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Elliptic Curves Over Q, I

We now discuss the problem of computing rational points on
elliptic curves. The following quite deep theorem establishes that
the group of Q-rational points on any elliptic curve E is always
finitely generated:

Theorem (Mordell’s Theorem)

Let E be an elliptic curve over Q. Then the group E (Q) of
rational points on E is finitely generated.

By applying the structure theorem for finitely-generated abelian
groups, we can say a bit more about the group of rational points.

Explicitly, we have E (Q) ∼= Zr ⊕ ETor(Q) where ETor(Q) is the
set of Q-torsion points of E (i.e., the set of Q-rational points
of E having finite order), which is a finite abelian group and
thus is a direct sum of cyclic groups.



Elliptic Curves Over Q, II

Mordell’s theorem says that E (Q) ∼= Zr ⊕ ETor(Q).

For any given elliptic curve E , the torsion subgroup ETor(Q)
can be computed quite explicitly, as we will describe a bit
later.

The quantity r is called the rank of the elliptic curve, and is
equal to the number of linearly-independent points one may
construct on E . The rank is much more difficult to compute,
and there is no known direct algorithm that is guaranteed to
compute it (though in practice the rank of most curves can be
computed).

It is not currently known whether elliptic curves over Q can
have an arbitrarily large rank, and the historical consensus has
switched back and forth between thinking ranks can be
arbitrarily large and thinking that ranks are uniformly bounded
above.



Elliptic Curves Over Q, III

Elkies has given a construction for an elliptic curve that has rank
at least 28, and it is expected (although to date, it is not proven)
that this curve has rank exactly 28.

The equation of Elkies’ curve is

x2 + xy + y = x3 − x2 −
20067762415575526585033208209338542750930230312178956502x+

34481611795030556467032985690390720374855944359319180361266008296291939448732243429.

It has been shown by Bhargava and Shankar in 2015 that the
average rank (suitably defined) of an elliptic curve is at most
7/6: the actual average is expected to be 1/2 (with 50% of
elliptic curves having rank 0 and 50% having rank 1,
asymptotically).



Elliptic Curves Over Q, IV

The result of the Mordell-Weil theorem is relatively deep, and we
will not go through all the calculations in the proof, but rather just
outline the main ideas.

First, one proves the so-called “weak Mordell-Weil theorem”:
that for any positive integer m, the group E (Q)/mE (Q) is
finitely generated.

Of course, the weak Mordell-Weil theorem does not imply the
full Mordell-Weil theorem directly, because there are many
non-finitely-generated groups G such that G/mG is finitely
generated (e.g., Q and R both have G/mG = 0 for all m).

The difficulty is that knowing G/mG is finitely generated does
not imply G is finitely generated, because G could contain
many elements that are divisible by m.



Elliptic Curves Over Q, V

The second part of the proof requires showing that E (Q) cannot
contain a large number of “small” elements that are divisible by m,
using the theory of heights.

First, one defines a “height function”, measuring roughly the
complexity of a point on the curve, and then shows that the
height of large multiples of a point tends to be larger than the
height of the original point.

One such height function on points (x , y) = (px/qx , py/qy ) is
max(log px , log qx): essentially, the maximum number of digits
appearing in the numerator or denominator of the coordinates.

This is a fundamentally algebraic notion of “size”, in contrast
to a more analytic notion of size like |(x , y)| = |x |: the
difference is that analytically, 999/1000 and 1 are close, but
algebraically, the first is far more complicated than the second.



Elliptic Curves Over Q, VI

Using heights, we can show that there are a bounded number of
points in E (Q) of height less than any fixed bound: thus, any
point that is a multiple of m has to be “large” for large m.

By fine-tuning the details of this argument, we can deduce
that a finite number of generators will suffice to generate the
group E (Q).

The idea is to show that for any point P on E , we may
subtract appropriate multiples of the coset representatives of
the finite group E (Q)/mE (Q) to obtain a new point whose
height is bounded independently of P.

Since there are then only finitely many such points, adding
them to our list will yield a finite generating set for E (Q).



Elliptic Curves Over Q, VII

With Mordell’s theorem in hand, we know that the group of
Q-rational points on any elliptic curve is finitely generated, and
breaks up as a direct sum of the (finite) subgroup of torsion points
with a free subgroup of non-torsion points.

So, if we want to compute the group of Q-rational points on
E , all we need to do is to compute the torsion subgroup along
with a list of generators for the free part.



Elliptic Curves Over Q, VIII

The following theorem of Nagell and Lutz provides a very
convenient way to calculate the torsion points on any elliptic curve
over Q:

Theorem (Nagell/Lutz Theorem)

Suppose E is an elliptic curve over Q whose Weierstrass form has
integer coefficients, and let D = −4A3 − 27B2 be the discriminant
of E . If P = (x , y) is a rational point of finite order, then x and y
are integers. Furthermore, either y = 0 or y2 divides D.

We emphasize here that the Nagell-Lutz theorem is not an
if-and-only-if: there can exist points (x , y) with y dividing D that
do not have finite order. Nonetheless, for any E , it gives an explicit
finite calculation for finding the torsion subgroup of E .



Elliptic Curves Over Q, IX

We will again only outline the ideas in the proof of the Nagell-Lutz
theorem, rather than giving the full details.

First, the idea is to show that if P has finite order, then its
coordinates must be integers, which we do by showing that it
is not possible for any prime to divide the denominator of
either coordinate.

For this, we can use the same general idea as in the proof of
Mordell’s theorem: namely, consider what happens to the
height of a point P under scaling.



Elliptic Curves Over Q, X

Instead of using the height function in Mordell’s theorem, however,
we use the so-called p-adic height.

For any rational a/b, we can pull out the factors of p to write
a

b
= pv · m

n
for some m, n not divisible by p. We then define

the p-adic valuation as ordp(a/b) = v .

By analyzing the behavior of the p-adic valuation with respect
to the group law on E , we can eventually show that it is not
possible to have a point of finite order with negative p-adic
valuation for any p, since the valuation of multiples of large
multiples of P would have to become arbitrarily large and
negative.



Elliptic Curves Over Q, XI

For the second part of the theorem (that y = 0 or y2 divides D),
suppose P has finite order.

If 2P =∞ then as we observed earlier, y = 0. Otherwise
assume 2P 6= 0: then since 2P also has finite order, its
coordinates are also integral.

If P = (a, b) and 2P = (c , d), then c = m2 − a and

d = −m(m2 − 3a)− b, with m = 3a2+A
2b . Since m2 = a + c is

an integer and m is rational, then m is an integer.

This means 2b hence b divides 3a2 + A. But since
b2 = a3 + Aa + B, we see that b2 divides both (3a2 + A)2 and
a3 + Aa + B. By eliminating a from these relations using
(essentially) the Euclidean algorithm, we can eventually
conclude that b2 divides D, which establishes the second part
of the theorem.



Elliptic Curves Over Q, XI

The result of the Nagell-Lutz theorem gives us a very effective way
to compute all of the torsion points on E .

First, we compute all of the possible torsion points: these are
the integral points (x , y) on E where y = 0 or y2 divides D,
per the theorem above.

We then test whether these points have finite order.

A priori, a rational point P could potentially have very large
order, but since the torsion points form a subgroup and we
have just listed all of the possible elements of this group, we
have an upper bound on the possible order of the group and
hence on the possible order of P.



Elliptic Curves Over Q, XI

More efficiently, to test whether P has finite order, we could simply
compute the list {P, 2P, 3P, 4P, . . . }, or even just
{P, 2P, 4P, 8P, . . . }.

If any of the multiples of P fail to land on our list, then P
cannot have finite order, since our list includes all points that
could have finite order.

Otherwise, the multiples of P must necessarily repeat since
our list is finite, in which case P (and all of its multiples) does
have finite order.



Elliptic Curves Over Q, XII

Example: Find the rational torsion points on the elliptic curve
E : y2 = x3 − 4x + 3 and identify their group structure.

Here, we have A = −4 and B = 3, so the discriminant is
D = −4A3 − 27B2 = 13.

Since D is squarefree, the only possible y -coordinates are 0
and ±1.

Testing y = 0 (so that x3 − 4x + 3 = 0) yields a single
rational solution x = 1, giving a 2-torsion point (1, 0).

Testing y = ±1 (so that x3 − 4x + 3 = ±1) yields no rational
solutions in either case, as the resulting cubic is irreducible.

Therefore, we see that there are two rational torsion points on

E : (1, 0) and ∞ . The torsion group has order 2 and is

isomorphic to Z/2Z.
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Example: Find the rational torsion points on the elliptic curve
E : y2 = x3 − 4x + 3 and identify their group structure.
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Elliptic Curves Over Q, XIII

Example: Find the rational torsion points on the elliptic curve
E : y2 = x3 + 16 and identify their group structure.

Here, we have A = 0 and B = 16, so the discriminant is
D = −4A3 − 27B2 = −2833.

Then the possible y -coordinates are 0, ±1, ±2, ±4, ±8, ±16,
±3, ±6, ±12, ±24, and ±48.

Testing each of these in turn yields two potential torsion
points, namely, (0,±4).

If we take P = (0, 4) then we can compute 2P = (0,−4) and
3P =∞, so these points are indeed torsion points.

Thus, there are three rational torsion points on E :

(0,±4) and ∞ . The torsion group has order 3 and is

isomorphic to Z/3Z.
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Example: Find the rational torsion points on the elliptic curve
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isomorphic to Z/3Z.



Elliptic Curves Over Q, XIV

Example: Find the rational torsion points on the elliptic curve
E : y2 = x3 − 2x + 1 and identify their group structure.

Here, we have A = −2 and B = 1, so the discriminant is
D = −4A3 − 27B2 = 5.

Then the possible y -coordinates are 0 and ±1. Testing yields
the potential torsion points (1, 0), (0,±1).

If we take P = (0, 1) then we can compute 2P = (1, 0),
3P = (0,−1), and then 4P =∞, so all of these points are
indeed torsion points.

Thus, there are four rational torsion points on E :

(0,±1), (1, 0), and ∞ . The torsion group has order 4 and is

isomorphic to Z/4Z.



Elliptic Curves Over Q, XIV

Example: Find the rational torsion points on the elliptic curve
E : y2 = x3 − 2x + 1 and identify their group structure.

Here, we have A = −2 and B = 1, so the discriminant is
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3P = (0,−1), and then 4P =∞, so all of these points are
indeed torsion points.

Thus, there are four rational torsion points on E :
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isomorphic to Z/4Z.



Elliptic Curves Over Q, XV

Example: Find the rational torsion points on the elliptic curve
E : y2 = x3 − 351x + 1890 and identify their group structure.

Here, we have A = −351 and B = 1890, so the discriminant
is D = −4A3 − 27B2 = 24314.

Then the possible y -coordinates are 0 and ±2a3b for
a ∈ {0, 1, 2} and b ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
If y = 0 then we obtain three 2-torsion points, namely
(−21, 0), (6, 0), (15, 0).

For the other 24 possible values of y , some computation yields
four additional candidate points: (−3,±54) and (33,±162).

With P = (33, 162) we can compute 2P = (15, 0),
3P = (33,−162), and 4P =∞, so this point has order 4.

Likewise, with Q = (−3, 54) we can compute 2Q = (15, 0),
3Q = (−3,−54), and 4Q =∞, so this point also has order 4.



Elliptic Curves Over Q, XV

Example: Find the rational torsion points on the elliptic curve
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3Q = (−3,−54), and 4Q =∞, so this point also has order 4.



Elliptic Curves Over Q, XVI

Example: Find the rational torsion points on the elliptic curve
E : y2 = x3 − 351x + 1890 and identify their group structure.

Thus, there are eight rational torsion points on E :

(−3,±54), (33,±162), (−21, 0), (6, 0), (15, 0), and ∞ .

The torsion group has order 8 and is isomorphic to
(Z/4Z)× (Z/2Z), where we can take (a, b) mapping to
aP + b(Q − P).



Elliptic Curves Over Q, XVI

Example: Find the rational torsion points on the elliptic curve
E : y2 = x3 − 351x + 1890 and identify their group structure.

Thus, there are eight rational torsion points on E :

(−3,±54), (33,±162), (−21, 0), (6, 0), (15, 0), and ∞ .

The torsion group has order 8 and is isomorphic to
(Z/4Z)× (Z/2Z), where we can take (a, b) mapping to
aP + b(Q − P).



Elliptic Curves Over Q, XVI

We can also use the Nagell-Lutz theorem to establish that a given
point has infinite order on E .

Most obviously, if the point does not have integral
coordinates, then it is not a torsion point. Even if its
coordinates are integral, if its y -coordinate is nonzero and its
square does not divide D, then the point cannot be a torsion
point.

Furthermore, even if all of these conditions are satisfied, if we
compute 2P, 3P, 4P, . . . and any of these points have
non-integral coordinates or have a nonzero y -coordinate with
y2 not dividing D, then P must have infinite order.



Elliptic Curves Over Q, XVI

Example: Show that the elliptic curve E : y2 = x3 + 2 has
infinitely many rational points.

Testing small values of x reveals two integral points:
(x , y) = (−1,±1).

If we take P = (−1,−1), then P could be a torsion point,
since its y -coordinate −1 has its square dividing the
discriminant D = −108.

However, we can calculate 2P = (17/4, 71/8), and so since
2P does not have integral coordinates, it is not a torsion
point, and thus neither is P.

This means that P has infinite order, which is to say, all of the
points P, 2P, 3P, 4P, . . . are distinct. Since these all have
rational coordinates, E has infinitely many rational points.

Remark: It is much harder to prove, but in fact E has rank 1
and its group of rational points is generated by P.
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Elliptic Curves Over Q, XVII

It follows from the Nagell-Lutz theorem that the group of rational
torsion points on an elliptic curve is always finite.

You will see examples (either from the ones we just did now,
or the ones on the homework) showing that the group of
rational points can have order 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,
or 16.

Although it may seem that the group could potentially be
arbitrarily large, in fact, no other orders are possible.
Furthermore, since (as we showed) the group of m-torsion
points for any m is generated by at most 2 elements, this list
quite substantially narrows down the possible group structures.



Elliptic Curves Over Q, XVIII

The following quite deep theorem of Mazur establishes that there
is a fairly small list of possible torsion groups:

Theorem (Mazur’s Theorem)

If E is an elliptic curve, then the number of rational torsion points
(including ∞) can be any integer from 1 to 12 inclusive, excluding
11, or 16. More explicitly, there are 15 possible group structures
for the rational torsion points: the trivial group (order 1), Z/2Z
(order 2), Z/3Z (order 3), (Z/2Z)× (Z/2Z) or Z/4Z (order 2),
Z/5Z (order 5), Z/6Z (order 6), Z/7Z (order 7),
(Z/2Z)× (Z/4Z) or Z/8Z (order 8), Z/9Z (order 9), Z/10Z
(order 10), (Z/2Z)× (Z/6Z) or Z/12Z (order 12), or
(Z/2Z)× (Z/8Z) (order 16).

It was shown 60 years before Mazur’s proof that there exist infinite
families having each of the groups listed as its torsion group.



Elliptic Curves Over Q, XIX

The proof of Mazur’s theorem involves quite advanced methods.

The idea is to study the points on various modular curves and
use a (tremendous!) amount of case analysis to eliminate all
of the other possible torsion orders and other possible group
structures.

Just to give you an idea of how much goes into the proof, I
once saw a semester-long graduate-level topics in number
theory course, where the entire semester was devoted to the
proof of Mazur’s theorem. In that class, they covered all of
the material we have covered on elliptic curves (in full
depth)... in the first half-hour of the first lecture of the course.



Elliptic Curves Over Q, XX

In some situations (e.g., if we are solving a Diophantine equation)
we are often interested particularly in the integral points on an
elliptic curve.

As we have remarked, an elliptic curve of positive rank
necessarily has infinitely many rational points.

However, the following result of Siegel establishes that only
finitely many of these rational points can be integral:

Theorem (Siegel’s Theorem)

If E is a (nonsingular) elliptic curve over Q, then E has only
finitely many integral points.

We emphasize here that E must be nonsingular, since (for
example) the singular curve y2 = x3 has infinitely many integral
points, namely (x , y) = (n2, n3) for any integer n.



Elliptic Curves Over Q, XXI

Siegel’s original proof, like the proof of Mordell’s theorem, is
ineffective, in the sense that it does not give an explicit bound on
the possible size of the integral points in terms of the coefficients
of E .

For certain curves, the results can be made explicit using
results of Baker on linear forms in logarithms, but the results
typically are still computationally infeasible in practice.

For example, one such result says that if (x , y) is an integral
point on y2 = x3 + ax2 + bx + c , then
max(|x | , |y |) ≤ exp

[
(1, 000, 000 max(|a| , |b| , |c |))1,000,000

]
.

But even for quite small a, b, c , this bound is completely
infeasible to work with.
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For certain special curves, such as x3 − by3 = c , one can establish
better results, using Diophantine approximation ideas similar to
those we used in studying Pell’s equation x2 − Dy2 = r .

Explicitly, as shown by Thue, if b is a positive integer that is
not a cube and C is any fixed positive constant, then there
are only finitely many rational numbers p/q such that∣∣∣p/q − 3

√
b
∣∣∣ < C/q3.

In fact, Thue showed that there are only finitely many p/q

satisfying
∣∣∣p/q − 3

√
b
∣∣∣ < C/q5/2+ε for any ε > 0, and this

result has been improved by Roth to show that there are only

finitely many p/q satisfying
∣∣∣p/q − 3

√
b
∣∣∣ < C/q2+ε for any

ε > 0. Since (as we showed via continued fractions) there are
infinitely many p/q with |p/q − α| < C/q2 for any irrational
α, Roth’s result is essentially the best possible.
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We can obtain a finiteness result using Thue’s result that if b is a
positive integer that is not a cube and C is any fixed positive
constant, then there are only finitely many rational numbers p/q

such that
∣∣∣p/q − 3

√
b
∣∣∣ < C/q3.

Specifically, if x3 − by3 = c then
∣∣∣x/y − 3

√
b
∣∣∣ ≤ 4 |c |

3b2/3
· 1

|y |3
.

This inequality is of the form above with C = 4 |c | /(3b2/3).

Thus, Thue’s result implies immediately that there are only
finitely many integral pairs (x , y) with x3 − by3 = c .
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For arbitrary elliptic curves over Q, as we have seen, it is not so
difficult to write down a sensible finite calculation to compute the
torsion subgroup.

It is much harder to compute the rank of an elliptic curve, and
it is also hard to list all integral points on the curve.

Nonetheless, various computational improvements have been
made that allow efficient calculation of integral points on
most elliptic curves.

Such algorithms are implemented in some algebra packages
such as Sage and Magma, and a large number of elliptic
curves have been tabulated in various databases such as the
L-Functions and Modular Forms Database (LMFDB).

Using these, one may generate examples of elliptic curves
having relatively small coefficients that have quite a few
integral points.



Elliptic Curves Over Q, XXIV

For example, the curve E : y2 = x3 − 1267x + 17230 has 82
integral points.

They are (−41,±16), (−37,±116), (−33,±152),
(−29,±172), (−17,±184), (−10,±170), (−1,±136),
(3,±116), (11,±68), (15,±40), (18,±16), (19,±4),
(22,±2), (23,±16), (27,±52), (31,±88), (34,±116),
(47,±248), (51,±292), (54,±326), (87,±752),
(107,±1052), (115,±1180), (151,±1808), (239,±3656),
(279,±4624), (363,±6884), (418,±8516), (491,±10852),
(515,±11660), (703,±18616), (1167,±− 39848),
(1362,±50248), (3967,±249848), (4559,±307816),
(6623,±538984), (14006,±1657562), (18127,±2440552),
(42331,±8709388), (77169,±21624796),
(878838,±823878634).
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For example, the curve E : y2 = x3 − 1267x + 17230 has 82
integral points.

It can be shown that the group of rational points on this curve
is isomorphic to Z4, and is generated by the four points
(15, 40), (19, 4), (23, 16), and (31, 88).

The difficulty is in proving that these four points are linearly
independent. (Try thinking about why this is very difficult.)

In order to do this, the standard approach is to use the fact
that there is a “canonical height” function obtained by taking
the limit of large multiples of the point, appropriately scaled.

A linear dependence between the points yields a linear
dependence between their canonical heights, which can then
be detected by evaluating a “canonical height matrix” and
computing its kernel numerically.
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Changing the coefficients slightly can drastically affect the number
of integral points.

As we just showed, the curve E : y2 = x3 − 1267x + 17230
has 82 integral points.

In contrast, the curve E : y2 = x3 − 1267x + 17231, which
differs only by 1 in the constant term, has no integral points
at all.

Furthermore, the curve E : y2 = x3 − 1266x + 17230,
differing by 1 in the linear term, has two integral points
(5,±105).
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As another example, the curve
E : y2 = x3 − 1386747x + 368636886 is the curve with the
smallest discriminant in this Weierstrass form whose Q-torsion
group is isomorphic to (Z/2Z)× (Z/8Z).

This curve can also be shown to have rank 0, so in fact its full
group of Q-rational points is (Z/2Z)× (Z/8Z).

The integral points on this curve are therefore just its torsion
points, which (along with ∞) are (−1293, 0),
(−933,±29160), (−285,±27216), (147,±12960), (282, 0),
(1011, 0), (1227,±22680), (2307,±97200), and
(8787,±816480).

Explicitly, one can verify that P = (−933, 29160) has order 8,
and that 4P = (1011, 0). Thus, P and Q = (282, 0) generate
the group of rational points on E .



The Congruent Number Problem, I

We will finish our discussion of elliptic curves with a brief
examination of a famous classical number theory problem that
turns out to reduce to the question of whether an elliptic curve has
a nontrivial rational point.

Definition

We say a positive integer n is a congruent number if there exists a
right triangle with rational side lengths whose area is n.

Examples:

6 is a congruent number as it is the area of a 3-4-5 triangle.

5 is a congruent number: although 5 cannot be the area of a
right triangle with integer side lengths, it is the area of a
triangle with side lengths 3/2, 20/3, and 41/6 (which is
similar to the integer-sided 9-40-41 triangle).



The Congruent Number Problem, II

Example: No square is a congruent number (thus in particular, 1
and 4 are not congruent numbers).

If it were true that 1
2ab = k2 and a2 + b2 = c2, then

c2 + 4k2 = (a + b)2 and c2 − 4k2 = (a− b)2.

Multiplying these equations would then yield
c4 − (2k)4 = (a2 − b2)2, which is equivalent to the equation
c4 = d4 + e2.

By clearing denominators and then using essentially the same
infinite descent argument as for the Diophantine equation
c4 + d4 = e2, we can show that there is no solution to this
congruence in positive integers, and thus no square can be a
congruent number.

This result was first proven by Fermat using infinite descent.



The Congruent Number Problem, III

A few more observations:

From similarity, n is a congruent number if and only if k2n is
a congruent number for any positive integer k .

Also, from our characterization of Pythagorean triples, we can
see that the area of any right triangle with integer side lengths
is of the form k2st(s2 − t2).

Thus, if we take out the square factors, we are equivalently
searching for integers that are the squarefree part of
st(s2 − t2) for some s and t.

Although it might seem that congruent numbers would be
easy to enumerate from this procedure, the squarefree part of
st(s2 − t2) varies greatly even for s, t of similar sizes.

For example, (s, t) = (5, 4) gives st(s2 − t2) = 5 · 4 · 9 with a
squarefree part of 5, while (s, t) = (5, 2) gives
st(s2 − t2) = 5 · 2 · 3 · 7 = 210 with a squarefree part of 210.



The Congruent Number Problem, IV

There are many other ways to characterize congruent numbers.

If the legs of the right triangle are a, b and the hypotenuse is
c , we want ab = 2n and a2 + b2 = c2.

These equations imply c2 + 4n = (a + b)2 and
c2 − 4n = (a− b)2, so if we set s = a + b and d = a− b we
equivalently have (c/2)2 + n = (s/2)2, (c/2)2 − n = (d/2)2.

Since (c/2)2 is also a square, the above calculations show
that n is a congruent number if and only if there exists an
arithmetic progression x − n = (a− b)2/4, x = c2/4,
x + n = (a + b)2/4 of nonzero rational squares having
common difference n.



The Congruent Number Problem, V

We see n is a congruent number iff there is an arithmetic
progression x − n = (a− b)2/4, x = c2/4, x + n = (a + b)2/4 of
nonzero rational squares having common difference n.

If we multiply these conditions, this means (equivalently) that
the product x(x − n)(x + n) = x3 − n2x must also be the
square of some nonzero rational number y .

Thus, if n is a congruent number, we must have a rational
point on the elliptic curve En : y2 = x3 − n2x with y 6= 0
(equivalently, not a 2-torsion point).



The Congruent Number Problem, VI

In fact, the converse of this statement is true as well:

Proposition (Congruent Numbers)

The positive integer n is a congruent number if and only if the
elliptic curve E : y2 = x3 − n2x has a rational point with y 6= 0.

Here is the motivation for the argument:

If we follow through the algebra, we can see that we can take

x = n
(a + c)

b
and y = 2n2 (a + c)

b2
.

If we run these calculations backwards, we can rederive the
values of a, b, c from n, x , y as

a =
y

x
, b =

2nx

y
, and c =

2x2

y
− y

x
=

x2 + n2

y
,

and then we just have to show that these will work.



The Congruent Number Problem, VII

Proof:

Clearly, if (x , y) is a rational point on E : y2 = x3 − n2x with
y 6= 0, then x 6= 0,±n.

First, if (a, b, c) has a2 + b2 = c2 and ab = 2n, then for

x = n
(a + c)

b
and y = 2n2 (a + c)

b2
we can see x =

1

2
a(a + c)

and y =
1

2
a2(a + c).

Then y2/x =
1

2
a3(a + c), and also

x2−n2 =
1

4
a2(a+c)2− 1

4
a2b2 =

1

4
a2(2a2+2ac) =

1

2
a3(a+c).

Thus y2/x = x2 − n2, so y2 = x3 − n2x , as claimed. We
therefore obtain a rational point on E with y 6= 0 as claimed.



The Congruent Number Problem, VIII

Proof (continued):

Conversely, suppose that y2 = x3 − n2x has y 6= 0 so that

x 6= 0 also, and then set a =
y

x
, b =

2nx

y
, and

c =
2x2

y
− y

x
=

2x3 − y2

xy
=

x2 + n2

y
. Note that a, b, c are

well-defined, nonzero rational numbers since x , y 6= 0.

Then clearly we have
1

2
ab = n, and we also have

(c − b)(c + b) =
(x − n)2

y
· (x + n)2

y
=

(x2 − n2)2

x(x2 − n2)

=
x(x2 − n2)

x2
=

y2

x2
= a2, so a2 + b2 = c2 as required.

We can then replace any of a, b, c with their absolute values
without affecting these conditions. Thus n is a congruent
number, as claimed.



The Congruent Number Problem, IX

It can be shown that the only torsion points on the
congruent-number elliptic curve En : y2 = x3 − n2x are the
2-torsion points ∞, (0, 0), and (±n, 0).

One way to do this is to observe that the reduction-mod-p
map from the torsion points of En (which have integer
coordinates) to the Fp-points of En modulo p is a group
homomorphism, and that it is injective whenever p does not
divide the discriminant of En.

The first part follows essentially from the observation that the
definition of the group law is the same over Q and over Fp.

The second part follows from noting that no nontrivial torsion
point can reduce to ∞ modulo p when p does not divide the
discriminant of E , since its denominator cannot be zero.



The Congruent Number Problem, X

Next, one observes that En always has exactly p + 1 points over Fp

when p is a prime congruent to 3 modulo 4.

This follows by a similar argument to the one you worked out
on homework 5 for the curve y2 = x3 + 1 modulo primes
congruent to 2 modulo 3.

Finally, since the reduction-mod-p map must be injective for
sufficiently large p, one then uses the fact1 that there are
arbitrarily large primes lying in any residue class a modulo m
with a relatively prime to m to select various primes p for
which the greatest common divisor of the values pi + 1 is 4.

Putting all of this together establishes that the size of the
torsion subgroup of E over Q must have order dividing 4, and
since there are in fact four 2-torsion points, there cannot be
any other torsion points.

1This is Dirichlet’s theorem on primes in arithmetic progressions.



The Congruent Number Problem, XI

Thus, since the only torsion points on En have y = 0, we see that
there is a rational point on En with y 6= 0 if and only if En has
rank at least 1.

Since we just showed that this condition is equivalent to
saying that n is a congruent number, we deduce that n is a
congruent number precisely when En has rank at least 1.

If we could compute the rank of En for a given n, we would
then be able to determine conclusively whether or not n is a
congruent number.



The Congruent Number Problem, XII

One may use software to compute the rank of En for various n.

For example, for n = 1, 2, 3, 4, the rank is 0, so these are not
congruent numbers.

For n = 5, we have a rational point (x , y) = (−4, 6), which
yields (a, b, c) = (−3/2,−20/3, 41/6), which (up to sign) is
the triangle of area 5 we identified earlier.

For n = 7 we can find a rational point (x , y) = (25, 120),
which yields (a, b, c) = (24/5, 35/12, 337/60), which indeed
yields a right triangle having area 7.

Much work has been done in classifying congruent numbers,
but as of 2021, a full characterization is still not known. It has
been shown that if p is a prime congruent to 3 modulo 8, then
p is not a congruent number, while if p is a prime congruent
to 5 or 7 modulo 8, then p is a congruent number.



The Congruent Number Problem, XIII

A 1983 theorem of Tunnell, which relies quite heavily on modular
forms, gives an efficient way to determine if n is a congruent
number.

Theorem (Tunnell’s Theorem)

If n is an odd congruent number then the number of solutions in
integers to n = 2x2 + y2 + 32z2 is equal to half the number of
solutions of n = 2x2 + y2 + 8z2, while if n is an even congruent
number then the number of solutions to n/2 = 4x2 + y2 + 32z2 is
equal to half the number of solutions of n/2 = 4x2 + y2 + 8z2.

Tunnell also showed that if the weak Birch/Swinnerton-Dyer
conjecture (which states that the algebraic rank r of an elliptic
curve is equal to the “analytic rank”, which is the order of
vanishing of the L-function associated to the elliptic curve at
s = 1) holds for En, then the converse holds also.



The Congruent Number Problem, XIV

Examples:

1. If n = 2 then there are two solutions to
n/2 = 4x2 + y2 + 32z2 (namely, (0,±1, 0)) and also two
solutions to n/2 = 4x2 + y2 + 8z2 (namely, (0,±1, 0)). Thus,
2 is not a congruent number.

2. If n = 3 then there are four solutions to n = 2x2 + y2 + 32z2

(namely, (±1,±1, 0) and also four solutions to
n = 2x2 + y2 + 8z2 (also (±1,±1, 0)). Thus, 3 is not a
congruent number.



The Congruent Number Problem, XV

Examples (continued):

3. If n = 13 then there are no solutions to n = 2x2 + y2 + 32z2

or to n = 2x2 + y2 + 8z2.

This suggests n is in fact a congruent number, and indeed,
searching for rational points on y2 = x3 − 132x will eventually
identify the point (x , y) = (−36/25, 1938/125), which yields
the triangle sides (a, b, c) = (323/30, 780/323, 106921/9690).

Thus, 13 is a congruent number.



Summary

We discussed the Nagell-Lutz theorem and used it to calculate the
group of rational torsion points on an elliptic curve.

We discussed integral points on elliptic curves.

We discussed the congruent number problem, the
congruent-number elliptic curves, and Tunnell’s theorem.

Next lecture: Quadratic integer rings.


