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Topics Course in Fall 2021

I have just gotten approval to offer a graduate-level course in
number theory in Fall 2021. If you will be taking classes at
Northeastern then, I would be happy to have any of you take the
course with me. I am seeking your interest in the following courses:

1. Elliptic curves and modular forms. This will be a more
advanced approach to the study of elliptic curves, which will
extend the material we’ve been doing in this chapter and add
quite a bit more to it.

2. Number theory in function fields. Alternate title: “From
Fermat’s Last Theorem to the Riemann Hypothesis”. On the
first day of this course I will prove Fermat’s Last Theorem,
and on the last day I will prove the Riemann hypothesis... but
for function fields rather than Z.

3. Algebraic number theory. This is a course that extends and
generalizes the material from the next chapter of the course.

This course would serve as reasonable background for any of these
three.



Elliptic Curve Diffie-Hellman, I

Public-key protocols are fast for small messages, but if Alice needs
to send Bob megabytes (or gigabytes or terabytes) of encrypted
data, even a very fast implementation of public-key encryption will
take an unreasonably long time to encode and decode.

Symmetric cryptosystems generally do not require nearly as
much computation and can be done comparatively efficiently
even for large amounts of data.

Thus, in practice, most efficient cryptographic protocols will
require some sort of “key exchange”, wherein Alice and Bob
must somehow decide what encryption key to use for their
symmetric cryptosystem.

One way to do this is to use an asymmetric cryptosystem to
send the key: Alice chooses a key, encrypt it using Bob’s
public key, and send it to Bob: then Bob can decrypt the
message and obtain the key.



Elliptic Curve Diffie-Hellman, II

We will now describe a different
procedure for key exchange that
is an elliptic-curve version of the
Diffie-Hellman key exchange
procedure.

The idea of Diffie-Hellman is
quite simple, and is contained in
this image from wikipedia:



Elliptic Curve Diffie-Hellman, III

The standard implementation of Diffie-Hellman using Z/mZ works
as follows:

First, Alice and Bob jointly choose a large prime number p
where it is hard to compute discrete logarithms, along with a
primitive root g modulo p.

Alice chooses a secret integer a, and sends Bob ga (mod p).

Bob chooses a secret integer b, and sends Alice gb (mod p).

Then the secret key s is given by gab (mod p), which both of
them can compute.

Alice knows a, and has the value of gb from Bob, so she
needs only raise gb to the ath power.

Similarly, Bob knows b and has the value of ga from Alice, so
he needs only raise ga to the bth power.



Elliptic Curve Diffie-Hellman, IV

If Eve is eavesdropping on the conversation, she will have the
values of p, along with g , ga, and gb modulo p, and she wants to
compute the secret key gab (mod p).

In order to do this, Eve would essentially need to compute one
of the exponents a and b; since g is a primitive root, this is
equivalent to calculating the discrete logarithm logg (ga) or

logg (gb) modulo p − 1.

This discrete logarithm calculation is believed to be hard in
general, though both integer factorization and discrete
logarithm calculations can be performed in polynomial time
using Shor’s algorithm on a quantum computer.



Elliptic Curve Diffie-Hellman, V

It is not hard to construct an elliptic-curve version of Diffie-Hellman
key exchange for elliptic curves using the same ideas.

First, Alice and Bob jointly choose a large prime p, an elliptic
curve Ep modulo p, and a point P on E having large order.

Alice chooses a secret integer a < ord(P), and sends Bob
Qa = aP.

Bob chooses a secret integer b < ord(P), and sends Alice
Qb = bP.

Then the secret key s is given by Qab = (ab)P, which both of
them can compute: Alice evaluates a(bP) while Bob evaluates
b(aP).



Elliptic Curve Diffie-Hellman, VI

Example: Use elliptic-curve Diffie-Hellman to construct a secret
shared key using E : y2 = x3 + 7x + 1, p = 44927, and
P = (27844, 29401), where Alice’s secret number is a = 40006 and
Bob’s secret number is b = 18846.

Alice computes Qa = aP = (3454, 34367) and sends it to
Bob. Bob computes Qb = bP = (22472, 6971) and sends it to
Alice.

Alice then recovers Qab = aPb = (2147, 22480) and Bob
recovers Qab = bQa = (2147, 22480).

Bob and Alice now have a secret shared key
Qab = (2147, 22480) that they can use for further
communications (e.g., with a symmetric-key cryptosystem).



Elliptic Curve Diffie-Hellman, VII

If Eve is eavesdropping on the conversation, she will know Ep along
with P, Qa, and Qb , and she wants to compute Qab.

In order to do this, Eve would essentially need to compute one
of the multipliers a and b. Since P is assumed to have large
order, the only reasonable way to do this is for her to evaluate
a discrete logarithm on Ep.

Again, as we have already discussed, computation of discrete
logarithms on elliptic curves appears to be very difficult.

It is of course possible that there is some way to combine the
information in P, Qa, Qb to find Qab, but this seems unlikely
since the operations of scaling a point by a and scaling a
point by b are essentially independent.



Elliptic Curve Diffie-Hellman, VIII

Both the modular and elliptic-curve Diffie-Hellman protocols we
have described have no authentication, and are susceptible to a
“man-in-the-middle” attack.

In this attack, Mallory impersonates Alice to Bob and
simultaneously impersonates Bob to Alice, and performs a
simultaneous key exchange with both of them.

Then, Mallory will be able to decode messages sent from
Alice, and then re-encrypt them to send to Bob.

As far as Alice and Bob can tell, they are communicating with
each other, since their messages are received correctly, at least
as long as Mallory is in the middle decoding and re-encoding
the messages.



Elliptic Curve Diffie-Hellman, VIII

The problem is that the basic Diffie-Hellman protocol does not
authenticate Alice and Bob to one another before creating the key.

One way to include an authentication step would be for both
of Alice and Bob to put a digital signature on their
communications during the key creation process, so that the
other person feels confident that Mallory is not impersonating
either of them.

We can also use elliptic curves to create digital signatures,
which we now describe.



Elliptic Curve Digital Signatures, I

A digital signature must be created in such a way that binds it
both to its creator (so that Bob knows Alice and not Eve was the
signer and the sender) and to its associated message in a way that
cannot easily be altered (so that Bob knows Eve didn’t change the
message).

The goal when designing a digital signature algorithm is not
to keep the message from being deciphered, but rather to
prevent the signature from being easily decoupled from Alice’s
identity or from Alice’s original message.

Ultimately, however, these ideas are similar enough that we
can adapt public-key cryptosystems to create digital signature
algorithms.



Elliptic Curve Digital Signatures, II

Here is a digital signature algorithm based off of the ElGamal
cryptosystem.

Alice first creates an ElGamal public key (p, a, b), where p is a
large prime for which it is hard to compute discrete
logarithms, a is a primitive root mod p, and b ≡ ad (mod p)
for her secret choice d with 0 < d < p − 1.

If Alice now wants to sign a message m, she first chooses a
random integer k relatively prime to p − 1.

She then computes r ≡ ak (mod p) and s ≡ k−1(m − dr)
(mod p − 1), and her signature is the triple (m, r , s).

If Bob wants to verify that Alice really signed the message m,
he checks whether br r s is congruent to am (mod p). If so,
then he accepts the signature as valid, and if not he rejects it.

This works br r s ≡ (ad)raks ≡ adram−dr ≡ am (mod p).



Elliptic Curve Digital Signatures, III

Suppose now that Eve has intercepted a message pair (m, r , s)
that Alice has signed and wants to forge Alice’s signature on a new
message w .

Obviously, Eve cannot simply use the signature pair (w , r , s),
since Bob will compute br r s ≡ am 6≡ aw (mod N) and reject
the signature as invalid.

In order to find a valid signature z for her message w , she
needs to find (r , s) that are solutions to the congruence
br r s ≡ aw (mod N).

If Eve picks a particular r and searches for s, she is
attempting to solve r s ≡ awb−r (mod N), which is equivalent
to computing the discrete logarithm logr (awb−r ).



Elliptic Curve Digital Signatures, IV

Another possibility is for Eve to try to choose the value of s first,
but this requires solving an even more unusual congruence
br r s ≡ aw (mod N), which is a combination of a discrete-log and
root-extraction problem.

It may be possible to choose r and s together in some more
efficient manner, but it is not obvious how such a procedure
would work.

Ultimately, if we believe it is difficult to compute discrete
logarithms modulo p, then it should also be difficult to forge
Alice’s ElGamal signature.



Elliptic Curve Digital Signatures, V

We will now describe how to adapt the ElGamal signature
algorithm to the elliptic curve setting.

Some details of the algorithm differ slightly from the modular
case since we are dealing with points rather than individual
numbers.

Alice first creates an elliptic-curve ElGamal public key
(p,E ,Qa,Qb) where p is a large prime, E is an elliptic curve
modulo p on which it is hard to compute discrete logarithms,
Qa is a point on E whose order has only large prime factors,
and Qb = dQa for Alice’s secret number d .

Alice also calculates the number of points N on Ep.



Elliptic Curve Digital Signatures, VI

So, Alice has an elliptic-curve ElGamal public key (p,E ,Qa,Qb)
where Qa is a point on E whose order has only large prime factors,
and Qb = dQa for Alice’s secret number d , and E has N points.

To sign a message m (an integer modulo N), Alice first
chooses a random positive integer k relatively prime to N.

She then computes Qr = kQa = (x , y) and s = k−1(m − dx)
(mod N), and sends Bob her signed message (m,Qr , s).

Bob verifies that Alice’s signature is correct by computing
xQb + sQr and comparing it to mQa. If the results are equal,
he accepts the signature, and otherwise he rejects it.

The verification works because
xQb + sQr = x(dQa) + s(kQa) = (m − dx)Qa =
xdQa + mQa − dxQa = mQa, where we are using the fact that
sk ≡ m − dx (mod N) to deduce that ksQa = (m − dx)Qa

since the order of Qa necessarily divides N.



Elliptic Curve Digital Signatures, VII

As with the elliptic-curve ElGamal encryption scheme, the security
of this procedure ultimately relies on the difficulty of computing a
discrete logarithm and the fact that k is randomly chosen.

It does not depend on the difficulty of computing the number
of points on the curve N, which could even be published as
part of the public key if desired.



Elliptic Curve Digital Signatures, VIII

Example: Alice publishes her elliptic-curve ElGamal signature key
with E : y2 = x3 + 7x + 1, p = 44927, Qa = (3174, 1067), and
Qb = dQa = (38921, 25436) with her secret d = 25661. Bob then
sends her the message m = 17781. Generate a signature for this
message with k = 33050 and verify that it is correct.

Alice computes the number of points on the curve,
N = 44651, which happens to be prime.

She then computes Qr = kQa = (11123, 34794) = (x , y) and
s = k−1(m − dx) ≡ 42665 (mod N).

She then sends the pair (Qr , s) to Bob, who then evaluates
xQb + sQr = (29063, 26534) + (36219, 42811) = (35670, 7590)
and compares it to mQa = (35670, 7590).

The results are equal, so Bob accepts the signature.



Torsion Points, I

We now move from cryptography back into number theory, to
discuss the classical problems of finding rational and integral points
on a given elliptic curve E .

Such questions arise quite naturally in the context of solving
Diophantine equations, and we will discuss some applications
of these results to Diophantine equations later this week.



Torsion Points, II

We first discuss the problem of finding rational points of small
order on a given elliptic curve E in Weierstrass form:
y2 = x3 + Ax + B: in other words, we are seeking the m-torsion
points P with mP =∞.

Before making any calculations, we observe that the m-torsion
points form a subgroup of all points on E , since m∞ =∞
and if mP =∞ = mQ then m(P − Q) =∞ as well.

This m-torsion subgroup of E is often denoted E [m]. When
we want to emphasize the field K over which we are
considering E , we will write this subgroup as EK [m].



Torsion Points, III

Now we can make some observations about E [m] for some small m.

Trivially, ∞ is the only point of order 1 on E .

For a point P of order 2, we have P + P =∞. Geometrically,
this means that if we consider the tangent line to the graph of
E at P, then the third intersection point of P with E is the
point at infinity.

It is not hard to see that this is equivalent to saying that the
tangent line at P is vertical. From the explicit formula
2yy ′ = 3x2 + A we see that this is, in turn, equivalent to
saying that y = 0.

Therefore, the points (x , y) of order 2 are those having y = 0.
Since this requires x3 + Ax + B = 0, we see that there are at
most 3 such points.



Torsion Points, IV

If we are searching for points over C (or another algebraically
closed field), then there will be exactly 3 points of order 2, since by
assumption the elliptic curve is nonsingular so x3 + Ax + B has no
repeated roots.

Over arbitrary fields K , we may have a smaller number of
roots of the cubic x3 + Ax + B: it is possible that this cubic
could have 0, 1, or 3 roots in K (2 roots is not possible
because if the cubic has two linear factors then it is a product
of 3 linear factors).

This tells us that the 2-torsion subgroup EK [2] has order 1, 2,
or 4. Since all of the elements have order 1 or 2, this means
the group is either the trivial group, Z/2Z, or the Klein
4-group V4

∼= (Z/2Z)× (Z/2Z).



Torsion Points, V

Example: Find the points of order 2 on the elliptic curve
E : y2 = x3 + x over Q and over C, and identify the group
structure of the 2-torsion group E [2] over each field.

From the discussion above, the 2-torsion points are the points
with y = 0, which requires x3 + x = 0 so that x = 0, ±i .
Over Q, there is therefore one 2-torsion point (0, 0) . Then

the 2-torsion group EQ[2] is {∞, (0, 0)} and its group
structure is isomorphic to Z/2Z.

Over C we have three 2-torsion points: (0, 0), (i , 0), (−i , 0) .

Then the 2-torsion group EQ[2] is {∞, (0, 0), (i , 0), (−i , 0)}.
Since all of the nontrivial elements in this group have order 2,
the group structure is isomorphic to the Klein 4-group
V4
∼= (Z/2Z)× (Z/2Z).



Torsion Points, V
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Torsion Points, V
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Torsion Points, VI

Example: Find the points of order 2 on the elliptic curve
E : y2 = x3 + x over Q and over C, and identify the group
structure of the 2-torsion group E [2] over each field.

We can write out the addition table for EC[2] explicitly:

+ ∞ (0, 0) (i , 0) (−i , 0)

∞ ∞ (0, 0) (i , 0) (−i , 0)

(0, 0) (0, 0) ∞ (−i , 0) (i , 0)

(i , 0) (i , 0) (−i , 0) ∞ (0, 0)

(−i , 0) (−i , 0) (i , 0) (0, 0) ∞



Torsion Points, VII

For points of order 3, we see that such points P satisfy
P + P + P =∞ so that P + P = −P, so the third intersection
point of the tangent line to E at P also goes through P.
Equivalently, P is an inflection point of the curve.

Algebraically, using the doubling formula, we require
2(x , y) = (x ,−y), so since 2(x , y) has x-coordinate m2 − 2x ,

this requires m2 = 3x where m = 3x2+A
2y .

Clearing denominators gives 12x(x3 + Ax + B) = (3x2 + A)2,
which is an equation of degree 4 in x . Each x-coordinate
corresponds to two possible y -coordinates (since y = 0 only
occurs for 2-torsion points), so in general we obtain 8 points
of order 3 over C.

In general, the 3-torsion subgroup EK [3] over an arbitrary K
has order at most 9, so since all elements have order 1 or 3, it
is either the trivial group, Z/3Z, or (Z/3Z)× (Z/3Z).



Torsion Points, VIII

For points of higher order, it is even more difficult to give nice
geometric or algebraic descriptions of E [m].

One may try to compute explicitly the coordinate relations for
these points; however, the resulting multiplication-by-m
formulas end up being extremely complicated and unpleasant.

It is a rather long and convoluted (though not conceptually
difficult) calculation to show that if P = (x , y), then
mP = (xm, ym) where x2

m is a rational function of degree
m2 − 1 in x (one may in fact eliminate y from all of these
relations for the x-coordinates) and ym is a rational function
of degree m2 in x and y .



Torsion Points, IX

Then mP =∞ precisely when the square of the denominator
polynomial in the x-coordinate is equal to zero.

Since this squared denominator polynomial in x has degree
m2 − 1, this means there are at most m2 m-torsion points
(note that ∞ must be added to the total).

One can also show that the denominator polynomial is
separable over any field whose characteristic does not divide
m, so it has distinct roots.

In particular, over the complex numbers C, the m-torsion
points form a group of order m2, and thus over subfields of C
(e.g., Q) the m-torsion points will be a subgroup of the
m-torsion group over C.



Torsion Points, X

We can use the fact that there are m2 complex m-torsion points to
classify the isomorphism type of the group of complex m-torsion
points:

Proposition (Structure of Complex m-Torsion Subgroup)

For any positive integer m and any elliptic curve E over C, the
m-torsion subgroup EC[m] is isomorphic to (Z/mZ)× (Z/mZ).

The result in fact holds over any algebraically closed field (by
essentially the same argument) of characteristic not dividing m.

As a consequence, over any subfield K of C, the m-torsion
subgroup EK [m] is isomorphic to a subgroup of
(Z/mZ)× (Z/mZ).

Another way to say this is that the group of m-torsion points
of E , over any field, always has at most 2 generators.



Torsion Points, XI

Proof:

Apply the structure theorem for finite abelian groups to write
E [m] as a direct product of cyclic groups of prime-power
order.

If there were 3+ cyclic factors of order pk for some prime p,
then the set of elements of order p in E [m] would have 3+
components isomorphic to Z/pZ: but this would mean E [p]
would have order greater than p2, which is impossible.

Thus, there are at most 2 cyclic factors of p-power order for
any prime p. By the Chinese remainder theorem, this means
E [m] has at most 2 generators.

But since these two generators of E [m] each have order at
most m, and E [m] has order m2, the group must be a direct
product (Z/mZ)× (Z/mZ), as claimed.



Torsion Points, XII

We can say a bit more about the R-points on the elliptic curve E
using some basic facts about Lie groups.

The addition of real points on the elliptic curve is clearly
continuous, from our geometric description of the group law,
so it is a one-dimensional Lie group. Since the group of real
points is also compact (including ∞ is the one-point
compactification of the set of points (x , y) on E ), we are
looking at compact one-dimensional Lie groups.

If E (R) is connected (i.e., has a single component), then the
only such Lie group is the circle group S1, in which case the
set of m-torsion points corresponds to the mth roots of unity
on the unit circle and is isomorphic to Z/mZ.

If there are two connected components, then the Lie group is
isomorphic to (Z/2Z)×S1, in which case the m-torsion points
look like Z/mZ for m odd and (Z/2Z)× (Z/mZ) for m even.



Torsion Points, XIII

We can say a bit more about the C-points on the elliptic curve E
using a bit of complex analysis and topology.

The idea is to consider the Riemann surface associated to the
nonsingular elliptic curve y2 = x3 + Ax + B.

One may prove that this Riemann surface is homeomorphic to
a torus S1 × S1 ∼= (R/Z)× (R/Z), which is in turn
homeomorphic to C modulo a discrete lattice Λ ∼= Z2.

The way this works is quite nice, and the result is quite helpful
in understanding what the torsion elements look like, so let
me explain it a bit more.



Torsion Points, XIII

So: how could we try to write down an analytic map from E to C?

The idea is to integrate something: specifically, we want to
integrate the holomorphic differential

dω =
dx

y
=

dx√
(x − r1)(x − r2)(x − r3)

.

We could then try to get a map from E to C by sending a
point P to the integral

∫ P
0 ω.

The problem is that this integral is not well-defined since this
function needs branch cuts. So, if we include the point at ∞
(i.e., work with the Riemann sphere instead of C), we can
make one branch cut from r1 to r2 and another from r3 to ∞.

Topologically, this turns the Riemann sphere into a torus.



Torsion Points, XIV

Let α be a path looping around the r1-r2 branch cut once, and let
β be a path looping around the r3-∞ branch cut once.

Since α and β generate the fundamental group of the torus,
the difference between any two paths between 0 and P on our
branch-cut Riemann sphere is homotopic to a Z-linear
combination of α and β.

So the integral
∫ P

0 dω is well-defined up to adding a Z-linear
combination of ω1 =

∫
α ω and ω2 =

∫
β ω.

What this all means is that when we integrate along paths, we
get a map not from E to C that is defined only up to adding
arbitrary integer multiples of ω1 and ω2.

This is equivalent to saying we get a map from E to the
quotient group C/Λ where
Λ = Zω1 + Zω2 = {aω1 + bω2 : a, b ∈ Z}.



Torsion Points, XV

For example, suppose that ω1 = 2 + i and ω2 = −1 + 2i , so that
our lattice is as below:



Torsion Points, XVI

In the quotient group C/Λ, we then identify any two points that
differ by an element of Λ. Geometrically, we can picture this as
being a “fundamental region”, with the left and edges identified,
and the top and bottom edges also identified (which is a torus):



Torsion Points, XVII

The first magical fact is that the map from E to C/Λ is actually
diffeomorphic, and the second magical fact is that the map is an
isomorphism of groups.

The group operation inside C/Λ is just the usual one, namely,
addition of complex numbers.

The identity element of the group is of course 0.

We can then easily identify the m-torsion elements: they
simply form the m ×m grid of “m-division points” in the
lattice.

Equivalently, we are looking for points such that mP ∈ Λ,

which is simply the lattice
1

m
Λ.



Torsion Points, XVIII

Here, for example, are the 3-division points of the lattice from
earlier:



Torsion Points, XIX

Conversely, one can construct a map from lattices Λ = Zω1 + Zω2

inside C back to elliptic curves by considering “elliptic functions”:
functions defined on C/Λ.

Equivalently, we are looking for meromorphic functions on C
such that are “periodic relative to Λ”: namely, with
f (z + ω) = f (z) for all ω ∈ Λ and z ∈ C.

These are, equivalently, “doubly-periodic” functions, with
f (z + ω1) = f (z + ωw ) = f (z) for all z .

Functions like sin x only have one period in C: we want
functions with two different periods.



Torsion Points, XX

Here is the standard example of an elliptic function, called the
Weierstrass ℘-function: it is defined as

℘Λ(z) =
1

z2
+

∑
ω∈Λ,ω 6=0

[
1

(z − ω)2
− 1

ω2

]
.

One can check that the series converges uniformly on
compact subsets of C, and that it has double poles at each
point of Λ but nowhere else in the plane.

Another example of an elliptic function is the derivative

℘′Λ(z) = −2
∑
ω∈Λ

1

(z − ω)3
.

The sum used to define ℘′ converges absolutely, and is much
easier to see that it is invariant under translation by elements
of Λ.



Torsion Points, XXI

So now here is the magic: by comparing Laurent expansions, we
can use the ℘-function to map from lattices back to elliptic curves.

To see this, first one computes the Laurent series for ℘ around
z = 0, which is ℘(z) = z−2 +

∑∞
k=1(2k + 1)G2k+2z

2k , where
G2k(Λ) =

∑
ω∈Λ∗ ω

−2k is the Eisenstein series of weight 2k .

By comparing Laurent expansions, for g2 = 60G4 and
g3 = 140G6 one has ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

The point is that the Laurent series for the difference between
the two sides has no negative-degree terms. This means the
difference is actually holomorphic on all of C, and it is
bounded because it is doubly-periodic. Thus, by Liouville’s
theorem, it is constant (and the constant is in fact zero).

Thus, the map C/Λ→ E sending z → (℘(z), ℘′(z)), where E
is the elliptic curve y2 = 4x3 − g2x − g3, is a complex-analytic
isomorphism of complex Lie groups.



Torsion Points, XXII

As a final comment, I will remark that the terminology of
“complex multiplication” for elliptic curves also arises from this
correspondence between elliptic curves over C and quotients C/Λ.

Specifically, if we happen to have a complex number ζ such
that ζΛ ⊆ Λ, then we obtain a corresponding
“multiplication-by-ζ” endomorphism of the elliptic curve.

The obvious “multiplication by m” maps are of this form with
ζ = m, and for most Λ these are the only such ζ. But for
certain lattices, there are nonreal ζ such that ζΛ ⊆ Λ.

For example, if Λ = Z[i ] = Z + Zi , then ζ = i has ζΛ ⊆ Λ,
and so the corresponding elliptic curve has a “multiplication
by i” map. One can then compute the values of g2 and g3 for
this lattice to see that the curve is exactly y2 = x3 + x , which
you analyzed on Homework 6.



Summary

We discussed elliptic-curve Diffie-Hellman key exchange.

We discussed elliptic-curve digital signature algorithms.

We discussed torsion points on elliptic curves.

Next lecture: Rational points on elliptic curves.


