϕ, we
conclude that Z/12Z is isomorphic to (Z/3Z)× (Z/4Z).



Maximal Ideals, I

An important class of ideals are those that are “maximal” under
inclusion (i.e., which are not contained in any other ideal except
the full ring):

Definition

If R is a ring, a maximal ideal of R is an ideal M 6= R with the
property that the only ideals of R containing M are M and R.

Examples:

1. If F is a field, then since the only ideals of F are 0 and F , the
zero ideal is a maximal ideal of F .

2. In Z, the ideal mZ is contained in nZ precisely when n divides
m. Accordingly, the maximal ideals of Z are precisely the
ideals of the form pZ, where p is a prime.

3. The ideal (x) is not a maximal ideal of Z[x ] because it is
contained in the proper ideal (2, x).



Maximal Ideals, II

A commutative ring with 1 must have maximal ideals:

Theorem (Existence of Maximal Ideals)

If R is a commutative ring with 1, then any proper ideal of R is
contained in a maximal ideal.

Like a number of other general existence theorems (e.g., the proof
that every vector space has a basis), this proof requires the
(in)famous axiom of choice from set theory.

The version of the axiom of choice typically used in algebra is
known as Zorn’s lemma: if S is a nonempty partially ordered
set with the property that every chain in S has an upper
bound, then S contains a maximal element.

Since the goal of this course is not to dwell too much on
foundational minutia, I will skip this proof (though if you want
to see the details, they’re in the notes).



Maximal Ideals, III

It might initially appear to be difficult to detect whether a
particular ideal is maximal. However, by using quotient rings, we
can do this quite easily:

Proposition (Maximal Ideals and Quotients)

If R is a commutative ring with 1, then the ideal M is maximal if
and only if R/M is a field.

I will remark that this result is not true if we drop either of the
assumptions on R (i.e., that it is commutative and has a 1).

The standard noncommutative counterexample is to take
R = M2×2(F ), the 2× 2 matrices over a field F . One can
show that the only ideals of this ring are (0) and R, so (0) is
maximal. But clearly R/(0) ∼= R is not a field.

A counterexample for a ring R that does not have a 1 is
I = 4Z inside R = 2Z: I is maximal but R/I is not a field.



Maximal Ideals, IV

Proof:

It can be verified that there is a correspondence between
ideals of R containing I and the ideals of R/I : if J is an ideal
of R, then J̃ = {j + I : j ∈ J} is easily seen to be an ideal of
R/I . Conversely, if we have any ideal J/I = {j + I : j ∈ J} of
R/I , it is straightforward to check that the collection of all
elements j ∈ R such that j + I ∈ J̃ is an ideal of R.

This means the ideals of R/M are in bijection with the ideals
of R containing M: therefore, M is maximal precisely when
the only ideals of R/M are 0 and R/M.

Furthermore, if R is commutative with 1, then R/M is also a
commutative ring with 1, so R/M is a field if and only if the
only ideals of R/M are 0 and R/M. Putting these two
statements together yields the proposition.



Maximal Ideals, V

Using that characterization, we can write down the maximal ideals
of Z and of F [x ]:

Corollary

The maximal ideals of Z are precisely the ideals (p) where p is
prime, and the maximal ideals of F [x ] are precisely the principal
ideals (p) where p is irreducible.

Proof:

As noted earlier, every ideal of Z is principal.

Also, Z/mZ is a field if and only if p is prime. Thus, (m) is
maximal if and only if m is prime.

The statement for F [x ] is similar: every ideal is principal, and
the quotient ring F [x ]/(p) is a field if and only if p is
irreducible.



Maximal Ideals, VI

Example: Determine whether the ideals I = (2, x) and
J = (x2 + 1) are maximal ideals of R = Z[x ].

We simply look at the quotient rings R/I and R/J and decide
whether they are fields.

Conveniently, we did both of these earlier in the lecture:
R/(2, x) is isomorphic to Z/2Z, which is a field, while
R/(x2 + 1) is isomorphic to Z[i ], which is not a field.

Thus, I is a maximal ideal of R, but J is not.

If you like, you can try to find a proper ideal of R that
properly contains J.



Maximal Ideals, VI

Example: Determine whether the ideals I = (2, x) and
J = (x2 + 1) are maximal ideals of R = Z[x ].

We simply look at the quotient rings R/I and R/J and decide
whether they are fields.

Conveniently, we did both of these earlier in the lecture:
R/(2, x) is isomorphic to Z/2Z, which is a field, while
R/(x2 + 1) is isomorphic to Z[i ], which is not a field.

Thus, I is a maximal ideal of R, but J is not.

If you like, you can try to find a proper ideal of R that
properly contains J.



Maximal Ideals, VII

Example: Determine whether the ideal I = (3) is maximal in
R = Z[

√
3].

In the quotient ring R/I , the residue class
√

3 + I is nonzero,
but has the property that (

√
3 + I )2 = 3 + I = 0 + I is equal

to zero.

Thus, the quotient ring R/I has zero divisors hence is not a
field, meaning that I is not a maximal ideal of R.

Another approach is to observe that I is properly contained in
the ideal M = (

√
3), which is proper because

√
3 is not a unit

in R. (In fact, this is really the same observation as the one
made above.)



Maximal Ideals, VII

Example: Determine whether the ideal I = (3) is maximal in
R = Z[

√
3].

In the quotient ring R/I , the residue class
√

3 + I is nonzero,
but has the property that (

√
3 + I )2 = 3 + I = 0 + I is equal

to zero.

Thus, the quotient ring R/I has zero divisors hence is not a
field, meaning that I is not a maximal ideal of R.

Another approach is to observe that I is properly contained in
the ideal M = (

√
3), which is proper because

√
3 is not a unit

in R. (In fact, this is really the same observation as the one
made above.)



Summary

We discussed some additional properties of quotient rings.

We defined maximal ideals and identified some of their properties.

Next lecture: Prime ideals, arithmetic in domains, quadratic
integer rings.


