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Rational Points on Elliptic Curves

Elliptic Curves over C
Mordell’s Theorem

The Nagell-Lutz Theorem

This material represents §7.3.1-7.3.2 from the course notes.



Logistical Stuff

Two logistical things:

If you will be taking classes at Northeastern in Fall 2021 and
are interested in taking any of the 3 courses “Elliptic Curves
and Modular Forms”, “Number Theory in Function Fields”, or
“Algebraic Number Theory” with me, please let me know! I
am still rounding up interest to decide which one to teach.

Unless I hear objections from any of you, I will be replacing
the midterm exam with a regular homework assignment. The
final exam will still exist and be comprehensive, but it will be
take-home. The exam/homework percentages will still be
60-40, whichever way works out better for you. (The reason is
that it works better with the schedule.)



Elliptic Curves over C, I

We can say a bit more about the C-points on the elliptic curve E
using a bit of complex analysis and topology.

The idea is to consider the Riemann surface associated to the
nonsingular elliptic curve y 2 = x3 + Ax + B.

One may prove that this Riemann surface is homeomorphic to
a torus S1 × S1 ∼= (R/Z)× (R/Z), which is in turn
homeomorphic to C modulo a discrete lattice Λ ∼= Z2.

The way this works is quite nice, and the result is quite helpful
in understanding what the torsion elements look like, so let
me explain it a bit more.



Elliptic Curves over C, II

So: how could we try to write down an analytic map from E to C?

The idea is to integrate something: specifically, we want to
integrate the holomorphic differential

dω =
dx

y
=

dx√
(x − r1)(x − r2)(x − r3)

.

We could then try to get a map from E to C by sending a
point P to the integral

∫ P
0 dω.

The problem is that this integral is not well-defined since this
function needs branch cuts. So, if we include the point at ∞
(i.e., work with the Riemann sphere instead of C), we can
make one branch cut from r1 to r2 and another from r3 to ∞.

Topologically, this turns the Riemann sphere into a torus.



Elliptic Curves over C, III

Let α be a path looping around the r1-r2 branch cut once, and let
β be a path looping around the r3-∞ branch cut once.

Since α and β generate the fundamental group of the torus,
the difference between any two paths between 0 and P on our
branch-cut Riemann sphere is homotopic to a Z-linear
combination of α and β.

So the integral
∫ P

0 dω is well-defined up to adding a Z-linear
combination of ω1 =

∫
α dω and ω2 =

∫
β dω.

What this all means is that when we integrate along paths, we
get a map from E to C that is defined only up to adding
arbitrary integer multiples of ω1 and ω2.

This is equivalent to saying we get a map from E to the
quotient group C/Λ where
Λ = Zω1 + Zω2 = {aω1 + bω2 : a, b ∈ Z}.
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For example, suppose that ω1 = 2 + i and ω2 = −1 + 2i , so that
our lattice is as below:
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In the quotient group C/Λ, we then identify any two points that
differ by an element of Λ. Geometrically, we can picture this as
being a “fundamental region”, with the left and edges identified,
and the top and bottom edges also identified (which is a torus):
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The first magical fact is that the map from E to C/Λ is actually a
diffeomorphism, and the second magical fact is that the map is an
isomorphism of groups.

The group operation inside C/Λ is just the usual one, namely,
addition of complex numbers.

The identity element of the group is of course 0.

We can then easily identify the m-torsion elements: they
simply form the m ×m grid of “m-division points” in the
lattice.

Equivalently, we are looking for points such that mP ∈ Λ,

which is simply the lattice
1

m
Λ.
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Here, for example, are the 3-division points of the lattice
Λ = (1 + 2i)Z + (−2 + i)Z from earlier:

Algebraically, these points are a · 1 + 2i

3
+ b · −2 + i

3
for

a, b ∈ {0, 1, 2}.
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Conversely, one can construct a map from lattices Λ = Zω1 + Zω2

inside C back to elliptic curves by considering “elliptic functions”:
functions defined on C/Λ.

Equivalently, we are looking for meromorphic functions on C
such that are “periodic relative to Λ”: namely, with
f (z + ω) = f (z) for all ω ∈ Λ and z ∈ C.

These are, equivalently, “doubly-periodic” functions, with
f (z + ω1) = f (z + ωw ) = f (z) for all z .

Functions like sin x only have one period in C: we want
functions with two different periods.



Elliptic Curves over C, IX

Here is the standard example of an elliptic function, called the
Weierstrass ℘-function: it is defined as

℘Λ(z) =
1

z2
+

∑
ω∈Λ,ω 6=0

[
1

(z − ω)2
− 1

ω2

]
.

One can check that the series converges uniformly on
compact subsets of C, and that it has double poles at each
point of Λ but nowhere else in the plane.

Another example of an elliptic function is the derivative

℘′Λ(z) = −2
∑
ω∈Λ

1

(z − ω)3
.

The sum used to define ℘′ converges absolutely, and is much
easier to see that it is invariant under translation by elements
of Λ.



Elliptic Curves over C, X

So now here is the magic: by comparing Laurent expansions, we
can use the ℘-function to map from lattices back to elliptic curves.

To see this, first one computes the Laurent series for ℘ around
z = 0, which is ℘(z) = z−2 +

∑∞
k=1(2k + 1)G2k+2z2k , where

G2k(Λ) =
∑

ω∈Λ∗ ω
−2k is the Eisenstein series of weight 2k .

By comparing Laurent expansions, for g2 = 60G4 and
g3 = 140G6 one has ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

The point is that the Laurent series for the difference between
the two sides has no negative-degree terms. This means the
difference is actually holomorphic on all of C, and it is
bounded because it is doubly-periodic. Thus, by Liouville’s
theorem, it is constant (and the constant is in fact zero).

Thus, the map C/Λ→ E sending z → (℘(z), ℘′(z)), where E
is the elliptic curve y 2 = 4x3 − g2x − g3, is a complex-analytic
isomorphism of complex Lie groups.



Elliptic Curves over C, XI

As a final comment, I will remark that the terminology of
“complex multiplication” for elliptic curves also arises from this
correspondence between elliptic curves over C and quotients C/Λ.

Specifically, if we happen to have a complex number ζ such
that ζΛ ⊆ Λ, then we obtain a corresponding
“multiplication-by-ζ” endomorphism of the elliptic curve.

The obvious “multiplication by m” maps are of this form with
ζ = m, and for most Λ these are the only such ζ. But for
certain lattices, there are nonreal ζ such that ζΛ ⊆ Λ.

For example, if Λ = Z[i ] = Z + Zi , then ζ = i has ζΛ ⊆ Λ,
and so the corresponding elliptic curve has a “multiplication
by i” map. One can then compute the values of g2 and g3 for
this lattice to see that the curve is exactly y 2 = x3 + x , which
you analyzed on Homework 6.



Elliptic Curves Over Q, I

We now discuss the problem of computing rational points on
elliptic curves. The following quite deep theorem establishes that
the group of Q-rational points on any elliptic curve E is always
finitely generated:

Theorem (Mordell’s Theorem)

Let E be an elliptic curve over Q. Then the group E (Q) of
rational points on E is finitely generated.

By applying the structure theorem for finitely-generated abelian
groups, we can say a bit more about the group of rational points.

Explicitly, we have E (Q) ∼= Zr ⊕ ETor(Q) where ETor(Q) is the
set of Q-torsion points of E (i.e., the set of Q-rational points
of E having finite order), which is a finite abelian group and
thus is a direct sum of cyclic groups.
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Mordell’s theorem says that E (Q) ∼= Zr ⊕ ETor(Q).

For any given elliptic curve E , the torsion subgroup ETor(Q)
can be computed quite explicitly, as I will describe later.

The quantity r is called the rank of the elliptic curve, and is
equal to the number of linearly-independent points one may
construct on E . The rank is much more difficult to compute,
and there is no known direct algorithm that is guaranteed to
compute it (in practice, the ranks of most curves can be
computed).

It is not currently known whether elliptic curves over Q can
have an arbitrarily large rank. The historical consensus has
switched back and forth between “ranks can be arbitrarily
large” and “ranks are uniformly bounded above”.



Elliptic Curves Over Q, III

Elkies has given a construction for an elliptic curve that has rank
at least 28, and it is expected (although to date, it is not proven)
that this curve has rank exactly 28.

The equation of Elkies’ curve is

x2 + xy + y = x3 − x2 −
20067762415575526585033208209338542750930230312178956502x+

34481611795030556467032985690390720374855944359319180361266008296291939448732243429.

It has been shown by Bhargava and Shankar in 2015 that the
average rank (suitably defined) of an elliptic curve is at most
7/6: the actual average is expected to be 1/2 (with 50% of
elliptic curves having rank 0 and 50% having rank 1,
asymptotically).
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The result of the Mordell-Weil theorem is relatively deep, and we
will not go through all the calculations in the proof, but rather just
outline the main ideas.

First, one proves the so-called “weak Mordell-Weil theorem”:
that for any positive integer m, the group E (Q)/mE (Q) is
finitely generated.

Of course, the weak Mordell-Weil theorem does not imply the
full Mordell-Weil theorem directly, because there are many
non-finitely-generated groups G such that G/mG is finitely
generated (e.g., Q and R both have G/mG = 0 for all m).

The difficulty is that knowing G/mG is finitely generated does
not imply G is finitely generated, because G could contain
many elements that are divisible by m.
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The second part of the proof requires showing that E (Q) cannot
contain a large number of “small” elements that are divisible by m,
using the theory of heights.

First, one defines a “height function”, measuring roughly the
complexity of a point on the curve, and then shows that the
height of large multiples of a point tends to be larger than the
height of the original point.

One such height function on points (x , y) = (px/qx , py/qy ) is
max(log px , log qx): essentially, the maximum number of digits
appearing in the numerator or denominator of the coordinates.

This is a fundamentally algebraic notion of “size”, in contrast
to a more analytic notion of size like |(x , y)| = |x |: the
difference is that analytically, 999/1000 and 1 are close, but
algebraically, the first is far more complicated than the second.
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Using heights, we can show that there are a bounded number of
points in E (Q) of height less than any fixed bound: thus, any
point that is a multiple of m has to be “large” for large m.

By fine-tuning the details of this argument, we can deduce
that a finite number of generators will suffice to generate the
group E (Q).

The idea is to show that for any point P on E , we may
subtract appropriate multiples of the coset representatives of
the finite group E (Q)/mE (Q) to obtain a new point whose
height is bounded independently of P.

Since there are then only finitely many such points, adding
them to our list will yield a finite generating set for E (Q).



Elliptic Curves Over Q, VII

With Mordell’s theorem in hand, we know that the group of
Q-rational points on any elliptic curve is finitely generated, and
breaks up as a direct sum of the (finite) subgroup of torsion points
with a free subgroup of non-torsion points.

So, if we want to compute the group of Q-rational points on
E , all we need to do is to compute the torsion subgroup along
with a list of generators for the free part.
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The following theorem of Nagell and Lutz provides a very
convenient way to calculate the torsion points on any elliptic curve
over Q:

Theorem (Nagell/Lutz Theorem)

Suppose E is an elliptic curve over Q whose Weierstrass form has
integer coefficients, and let D = −4A3 − 27B2 be the discriminant
of E . If P = (x , y) is a rational point of finite order, then x and y
are integers. Furthermore, either y = 0 or y 2 divides D.

We emphasize here that the Nagell-Lutz theorem is not an
if-and-only-if: there can exist points (x , y) with y dividing D that
do not have finite order. Nonetheless, for any E , it gives an explicit
finite calculation for finding the torsion subgroup of E .



Elliptic Curves Over Q, IX

We will again only outline the ideas in the proof of the Nagell-Lutz
theorem, rather than giving the full details.

First, the idea is to show that if P has finite order, then its
coordinates must be integers, which we do by showing that it
is not possible for any prime to divide the denominator of
either coordinate.

For this, we can use the same general idea as in the proof of
Mordell’s theorem: namely, consider what happens to the
height of a point P under scaling.



Elliptic Curves Over Q, X

Instead of using the height function in Mordell’s theorem, however,
we use the so-called p-adic height.

For any rational a/b, we can pull out the factors of p to write
a

b
= pv · m

n
for some m, n not divisible by p. We then define

the p-adic valuation as ordp(a/b) = v .

By analyzing the behavior of the p-adic valuation with respect
to the group law on E , we can eventually show that it is not
possible to have a point of finite order with negative p-adic
valuation for any p, since the valuation of multiples of large
multiples of P would have to become arbitrarily large and
negative.



Elliptic Curves Over Q, XI

For the second part of the theorem (that y = 0 or y 2 divides D),
suppose P has finite order.

If 2P =∞ then as we observed earlier, y = 0. Otherwise
assume 2P 6= 0: then since 2P also has finite order, its
coordinates are also integral.

If P = (a, b) and 2P = (c , d), then c = m2 − a and

d = −m(m2 − 3a)− b, with m = 3a2+A
2b . Since m2 = a + c is

an integer and m is rational, then m is an integer.

This means 2b hence b divides 3a2 + A. But since
b2 = a3 + Aa + B, we see that b2 divides both (3a2 + A)2 and
a3 + Aa + B. By eliminating a from these relations using
(essentially) the Euclidean algorithm, we can eventually
conclude that b2 divides D, which establishes the second part
of the theorem.
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The result of the Nagell-Lutz theorem gives us a very effective way
to compute all of the torsion points on E .

First, we compute all of the possible torsion points: these are
the integral points (x , y) on E where y = 0 or y 2 divides D,
per the theorem above.

We then test whether these points have finite order.

A priori, a rational point P could potentially have very large
order, but since the torsion points form a subgroup and we
have just listed all of the possible elements of this group, we
have an upper bound on the possible order of the group and
hence on the possible order of P.



Elliptic Curves Over Q, XI

More efficiently, to test whether P has finite order, we could simply
compute the list {P, 2P, 3P, 4P, . . . }, or even just
{P, 2P, 4P, 8P, . . . }.

If any of the multiples of P fail to land on our list, then P
cannot have finite order, since our list includes all points that
could have finite order.

Otherwise, the multiples of P must necessarily repeat since
our list is finite, in which case P (and all of its multiples) does
have finite order.



Elliptic Curves Over Q, XII

Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 − 4x + 3 and identify their group structure.

Here, we have A = −4 and B = 3, so the discriminant is
D = −4A3 − 27B2 = 13.

Since D is squarefree, the only possible y -coordinates are 0
and ±1.

Testing y = 0 (so that x3 − 4x + 3 = 0) yields a single
rational solution x = 1, giving a 2-torsion point (1, 0).

Testing y = ±1 (so that x3 − 4x + 3 = ±1) yields no rational
solutions in either case, as the resulting cubic is irreducible.

Therefore, we see that there are two rational torsion points on

E : (1, 0) and ∞ . The torsion group has order 2 and is

isomorphic to Z/2Z.
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Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 − 4x + 3 and identify their group structure.

Here, we have A = −4 and B = 3, so the discriminant is
D = −4A3 − 27B2 = 13.

Since D is squarefree, the only possible y -coordinates are 0
and ±1.

Testing y = 0 (so that x3 − 4x + 3 = 0) yields a single
rational solution x = 1, giving a 2-torsion point (1, 0).

Testing y = ±1 (so that x3 − 4x + 3 = ±1) yields no rational
solutions in either case, as the resulting cubic is irreducible.

Therefore, we see that there are two rational torsion points on

E : (1, 0) and ∞ . The torsion group has order 2 and is

isomorphic to Z/2Z.
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Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 + 16 and identify their group structure.

Here, we have A = 0 and B = 16, so the discriminant is
D = −4A3 − 27B2 = −2833.

Then the possible y -coordinates are 0, ±1, ±2, ±4, ±8, ±16,
±3, ±6, ±12, ±24, and ±48.

Testing each of these in turn yields two potential torsion
points, namely, (0,±4).

If we take P = (0, 4) then we can compute 2P = (0,−4) and
3P =∞, so these points are indeed torsion points.

Thus, there are three rational torsion points on E :

(0,±4) and ∞ . The torsion group has order 3 and is

isomorphic to Z/3Z.
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Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 + 16 and identify their group structure.

Here, we have A = 0 and B = 16, so the discriminant is
D = −4A3 − 27B2 = −2833.

Then the possible y -coordinates are 0, ±1, ±2, ±4, ±8, ±16,
±3, ±6, ±12, ±24, and ±48.

Testing each of these in turn yields two potential torsion
points, namely, (0,±4).

If we take P = (0, 4) then we can compute 2P = (0,−4) and
3P =∞, so these points are indeed torsion points.

Thus, there are three rational torsion points on E :

(0,±4) and ∞ . The torsion group has order 3 and is

isomorphic to Z/3Z.
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Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 − 2x + 1 and identify their group structure.

Here, we have A = −2 and B = 1, so the discriminant is
D = −4A3 − 27B2 = 5.

Then the possible y -coordinates are 0 and ±1. Testing yields
the potential torsion points (1, 0), (0,±1).

If we take P = (0, 1) then we can compute 2P = (1, 0),
3P = (0,−1), and then 4P =∞, so all of these points are
indeed torsion points.

Thus, there are four rational torsion points on E :

(0,±1), (1, 0), and ∞ . The torsion group has order 4 and is

isomorphic to Z/4Z.
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Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 − 2x + 1 and identify their group structure.

Here, we have A = −2 and B = 1, so the discriminant is
D = −4A3 − 27B2 = 5.

Then the possible y -coordinates are 0 and ±1. Testing yields
the potential torsion points (1, 0), (0,±1).

If we take P = (0, 1) then we can compute 2P = (1, 0),
3P = (0,−1), and then 4P =∞, so all of these points are
indeed torsion points.

Thus, there are four rational torsion points on E :

(0,±1), (1, 0), and ∞ . The torsion group has order 4 and is

isomorphic to Z/4Z.
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Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 − 351x + 1890 and identify their group structure.

Here, we have A = −351 and B = 1890, so the discriminant
is D = −4A3 − 27B2 = 24314.

Then the possible y -coordinates are 0 and ±2a3b for
a ∈ {0, 1, 2} and b ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
If y = 0 then we obtain three 2-torsion points, namely
(−21, 0), (6, 0), (15, 0).

For the other 24 possible values of y , some computation yields
four additional candidate points: (−3,±54) and (33,±162).

With P = (33, 162) we can compute 2P = (15, 0),
3P = (33,−162), and 4P =∞, so this point has order 4.

Likewise, with Q = (−3, 54) we can compute 2Q = (15, 0),
3Q = (−3,−54), and 4Q =∞, so this point also has order 4.
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Example: Find the rational torsion points on the elliptic curve
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Then the possible y -coordinates are 0 and ±2a3b for
a ∈ {0, 1, 2} and b ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
If y = 0 then we obtain three 2-torsion points, namely
(−21, 0), (6, 0), (15, 0).
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3P = (33,−162), and 4P =∞, so this point has order 4.

Likewise, with Q = (−3, 54) we can compute 2Q = (15, 0),
3Q = (−3,−54), and 4Q =∞, so this point also has order 4.
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Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 − 351x + 1890 and identify their group structure.

Thus, there are eight rational torsion points on E :

(−3,±54), (33,±162), (−21, 0), (6, 0), (15, 0), and ∞ .

The torsion group has order 8 and is isomorphic to
(Z/4Z)× (Z/2Z), where we can take (a, b) mapping to
aP + b(Q − P).
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Example: Find the rational torsion points on the elliptic curve
E : y 2 = x3 − 351x + 1890 and identify their group structure.

Thus, there are eight rational torsion points on E :

(−3,±54), (33,±162), (−21, 0), (6, 0), (15, 0), and ∞ .

The torsion group has order 8 and is isomorphic to
(Z/4Z)× (Z/2Z), where we can take (a, b) mapping to
aP + b(Q − P).
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We can also use the Nagell-Lutz theorem to establish that a given
point has infinite order on E .

Most obviously, if the point does not have integral
coordinates, then it is not a torsion point. Even if its
coordinates are integral, if its y -coordinate is nonzero and its
square does not divide D, then the point cannot be a torsion
point.

Furthermore, even if all of these conditions are satisfied, if we
compute 2P, 3P, 4P, . . . and any of these points have
non-integral coordinates or have a nonzero y -coordinate with
y 2 not dividing D, then P must have infinite order.
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Example: Show that the elliptic curve E : y 2 = x3 + 2 has
infinitely many rational points.

Testing small values of x reveals two integral points:
(x , y) = (−1,±1).

If we take P = (−1,−1), then P could be a torsion point,
since its y -coordinate −1 has its square dividing the
discriminant D = −108.

However, we can calculate 2P = (17/4, 71/8), and so since
2P does not have integral coordinates, it is not a torsion
point, and thus neither is P.

This means that P has infinite order, which is to say, all of the
points P, 2P, 3P, 4P, . . . are distinct. Since these all have
rational coordinates, E has infinitely many rational points.

Remark: It is much harder to prove, but in fact E has rank 1
and its group of rational points is generated by P.
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Example: Show that the elliptic curve E : y 2 = x3 + 2 has
infinitely many rational points.

Testing small values of x reveals two integral points:
(x , y) = (−1,±1).

If we take P = (−1,−1), then P could be a torsion point,
since its y -coordinate −1 has its square dividing the
discriminant D = −108.

However, we can calculate 2P = (17/4, 71/8), and so since
2P does not have integral coordinates, it is not a torsion
point, and thus neither is P.

This means that P has infinite order, which is to say, all of the
points P, 2P, 3P, 4P, . . . are distinct. Since these all have
rational coordinates, E has infinitely many rational points.

Remark: It is much harder to prove, but in fact E has rank 1
and its group of rational points is generated by P.
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It follows from the Nagell-Lutz theorem that the group of rational
torsion points on an elliptic curve is always finite.

You will see examples (either from the ones we just did now,
or the ones on the homework) showing that the group of
rational points can have order 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,
or 16.

Although it may seem that the group could potentially be
arbitrarily large, in fact, no other orders are possible.
Furthermore, since (as we showed) the group of m-torsion
points for any m is generated by at most 2 elements, this list
quite substantially narrows down the possible group structures.
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The following quite deep theorem of Mazur establishes that there
is a fairly small list of possible torsion groups:

Theorem (Mazur’s Theorem)

If E is an elliptic curve, then the number of rational torsion points
(including ∞) can be any integer from 1 to 12 inclusive, excluding
11, or 16. More explicitly, there are 15 possible group structures
for the rational torsion points: the trivial group (order 1), Z/2Z
(order 2), Z/3Z (order 3), (Z/2Z)× (Z/2Z) or Z/4Z (order 2),
Z/5Z (order 5), Z/6Z (order 6), Z/7Z (order 7),
(Z/2Z)× (Z/4Z) or Z/8Z (order 8), Z/9Z (order 9), Z/10Z
(order 10), (Z/2Z)× (Z/6Z) or Z/12Z (order 12), or
(Z/2Z)× (Z/8Z) (order 16).

It was shown 60 years before Mazur’s proof that there exist infinite
families having each of the groups listed as its torsion group.
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The proof of Mazur’s theorem involves quite advanced methods.

The idea is to study the points on various modular curves and
use a (tremendous!) amount of case analysis to eliminate all
of the other possible torsion orders and other possible group
structures.

Just to give you an idea of how much goes into the proof, I
once saw a semester-long graduate-level topics in number
theory course, where the entire semester was devoted to the
proof of Mazur’s theorem. In that class, they covered all of
the material we have covered on elliptic curves (in full
depth)... in the first half-hour of the first lecture of the course.



Summary

We discussed Mordell’s theorem that the group of rational points
on an elliptic curve is finitely generated.

We discussed the Nagell-Lutz theorem and used it to calculate the
group of rational torsion points on an elliptic curve.

Next lecture: Integral points on elliptic curves, congruent numbers.


