
Math 4527 (Number Theory 2)

Lecture #16 of 38 ∼ February 25, 2021

Elliptic Curve Cryptography

Encoding Messages on Elliptic Curves

Public-Key Encryption Using Elliptic Curves

Digital Signatures Using Elliptic Curves

This material represents §7.2.3-7.2.4 from the course notes.

Encoding Messages on Elliptic Curves, I

We can now return to the question of encoding messages on an
elliptic curve E : y2 = x3 + Ax + B modulo p, where we will now
also take p ≡ 3 (mod 4).

Since half of the units modulo p are squares, for any given x
there should exist a y with y2 = x3 + Ax + B mod p about
half of the time.

If we try to encode a message directly as the x-coordinate of a
point, we therefore should only expect to succeed about half
of the time.

A better procedure is instead to encode a message as part of
the x-coordinate of a point, and then try to choose the
remaining piece of the x-coordinate in such a way that
x3 + Ax + B is a quadratic residue modulo p.

Encoding Messages on Elliptic Curves, II

Here’s one approach:

Suppose p has r + k + 1 bits when written in base 2, we break
the message into pieces each containing r bits.

Then, to convert an r -bit message m, we pad the beginning m
with k + 1 bits: a zero followed by k bits b1b2 · · · bk that can
be arbitrarily chosen, and set x to be the bit string
0b1 · · · bkm.

Next, we search through the possible choices of these k bits
until we find a solution y to y2 = x3 + Ax + B (mod p), and
pick one of the two possible values of y arbitrarily.

We then perform our encryption procedure using the point
(x , y) on E modulo p.

To recover the message m from a point (x , y), where
0 ≤ x < p, we simply compute x modulo 2r and write the
result as a bit string in base 2.

Encoding Messages on Elliptic Curves, III

We can set the parameters in such a way that it is very likely we
can find such a point for any given message piece r .

Since there are 2k possible choices for the bit string
b1b2 · · · bk , the probability that none of them yields a
quadratic residue x3 + Ax + B is roughly 1− 2−2k .

Of course, the probabilities are not entirely independent, but
they should be fairly close to independent, certainly enough
for a rough calculation like this.

Even if we merely take k = 10, the failure probability is
already so vanishingly small (= 2−1024 ≈ 1.8 · 10−309) that it
is unlikely a problem would ever occur in practical deployment.

Our calculation is also very efficient if we take p ≡ 3 (mod 4),
since then we can compute a square root of x3 + Ax + B using the
proposition from earlier.

Encoding Messages on Elliptic Curves, IV

Example: Encode the message m = 13 = 11012 as a point on the
elliptic curve y2 = x3 + 11x + 17 modulo p = 307 using a message
length r = 4 bits and a padding length of k = 4 bits.

We note that p > 256 = 28 so p has 9 bits in base 2.

We therefore want to search for a bit string b1b2b3b4 such
that x = 0b1b2b3b411012 is a quadratic residue modulo 307.

The bit string 0000 yields the value x = 13, but
x3 + 11x + 17 ≡ 208 (mod 307) is a quadratic nonresidue as
can be confirmed by evaluating 208153 ≡ −1 (mod 307).

The bit string 0001, however, yields x = 29, and
x3 + 11x + 1 ≡ 165 (mod 307) is a quadratic residue as can
be confirmed by evaluating 165153 ≡ 1 (mod 307).

Encoding Messages on Elliptic Curves, V

Example: Encode the message m = 13 = 11012 as a point on the
elliptic curve y2 = x3 + 11x + 17 modulo p = 307 using a message
length r = 4 bits and a padding length of k = 4 bits.

To compute the associated value of y , we then compute
x (p+1)/4 ≡ 2977 ≡ 120 (mod 307), since p ≡ 3 (mod 4).

Thus, a point corresponding to the message m on the curve E
is (29, 120).

To recover the message m, we simply extract the x-coordinate
and reduce it modulo 24 = 16. This yields the correct original
message 13 = 11012.

Encoding Messages on Elliptic Curves, VI

Example: Encode the message m = 13 = 11012 as a point on the
elliptic curve y2 = x3 + 11x + 17 modulo p = 307 using a message
length r = 4 bits and a padding length of k = 4 bits.

Of course, there are many other points on E that correspond
to the same message m: another is the additive inverse
(29, 187) of the point we found.

We could also have searched more randomly for possible bit
strings (rather than starting at 0000 and going upward), to try
to keep the procedure from being as predictable. The bit
string 1110, for example, yields another possible point
(237, 209).

Elliptic Curve Cryptography

Now that we can convert messages into points on elliptic curves,
we are ready to start creating public-key cryptosystems using
elliptic curves.

We will get into the details next time.

But you might be surprised to learn that some cryptosystems
designed for Z/mZ do not really work at all for elliptic curves,
while others will.

We will also talk about how to use elliptic curves for key
exchange and digital signature algorithms, since these are
fairly closely related to public-key encryption.

Elliptic Curve Cryptography, I

We now discuss the creation of public-key cryptosystems using
elliptic curves, which was first proposed by Neal Koblitz and Victor
Miller in 1985.

We will assume throughout that our plaintext is a point (x , y)
on a given elliptic curve E .

We will generally work with the reduction Ep of E modulo a
prime p, and N will denote the number of points on Ep.

A natural first guess for how to create a public-key cryptosystem
would be to adapt RSA (or a similar method like Rabin encryption)
to the elliptic curve setting: however, some difficulties will arise if
we try to do this.

Elliptic Curve Cryptography, II

A quick review of RSA encryption:

First, Bob finds two large primes p and q and computes
N = pq. Bob also chooses an encryption exponent e that is
relatively prime to ϕ(N).

Bob publishes his public key, which consists of N and e.

To send Bob a message m, a residue class mod N, she
computes c ≡ me (mod N) and sends c to Bob.

To decode a ciphertext c , Bob computes cd (mod N), where
d ≡ e−1 (mod ϕ(N)) is a decryption exponent.

The security of the algorithm comes from the fact that computing
a decryption exponent d that will work for most messages is (if
p, q are chosen properly) essentially equivalent to computing ϕ(N),
which in turn is equivalent to factoring N.

Elliptic Curve Cryptography, III

The reason that the RSA encryption-decryption procedure works is
Euler’s theorem:

For any residue class m relatively prime to N, Euler’s theorem
says that mϕ(n) ≡ 1 (mod m).

Therefore, since de ≡ 1 (mod ϕ(N)) by assumption, we have
cd ≡ mde ≡ m1 = m (mod N).

One may also check that if m is not relatively prime to N
(which will be vanishingly unlikely if p and q are large) then
the decryption procedure still does return the plaintext m.

Elliptic Curve Cryptography, IV

So now let’s try to write down the elliptic curve analogy of RSA:

Bob would create a public key consisting of an elliptic curve
E , a prime p, and an “encryption multiplier” e.

If Alice wants to encrypt a plaintext message P = (x , y), she
computes the ciphertext C = eP on Ep and sends it to Bob.

To decrypt a ciphertext C , Bob then computes P = dC for an
appropriate “decryption” multiplier d .

In order for everything to work properly, Bob needs
(de − 1)P =∞ for every possible message P. From our
results on orders, Bob can find such a d by requiring that
de ≡ 1 (mod N) where N is the number of points on Ep.
(Note that this is exactly the same condition we had for the
decryption exponent in RSA.)

Elliptic Curve Cryptography, V

So, to compute appropriate values of d and e, Bob needs to
compute the number of points on Ep.

As we have seen, this task is not entirely trivial, although
there is a procedure known as Schoof’s algorithm can
compute the number of points on an elliptic curve modulo p
in time approximately equal to (log p)5. (An improvement due
to Elkies and Atkin can heuristically improve it (log p)4.)

Roughly speaking, the idea of Schoof’s algorithm is to
compute the value of N modulo enough small primes that we
can find N modulo r for a value of r larger than 4

√
p: then

the Hasse bound will yield a unique possible value of N.

Elliptic Curve Cryptography, VI

But here’s the problem: Eve can run exactly the same computation
that Bob ran to find a decryption exponent.

Ultimately, there does not seem to be a good solution here.

Suppose we instead try to work with an elliptic curve modulo
a nonprime integer n = pq: then the addition law will not
always work properly. If we ignore that particular issue, the
system is essentially using a pair of points (P,Q), one on Ep

and one on Eq, and an appropriate pair (e, d) can be found as
a solution to the congruence de ≡ 1 (mod NpNq).

However, in this case, Eve would be able to break the system
by factoring n, since she could then compute the values Np

and Nq using Schoof’s algorithm. The usage of elliptic curves
here does not add to the security, and merely serves to
complicate everything.

Elliptic Curve Cryptography, VII

It does not seem feasible to construct a cryptosystem using the
difficulty of inverting modular exponentiation (which is only hard
when the modulus is composite).

So let’s instead try to build a system that relies on the
difficulty of computing discrete logarithms, which is a more
natural problem for elliptic curves modulo a prime p.

The Z/mZ cryptosystem that relies on computing discrete
logarithms is called ElGamal encryption, which I’ll review for
you now.

Elliptic Curve Cryptography, VIII

Here is how the ElGamal public-key cryptosystem works:

First, Bob chooses a prime p and a primitive root a modulo p
such that it is difficult to compute discrete logarithms1

modulo p. He also chooses an integer d with 0 < d < p − 1
and computes b = ad (mod p).

Bob then publishes his public key (p, a, b).

To send Bob a residue class m modulo p, Alice chooses a
random integer k with 0 < k < p − 1 and computes r = ak

(mod p) and t = bkm (mod p), and sends (r , t) to Bob.

To decrypt a ciphertext (r , t), Bob computes t · r−d (mod p).

The decryption works because
t · r−d ≡ (bkm)(a−kd) ≡ (akdm)(a−kd) ≡ m (mod p).

1Typically, this is done by ensuring p − 1 has a large prime divisor

Elliptic Curve Cryptography, IX

Like with RSA, the only steps required to implement ElGamal are
modular exponentiation and inversion (to compute r−d) which are
both very fast, but it is less obvious why the procedure is secure.

Suppose Eve intercepts the transmitted information: she will
obtain p, a, b, r , and t, and she wants to compute
m = t · b−k ≡ t · a−dk ≡ t · r−d modulo p.

If Eve knows d then she can decrypt using the same procedure
Bob uses. However, in order to find d from Bob’s public key,
Eve would need to compute the discrete logarithm loga b,
which we assume she cannot do.

Elliptic Curve Cryptography, X

Furthermore, since Alice chooses k randomly, r = ak will be a
random integer modulo p, as will t = bkm (since bk is likewise
random) provided m 6= 0.

Knowing r alone does not help, because in order to compute
k Eve would need to evaluate the discrete logarithm loga r .

Knowing t does not help much either, because in order for
Eve to compute m she would have to know the value of bk ,
which in turn would require knowing the value of k.

In order to compute any one of the desired quantities to decrypt an
ElGamal ciphertext, it seems that Eve would essentially have to
evaluate a discrete logarithm.

This is not a proof, of course, and it is not actually known
whether breaking ElGamal encryption is equivalent to
evaluating discrete logarithms.

Elliptic Curve Cryptography, XI

We can now write down the elliptic-curve version of ElGamal
encryption. First, Bob must create his public key.

To do this, he chooses an elliptic curve E , a prime p, and a
point Qa on E whose order is large.

Ideally, Bob should choose the point Qa to have an order
whose value is a large prime roughly equal to the number of
points on the curve Ep, but this can be a bit hard to arrange.

In our description of ElGamal, Bob chose a value a that was a
primitive root modulo p. It is not actually necessary to choose
a primitive root: the system works essentially as well when a
is any value whose order is sufficiently large that computing
discrete logarithms to the base a is difficult.

Bob can search for such a Qa by computing (M!)Qa for a
reasonably large value of M and making sure that it is not
equal to ∞.

Elliptic Curve Cryptography, XII

Alternatively, Bob could try to find a curve E having a prime
number of points on it: then any point other than ∞ will have
order N.

Bob then chooses a positive integer d that is less than the
number of points on Ep (he does not actually need to compute
the number of points itself, since he can just choose d to be
less than p − 2

√
p) and computes the point Qb = dQa.

However he makes his selection, Bob then publishes
(E , p,Qa,Qb), which serve as his public key.

Elliptic Curve Cryptography, XIII

Now suppose that Alice wants to send Bob a message P = (x , y).

Alice chooses a random integer k less than the number of
points on Ep (again, she could simply choose a random
integer less than p − 2

√
p) and computes Qr = kQa and

Qs = kQb + P on Ep.

She then sends the pair (Qr ,Qs) to Bob.

Bob receives a ciphertext pair (Qr ,Qs), and then wishes to recover
the value of m.

To do this, Bob simply computes
Qs − dQr = (kQb + P)− d(kQa) = P + kdQa − dkQa = P.

Note of course that Bob would compute the subtraction as
Qs + d(−Qr), where −Qr is the additive inverse of Qr .

Elliptic Curve Cryptography, XIV

Example: If Bob uses elliptic-curve ElGamal with
E : y2 = x3 + 7x + 1, p = 44927, Qa = (7772, 14369), and
d = 22105, find Bob’s public key.

First, Bob computes Qb = dQa = (39061, 4109) using
successive doubling.

His public key then consists of the quadruple (E , p,Qa,Qb).

Remark: For the given parameters, the curve Ep turns out to
have a prime number of points (44651) so P in fact has order
44651 on this curve.

Elliptic Curve Cryptography, XV

Example: If Bob uses elliptic-curve ElGamal with
E : y2 = x3 + 7x + 1, p = 44927, Qa = (7772, 14369), and
d = 22105. Encode the message P = (14605, 29833), and then
decode the associated ciphertext.

If Alice wants to encode the message P, she chooses a
random integer k less than p − 2

√
p ≈ 44503.08. Imagine she

chooses k = 23207.

She then computes Qr = kQa = (30566, 37885) and
Qs = kQb + P = (35487, 8262) + P = (40194, 40273) and
sends them to Bob.

Bob receives the ciphertext pair Qr ,Qs , and then decrypts by
evaluating Qs − dQr = Qs + (35487, 36665) = (14605, 29833),
which is indeed the correct plaintext.

Elliptic Curve Cryptography, XV

The only steps required to implement elliptic curve ElGamal are
the point operations on the elliptic curve, which can be done
comparatively quickly using the successive doubling algorithm.
However, it is less obvious why the procedure is secure.

Suppose Eve intercepts the transmitted information: she will
obtain (E , p) along with Qa, Qb, Qr , and Qs . She wants to
compute P = Qs − kQb = Qs − dkQa = Qs − dQr on Ep.

If Eve knows d then she can decrypt using the same procedure
Bob uses. However, in order to find d from Bob’s public key,
Eve would need to determine the value d for which dQa = Qb,
which is the elliptic curve analogue of computing a discrete
logarithm.

Elliptic Curve Cryptography, XVI

Furthermore, since Alice chooses k randomly, Qr = kQa will
essentially be a random point on the curve Ep (technically, it will
be a random multiple of Qa, but this does not tell Eve very much
if Qa has a large order).

Likewise, Qs = kQb + P will be essentially random.

Knowing Qr alone does not help, because in order to compute
k Eve would again need to compute an elliptic-curve discrete
logarithm.

Knowing Qs does not help much either, because in order for
Eve to compute P she would have to know the value of kQb,
which in turn would require knowing the value of k.

Ultimately, like with the modular version of ElGamal, the only
obvious method of attack is to compute a discrete logarithm.

Elliptic Curve Cryptography, XVII

Ultimately, like with the modular version of ElGamal, the only
obvious method of attack is to compute a discrete logarithm.

Pleasantly, it appears to be much harder to compute elliptic
curve discrete logarithms than modular discrete logarithms.

There is a version of the Pohlig-Hellman algorithm (which
operates on a similar principle to Pollard’s (p − 1)-algorithm)
for elliptic curves that is effective when the number of points
N on Ep has only small prime divisors.

In this case, N plays the role of p − 1 in the algorithm, and
the number of steps is on the order of the largest prime divisor
of N.

This situation is easy to avoid if the curve E is chosen
properly (i.e., so that it has a point of large order on it,
meaning that N has at least one large prime factor).

Elliptic Curve Cryptography, XVIII

There is also a so-called “baby-step giant-step” method whose
procedure requires approximately p1/2 steps to compute a discrete
logarithm. Here is the method:

To find a solution to dQa = Qb on an elliptic curve Ep modulo
p, choose an integer M and then compute two lists: the
points xQa for all 0 ≤ x ≤ M − 1 and the points Qb −MyQa

for all 0 ≤ y ≤ M − 1.

Then compare the two lists to find an element that is on both
lists: if xQa = Qb −MyQa, we get a solution d = x + My .

By (more or less) the pigeonhole principle, we would expect to
get a collision between the two lists when M2 ≥ N.

Thus, since we compute two lists of size M, where M ≈ p1/2,
the number of steps is on the order of p1/2.

Elliptic Curve Cryptography, XIX

However, there does not appear to be any natural analogue of any
of the sieving algorithms.

The basic reason is that the sieving algorithms all rely on an
easily-computed notion of “smallness” of a residue class
modulo n that remains consistent under modular
multiplication (i.e., the product of two small numbers modulo
n remains small modulo n).

The idea is then to try to obtain a large number of relations
among small primes and use them to compute the discrete
logarithms of enough small primes to allow new discrete
logarithms to be computed rapidly.

Elliptic Curve Cryptography, XX

However, there is no analogous notion of size that is easy to
compute on an elliptic curve modulo p.

For one thing, even if the x-coordinate of a point is small, the
y -coordinate will look more or less random and very often will
be large.

Also, even if all the coordinates of particular points are both
small, their sum may have very large coordinates due to the
modular divisions in the addition law.

Finally, even if we were to declare that a point is “small” if it
had a small x-coordinate, there is no easy way to see how a
large point can be written as a sum of small points that is
analogous to the way we can easily factor a big integer that is
a product of small primes.

Elliptic Curve Cryptography, XXI

Since the sieving algorithms do not carry over, and there do not
seem to be any other natural algorithms that are comparable, we
can achieve a level of security comparable to that of RSA using an
elliptic curve cryptosystem with much smaller key sizes.

It is estimated, based on the speed of integer factorization
algorithms versus the speed of elliptic curve discrete logarithm
algorithms, that an elliptic curve cryptosystem with a key size
of 256 bits provides security roughly comparable to that of
RSA with a key size of approximately 3000 bits.

The smaller key size leads to significant savings in
computation time, even after accounting for the additional
complexity of doing elliptic curve addition versus modular
multiplication: indeed, many websites (e.g., Google, as of
when I wrote this slide) are currently using elliptic-curve
public-key encryption as part of https.

Elliptic Curve Cryptography, XXII

In practice, since it is hard to count the number of points on a
given elliptic curve, many elliptic curve protocols specify a curve
published by an independent authority, such as NIST, that has
done the point-counting ahead of time and certifies it as secure.

Of course, this requires a degree of trust23 that the authority
has not intentionally chosen a curve that has some kind of
nonobvious “backdoor” (i.e., some clever way of computing
discrete logarithms quickly), though in practice it seems
unlikely such a backdoor would exist for a nonsingular curve.

As a last remark, many of these implementations use elliptic
curves over large finite fields of characteristic 2 (since the
resulting binary arithmetic is more efficient).

2And for some authorities, possibly an unwise degree of trust; cf., the
backdoor that was allegedly3 placed in the Dual EC DRBG algorithm....

3I probably have to say “allegedly” here for legal reasons.

Elliptic Curve Diffie-Hellman, I

Public-key protocols are fast for small messages, but if Alice needs
to send Bob megabytes (or gigabytes or terabytes) of encrypted
data, even a very fast implementation of public-key encryption will
take an unreasonably long time to encode and decode.

Symmetric cryptosystems generally do not require nearly as
much computation and can be done comparatively efficiently
even for large amounts of data.

Thus, in practice, most efficient cryptographic protocols will
require some sort of “key exchange”, wherein Alice and Bob
must somehow decide what encryption key to use for their
symmetric cryptosystem.

One way to do this is to use an asymmetric cryptosystem to
send the key: Alice chooses a key, encrypt it using Bob’s
public key, and send it to Bob: then Bob can decrypt the
message and obtain the key.

Elliptic Curve Diffie-Hellman, II

We will now describe a different
procedure for key exchange that
is an elliptic-curve version of the
Diffie-Hellman key exchange
procedure.

The idea of Diffie-Hellman is
quite simple, and is contained in
this image from wikipedia:

Elliptic Curve Diffie-Hellman, III

The standard implementation of Diffie-Hellman using Z/mZ works
as follows:

First, Alice and Bob jointly choose a large prime number p
where it is hard to compute discrete logarithms, along with a
primitive root g modulo p.

Alice chooses a secret integer a, and sends Bob ga (mod p).

Bob chooses a secret integer b, and sends Alice gb (mod p).

Then the secret key s is given by gab (mod p), which both of
them can compute.

Alice knows a, and has the value of gb from Bob, so she
needs only raise gb to the ath power.

Similarly, Bob knows b and has the value of ga from Alice, so
he needs only raise ga to the bth power.

Elliptic Curve Diffie-Hellman, IV

If Eve is eavesdropping on the conversation, she will have the
values of p, along with g , ga, and gb modulo p, and she wants to
compute the secret key gab (mod p).

In order to do this, Eve would essentially need to compute one
of the exponents a and b; since g is a primitive root, this is
equivalent to calculating the discrete logarithm logg (ga) or

logg (gb) modulo p − 1.

This discrete logarithm calculation is believed to be hard in
general, though both integer factorization and discrete
logarithm calculations can be performed in polynomial time
using Shor’s algorithm on a quantum computer.

Elliptic Curve Diffie-Hellman, V

It is not hard to construct an elliptic-curve version of Diffie-Hellman
key exchange for elliptic curves using the same ideas.

First, Alice and Bob jointly choose a large prime p, an elliptic
curve Ep modulo p, and a point P on E having large order.

Alice chooses a secret integer a < ord(P), and sends Bob
Qa = aP.

Bob chooses a secret integer b < ord(P), and sends Alice
Qb = bP.

Then the secret key s is given by Qab = (ab)P, which both of
them can compute: Alice evaluates a(bP) while Bob evaluates
b(aP).

Elliptic Curve Diffie-Hellman, VI

Example: Use elliptic-curve Diffie-Hellman to construct a secret
shared key using E : y2 = x3 + 7x + 1, p = 44927, and
P = (27844, 29401), where Alice’s secret number is a = 40006 and
Bob’s secret number is b = 18846.

Alice computes Qa = aP = (3454, 34367) and sends it to
Bob. Bob computes Qb = bP = (22472, 6971) and sends it to
Alice.

Alice then recovers Qab = aPb = (2147, 22480) and Bob
recovers Qab = bQa = (2147, 22480).

Bob and Alice now have a secret shared key
Qab = (2147, 22480) that they can use for further
communications (e.g., with a symmetric-key cryptosystem).

Elliptic Curve Diffie-Hellman, VII

If Eve is eavesdropping on the conversation, she will know Ep along
with P, Qa, and Qb , and she wants to compute Qab.

In order to do this, Eve would essentially need to compute one
of the multipliers a and b. Since P is assumed to have large
order, the only reasonable way to do this is for her to evaluate
a discrete logarithm on Ep.

Again, as we have already discussed, computation of discrete
logarithms on elliptic curves appears to be very difficult.

It is of course possible that there is some way to combine the
information in P, Qa, Qb to find Qab, but this seems unlikely
since the operations of scaling a point by a and scaling a
point by b are essentially independent.

Elliptic Curve Diffie-Hellman, VIII

Both the modular and elliptic-curve Diffie-Hellman protocols we
have described have no authentication, and are susceptible to a
“man-in-the-middle” attack.

In this attack, Mallory impersonates Alice to Bob and
simultaneously impersonates Bob to Alice, and performs a
simultaneous key exchange with both of them.

Then, Mallory will be able to decode messages sent from
Alice, and then re-encrypt them to send to Bob.

As far as Alice and Bob can tell, they are communicating with
each other, since their messages are received correctly, at least
as long as Mallory is in the middle decoding and re-encoding
the messages.

Elliptic Curve Diffie-Hellman, VIII

The problem is that the basic Diffie-Hellman protocol does not
authenticate Alice and Bob to one another before creating the key.

One way to include an authentication step would be for both
of Alice and Bob to put a digital signature on their
communications during the key creation process, so that the
other person feels confident that Mallory is not impersonating
either of them.

We can also use elliptic curves to create digital signatures,
which we now describe.

Elliptic Curve Digital Signatures, I

A digital signature must be created in such a way that binds it
both to its creator (so that Bob knows Alice and not Eve was the
signer and the sender) and to its associated message in a way that
cannot easily be altered (so that Bob knows Eve didn’t change the
message).

The goal when designing a digital signature algorithm is not
to keep the message from being deciphered, but rather to
prevent the signature from being easily decoupled from Alice’s
identity or from Alice’s original message.

Ultimately, however, these ideas are similar enough that we
can adapt public-key cryptosystems to create digital signature
algorithms.

Elliptic Curve Digital Signatures, II

Here is a digital signature algorithm based off of the ElGamal
cryptosystem.

Alice first creates an ElGamal public key (p, a, b), where p is a
large prime for which it is hard to compute discrete
logarithms, a is a primitive root mod p, and b ≡ ad (mod p)
for her secret choice d with 0 < d < p − 1.

If Alice now wants to sign a message m, she first chooses a
random integer k relatively prime to p − 1.

She then computes r ≡ ak (mod p) and s ≡ k−1(m − dr)
(mod p − 1), and her signature is the triple (m, r , s).

If Bob wants to verify that Alice really signed the message m,
he checks whether br r s is congruent to am (mod p). If so,
then he accepts the signature as valid, and if not he rejects it.

This works br r s ≡ (ad)raks ≡ adram−dr ≡ am (mod p).

Elliptic Curve Digital Signatures, III

Suppose now that Eve has intercepted a message pair (m, r , s)
that Alice has signed and wants to forge Alice’s signature on a new
message w .

Obviously, Eve cannot simply use the signature pair (w , r , s),
since Bob will compute br r s ≡ am 6≡ aw (mod N) and reject
the signature as invalid.

In order to find a valid signature z for her message w , she
needs to find (r , s) that are solutions to the congruence
br r s ≡ aw (mod N).

If Eve picks a particular r and searches for s, she is
attempting to solve r s ≡ awb−r (mod N), which is equivalent
to computing the discrete logarithm logr (awb−r).

Elliptic Curve Digital Signatures, IV

Another possibility is for Eve to try to choose the value of s first,
but this requires solving an even more unusual congruence
br r s ≡ aw (mod N), which is a combination of a discrete-log and
root-extraction problem.

It may be possible to choose r and s together in some more
efficient manner, but it is not obvious how such a procedure
would work.

Ultimately, if we believe it is difficult to compute discrete
logarithms modulo p, then it should also be difficult to forge
Alice’s ElGamal signature.

Elliptic Curve Digital Signatures, V

We will now describe how to adapt the ElGamal signature
algorithm to the elliptic curve setting.

Some details of the algorithm differ slightly from the modular
case since we are dealing with points rather than individual
numbers.

Alice first creates an elliptic-curve ElGamal public key
(p,E ,Qa,Qb) where p is a large prime, E is an elliptic curve
modulo p on which it is hard to compute discrete logarithms,
Qa is a point on E whose order has only large prime factors,
and Qb = dQa for Alice’s secret number d .

Alice also calculates the number of points N on Ep.

Elliptic Curve Digital Signatures, VI

So, Alice has an elliptic-curve ElGamal public key (p,E ,Qa,Qb)
where Qa is a point on E whose order has only large prime factors,
and Qb = dQa for Alice’s secret number d , and E has N points.

To sign a message m (an integer modulo N), Alice first
chooses a random positive integer k relatively prime to N.

She then computes Qr = kQa = (x , y) and s = k−1(m − dx)
(mod N), and sends Bob her signed message (m,Qr , s).

Bob verifies that Alice’s signature is correct by computing
xQb + sQr and comparing it to mQa. If the results are equal,
he accepts the signature, and otherwise he rejects it.

The verification works because
xQb + sQr = x(dQa) + s(kQa) = (m − dx)Qa =
xdQa + mQa − dxQa = mQa, where we are using the fact that
sk ≡ m − dx (mod N) to deduce that ksQa = (m − dx)Qa

since the order of Qa necessarily divides N.

Elliptic Curve Digital Signatures, VII

As with the elliptic-curve ElGamal encryption scheme, the security
of this procedure ultimately relies on the difficulty of computing a
discrete logarithm and the fact that k is randomly chosen.

It does not depend on the difficulty of computing the number
of points on the curve N, which could even be published as
part of the public key if desired.

Elliptic Curve Digital Signatures, VIII

Example: Alice publishes her elliptic-curve ElGamal signature key
with E : y2 = x3 + 7x + 1, p = 44927, Qa = (3174, 1067), and
Qb = dQa = (38921, 25436) with her secret d = 25661. Bob then
sends her the message m = 17781. Generate a signature for this
message with k = 33050 and verify that it is correct.

Alice computes the number of points on the curve,
N = 44651, which happens to be prime.

She then computes Qr = kQa = (11123, 34794) = (x , y) and
s = k−1(m − dx) ≡ 42665 (mod N).

She then sends the pair (Qr , s) to Bob, who then evaluates
xQb + sQr = (29063, 26534) + (36219, 42811) = (35670, 7590)
and compares it to mQa = (35670, 7590).

The results are equal, so Bob accepts the signature.

Summary

We discussed public-key encryption using elliptic curves.

We discussed elliptic-curve Diffie-Hellman key exchange.

We introduced elliptic-curve digital signature algorithms.

Next lecture: Rational points on elliptic curves.

