
Math 4527 (Number Theory 2)

Lecture #15 of 38 ∼ February 24, 2021

Elliptic Curve Factorization and Cryptography

Analysis and Examples of Elliptic Curve Factorization

Elliptic Curve Cryptography ∼ Encoding Messages

This material represents §7.2.1-7.2.2 from the course notes.

Analyzing Elliptic Curve Factorization, I

Last time, we discussed Lenstra’s algorithm:

Algorithm (Lenstra’s Elliptic-Curve Factorization Algorithm)

Suppose n is composite.
Choose a bound M, a point P = (x0, y0), and an integer A.
Let En be the elliptic curve y2 = x3 + Ax + B modulo n with B
chosen so that P lies on E .
Set Q1 = P and for 2 ≤ j ≤ M, define Qj = jQj−1 (on En).

If at any stage of the computation the point Qj cannot be
computed, due to a necessary division by a denominator d which is
not 0 modulo n but which is not invertible modulo n, then
gcd(d , n) is a proper divisor of n. If a divisor is not found and QM

is not ∞, increase the value of M and continue the computation.
Otherwise, if QM =∞, repeat the procedure with a new choice of
P and A.

Analyzing Elliptic Curve Factorization, II

A few preliminary remarks:

The curve E can be singular, as long as P is not the singular
point on the curve. (By “singular” we mean singular mod p or
mod q, which is equivalent to saying that the discriminant ∆
has a common prime divisor with n.)

However, choosing E to be a singular curve is not optimal,
because (as it turns out) the algorithm will essentially reduce
either to Pollard’s (p − 1)-algorithm or trial division according
to the type of singularity.

Analyzing Elliptic Curve Factorization, III

Example: Use Lenstra’s factorization algorithm to find a divisor of
the integer n = 170999 using the point P = (1, 4) on the elliptic
curve E : y2 = x3 + 4x + 11.

We simply compute the points Qj successively using the
recursion Q1 = P, Qj = jQj−1 on the elliptic curve E modulo
n until we obtain a problematic denominator.

j 1 2 3 4

Qj (1, 4) (109545, 75144) (81282, 86818) (100818, 143145)

Factor? no no no no

j 5 6 7 8

Qj (152033, 116998) (87978, 17295) (104368, 99929) (126411, 167685)

Factor? no no no no

j 9 10

Qj (79623, 108587) –

Factor? no 557
In this case, attempting to compute 10Q9 will require dividing
by a denominator that is not relatively prime to n.
The exact details of the computation will depend on the
method used to compute 10Q9, but successive doubling will
yield 2Q9 = (147257, 97701) and 8Q9 = (160625, 116187),
and attempting to add these two points will require using a

line with slope m =
116187− 97701

160625− 147257
=

18486

13368
, and

gcd(13368, 170999) = 557.

Analyzing Elliptic Curve Factorization, IV

Example: Use Lenstra’s factorization algorithm to find a divisor of
the integer n = 170999 using the point P = (1, 4) on the elliptic
curve E : y2 = x3 + 4x + 11.

In this case, attempting to compute 10Q9 will require dividing
by a denominator that is not relatively prime to n.

The exact details of the computation will depend on the
method used to compute 10Q9, but successive doubling will
yield 2Q9 = (147257, 97701) and 8Q9 = (160625, 116187),
and attempting to add these two points will require using a

line with slope m =
116187− 97701

160625− 147257
=

18486

13368
, and

gcd(13368, 170999) = 557.

Analyzing Elliptic Curve Factorization, V

The elliptic curve factorization algorithm seems to work, but it is
not obvious how fast it is nor how efficient it is in comparison to
other algorithms.

The factorization algorithm will succeed after M steps when
the order of P on the elliptic curve Ep (i.e., E modulo p)
divides M!, but the order of P on Eq (i.e., E modulo q) does
not divide M!.

It is unlikely that these two things will occur at exactly the
same value of M, so what we are really seeking is for the order
of P on Ep to divide M!.

From our results on orders, we know that the order of P on
Ep divides the number of points N on Ep, so we are certainly
guaranteed to succeed if N divides M!.

Thus, the elliptic curve factorization will succeed quickly as
long as the prime divisors of N are all fairly small.

Analyzing Elliptic Curve Factorization, VI

Note that this is a similar criterion to that of Pollard’s
(p − 1)-algorithm, which succeeds quickly as long as the prime
divisors of p − 1 are all fairly small. (An integer all of whose prime
divisors are ≤ M is called M-smooth.)

However, we are free to make different choices for the elliptic
curve E , each of which will give a different random integer
that is near p. As long as one of the curves we choose is
M-smooth, we will obtain the factorization of n.

By the Hasse bound, |N − p − 1| ≤ 2
√

p.

As we discussed, it is known that N can take any integral
value in the Hasse-bound interval, where the values in the
center of the interval are the most common.

Analyzing Elliptic Curve Factorization, VII

Since we are free to switch to a different curve in cases where the
factorization method would take a long time, we see that elliptic
curve factorization is much more versatile than Pollard’s
(p − 1)-algorithm.

Explicitly, if we are using Pollard’s (p − 1)-algorithm, if p − 1
has a large prime divisor then we are simply out of luck, but
with elliptic curve factorization if N has a large prime divisor
then we can simply switch to a different curve.

Of course, we will generally not know the exact value of N, so
we would instead switch curves if we have spent a long time
computing and not gotten any results yet.

As a practical matter, what we could do instead is run
simultaneous computations on many different elliptic curves,
rather than “switching” after we exhaust one computation.

Analyzing Elliptic Curve Factorization, VIII

Another advantage to using several curves is that the
computations can be completely parallelized (i.e., they can be run
on separate processors), since the point operations on different
curves have nothing to do with one another.

It is a rather nontrivial analytic number theory problem to
determine the appropriate heuristic for the density of integers
in the Hasse interval |N − p| ≤ 2

√
p that are M-smooth,

which is needed in order to estimate how many curves should
be used in order to search for the factorization and to
estimate the value of M that should be used.

We will not give the details of this computation, but the
approximately optimal pairs (M, k) for the bound M and the
number of curves k are roughly (2000, 25) for 15-digit prime
divisors, (10000, 100) for 20-digit prime divisors, and
(50000, 300) for 25-digit prime divisors.

Analyzing Elliptic Curve Factorization, IX

Overall, if one computes the total time requirement with optimal
choices for the parameters, Lenstra’s elliptic curve algorithm can
factor an integer n in a total of approximately e

√
2(ln p)1/2(ln ln p)1/2

steps, where p is the smallest prime divisor of n.

This number of steps is bounded above by e(ln n)
1/2(ln ln n)1/2 ,

and so the elliptic curve factorization has roughly the same
asymptotic speed as the quadratic sieve.

In practice, due to the fact that elliptic curve operations are
slower than modular exponentiations, Lenstra’s algorithm
becomes slower than the sieve methods for integers exceeding
60 digits or so, and is slower than Pollard’s ρ-algorithm for
numbers under 30 digits.

However, the elliptic curve method is much more efficient at
finding comparatively small divisors (around 30 digits or less)
of large integers than the sieve methods are.

Analyzing Elliptic Curve Factorization, X

Many implementations of general-purpose factorization algorithms
(e.g., in software systems like Mathematica or Sage) use a
combination of different approaches to search for factors of various
different sizes.

A typical setup is to use some combination of trial division,
the Pollard (p − 1)-algorithm, and the Pollard ρ-algorithm to
search for small factors (under 15 digits or so).

Next, use Lenstra’s algorithm to search for factors of medium
size (15-30 digits).

Finally, use a sieve method (the quadratic sieve or the general
number field sieve) to factor the remaining portion of the
integer, which will now be a product only of large primes.

Analyzing Elliptic Curve Factorization, XI

There are several improvements and optimizations that can be
made to Lenstra’s original algorithm.

The largest computational overhead in Lenstra’s algorithm is
computing the point multiplications.

There are various ways to arrange the arithmetic operations in
such a way that fewer computations are needed: in particular,
it is possible to use both additions and subtractions when
doing successive doubling (since computing the inverse of a
point is essentially free).

Analyzing Elliptic Curve Factorization, XII

Furthermore, by using different models for elliptic curves other
than the reduced Weierstrass form y2 = x3 + Ax + B, some
additional savings are possible.

It is also possible to choose the elliptic curve
y2 = x3 + Ax + B in such a way that it is still essentially
random modulo n, but is guaranteed to have a point of some
specific small order, such as 12.

Such restrictions then imply that the number of points on the
curve is divisible by 12, which marginally reduces the size of
potential large prime divisors of N.

There are some other improvements that can be made as well
using ideas from other factorization algorithms (e.g., the Pollard
ρ-algorithm).

Some Cryptography Fundamentals, I

Now we will discuss how to use elliptic curves for doing
cryptography. A quick introduction to some fundamentals:

Alice and Bob refer to two parties attempting to exchange
information. (Generally, Alice wants to send a message to
Bob, though the communication can be two-directional.)
Additional parties are usually named with the letters following
(Carol, Dave, etc.).

Eve refers to a non-malicious eavesdropper, who can listen in
to the communications between Alice and Bob, but will not
alter them.

Mallory refers to a malicious eavesdropper, who can listen to
Alice and Bob’s communications and may also attempt to
impersonate them or alter their messages.

Some Cryptography Fundamentals, II

Encoding and decoding in our cryptosystems each require some
specific piece of information, called a key. In general, the process
works as follows:

1. Alice wishes to send a secure message to Bob.

2. Alice takes her unencrypted message, her plaintext, and
encrypts it using her encryption key to obtain a ciphertext.

3. Alice then sends the ciphertext to Bob, who then uses his
decryption key to decode, thus recovering Alice’s original
plaintext message.

When we encode actual messages, I will write plaintexts in bold
lowercase and ciphertexts in BOLD UPPERCASE.

Some Cryptography Fundamentals, III

Some cryptosystems are symmetric: the information required to
encode a message is the same as the information required to
decode a message (i.e., the encoding and decoding keys can be
obtained from each other).

Many historical cryptosystems were symmetric: the
(in)famous “Caesar shift”, the more general class of
alphabet-substitution ciphers, the Vigenère cipher, the Playfair
cipher, ADFGX, one-time pads, and so forth.

Modern examples of symmetric cryptosystems include DES
(“Data Encryption Standard”) used through the 1980s, and
AES (“Advanced Encryption Standard”) which is in use today.

Some Cryptography Fundamentals, IV

Other cryptosystems are asymmetric: the information required to
decode a message is very different from the information required to
encode a message.

Asymmetric encryption is more modern: examples of
asymmetric cryptosystems include RSA, ElGamal, and the
elliptic curve cryptosystems we will discuss.

In most such systems, the encoding and decoding methods are
sufficiently distinct that one may publicize the encryption key
(“public-key encryption”) without worry that this will make
easy decryption possible.

Ultimately, public-key cryptosystems revolve around the
existence of so-called one-way functions: functions which are
easy to evaluate (“easy forward”) but very difficult to invert
(“hard backward”) on most outputs.

Some Cryptography Fundamentals, V

Ultimately, public-key cryptosystems revolve around the existence
of so-called one-way functions: functions which are easy to
evaluate but very difficult to invert on most outputs.

As an example, consider the function f (p, q) = pq that takes
two prime numbers and outputs their product.

It is trivial to compute the product pq given p and q, but if
we are given pq and asked to find p and q, we would need to
know how to factor an arbitrary integer, which (as we have
already discussed) seems to be much harder.

The property that factorization is much harder than
multiplication is the basis for many public-key cryptosystems,
including RSA.

Another problem that is often used is the difficulty of
computing discrete logarithms in groups: in Z/mZ this means
solving an = b (mod m) for n = loga b.

Encoding Messages on Elliptic Curves, I

In order to use elliptic curves for cryptography, we must first
encode messages as points on elliptic curves.

With cryptosystems based on modular arithmetic, we can
simply write a message as a residue class modulo m (usually
with some kind of padding scheme to increase security).

But it is not quite so trivial to encode a message as a point on
an elliptic curve if we specify the curve E ahead of time, as
would be necessary for a public-key cryptosystem.

Encoding Messages on Elliptic Curves, II

To see why, suppose we have chosen an elliptic curve
y2 = x3 + Ax + B modulo a prime p, and wish to convert a
message m into a point on the curve.

We can assume that m is smaller than p, since we may break
m up into pieces and send each piece separately using
whatever scheme we come up with.

The issue is that we cannot, for example, simply break a
messge in half and write down the point (m1,m2), since there
is no reason to expect that (m1,m2) will lie on the curve
y2 = x3 + Ax + B.

A more sensible approach would be to place the message in
one coordinate. Since taking square roots is easier than
solving cubics, we should try looking for a point (m, y) on E .

But of course, there may not be a value of y satisfying the
equation y2 = m3 + Am + B (mod p), so this could also fail.

Quadratic Residues, I

To handle this issue, we need to recall some results about
quadratic residues modulo p.

Definition

If a is a residue class modulo m, we say a is a quadratic residue if
there is some b such that b2 ≡ a (mod m). If there is no such b,
then we say a is a quadratic nonresidue.

Examples:

1. Mod 5, the quadratic residues are 0, 1, and 4, while the
nonresidues are 2 and 3.

2. Mod 7, the quadratic residues are 0, 1, 4, and 2, while the
nonresidues are 3, 5, and 6.

3. Mod 13, the quadratic residues are 0, 1, 4, 9, 3, 12, and 10,
while the nonresidues are 2, 5, 6, 7, 8, and 11.

Quadratic Residues, II

When p is prime, there are (p + 1)/2 quadratic residues modulo p:

Proposition (Quadratic Residues Mod p)

If p is prime, there are (p + 1)/2 quadratic residues modulo p:
specifically, the values 02, 12, 22, ... , ((p − 1)/2)2.

Proof:

All of these values are clearly quadratic residues.

On the other hand, since (p − x)2 ≡ x2 (mod p), there are no
other possible squares modulo p, since the full list is simply
02, 12, . . . , (p − 1)2, and the second half of the list duplicates
the first half.

If we consider only the nonzero residue classes mod p, this result
says that exactly half of them are quadratic residues.

Quadratic Residues, III

We would like an easy way to detect quadratic residues, which we
can do by computing the Legendre symbol:

Definition

If p is an odd prime, the Legendre symbol

(
a

p

)
is defined to be 1

if a is a quadratic residue, −1 if a is a quadratic nonresidue, and 0
if p|a.

Examples:

1. We have

(
2

7

)
= +1,

(
3

7

)
= −1, and

(
0

7

)
= 0, since 2 is a

quadratic residue and 3 is a nonresidue modulo 7.

2. We have

(
3

13

)
=

(
−3

13

)
= +1, and

(
2

15

)
= 1, since 3 and

−3 are quadratic residues modulo 13, while 2 is not.

Quadratic Residues, IV

The notation for the Legendre symbol is somewhat unfortunate,
since it is the same as that for a fraction inside parentheses; it is
nonetheless standard.

When appropriate, we may write

(
a

p

)
L

to emphasize that we

are referring to a Legendre symbol rather than a fraction.

Note that the quadratic equation x2 ≡ a (mod p) has exactly

1 +

(
a

p

)
solutions modulo p.

In general, if u is a primitive root modulo p, then a unit a is a
quadratic residue if and only if it is an even power of u.

Explicitly, if a = u2k then (uk)2 = a, and conversely if a = b2

then b = uk is some power of u, and then a = u2k is an even
power of u.

Quadratic Residues, V

Using this last observation we can give a much faster method for
computing the Legendre symbol:

Theorem (Euler’s Criterion)

If p is an odd prime, then for any residue class a, it is true that(
a

p

)
= a(p−1)/2 (mod p).

Example: Determine whether a = 17441 and b = 135690 are
quadratic residues modulo the prime p = 239441.

We simply compute a(p−1)/2 ≡ a119720 ≡ 1 (mod p), so by
Euler’s criterion a is a quadratic residue mod p.

Likewise, b(p−1)/2 ≡ b119720 ≡ −1 (mod p), so by Euler’s
criterion b is not a quadratic residue mod p.

Quadratic Residues, VI

Proof:

If p|a then

(
a

p

)
= 0 = a(p−1)/2 (mod p), so we win here.

Now assume a is a unit modulo p and let u be a primitive
root modulo p.

If a is a quadratic residue, then

(
a

p

)
= +1.

By the observation earlier, we know a = u2k for some integer
k.

Then a(p−1)/2 ≡ (u2k)(p−1)/2 = (up−1)k ≡ 1k = 1 (mod p),

which agrees with

(
a

p

)
.

Quadratic Residues, VII

Proof (continued):

Now suppose a is a quadratic nonresidue, so that

(
a

p

)
= −1.

Then we must have a = u2k+1 for some integer k , so
a(p−1)/2 ≡ (u2k+1)(p−1)/2 = (up−1)k · u(p−1)/2 ≡ u(p−1)/2.

Now observe that x = u(p−1)/2 has the property that x2 ≡ 1
(mod p). The two solutions to this quadratic are x ≡ ±1
(mod p), but x 6≡ 1 (mod p) since otherwise u would not be a
primitive root as its order would only be (p − 1)/2.

Hence u(p−1)/2 ≡ −1 (mod p), meaning that a(p−1)/2 ≡ −1

(mod p) as well, and this agrees with

(
a

p

)
.

Quadratic Residues, VIII

As one of many corollaries of Euler’s criterion, we can deduce that
the Legendre symbol is multiplicative:

Corollary

For any odd prime p, the Legendre symbol modulo p is

multiplicative:

(
ab

p

)
=

(
a

p

)(
b

p

)
. In particular, the product of

two quadratic nonresidues is a quadratic residue.

Proof:(
ab

p

)
≡(ab)(p−1)/2≡a(p−1)/2b(p−1)/2≡

(
a

p

)(
b

p

)
(mod p).

Quadratic Residues, IX

Finally, we will recall a useful result that allows us to compute
square roots modulo a prime congruent to 3 modulo 4:

Proposition (Square Roots With p ≡ 3 (mod 4))

If p is a prime congruent to 3 modulo 4 and a is a quadratic
residue modulo p, then x = a(p+1)/4 has x2 ≡ a (mod p).

Proof:

By hypothesis we have a = m2 (mod p) by hypothesis and
mp−1 ≡ 1 (mod p) by Fermat’s little theorem.

Then x2 ≡ a(p+1)/2 ≡ mp+1 ≡ m2 ≡ a (mod p), as claimed.

Quadratic Residues, X

We mention in passing that there are also ways to compute square
roots mod p when p ≡ 1 (mod 4) but they are a bit harder. Here
is a general method for finding a root of a polynomial mod p:

Algorithm (Berlekamp’s Root-Finding Algorithm)

Let q(x) ∈ Fp[x] and suppose that q(x) = (x − r1) · · · (x − rn) for
some distinct ri ∈ Fp.

Choose a random a ∈ Fp and compute the gcd of q(x − a)
with x (p−1)/2 − 1 and x (p−1)/2 + 1 in Fp[x].

If one of these gcds is a constant, choose a different value of a
and start over.

Otherwise, if both gcds have positive degree, then each gcd
gives a nontrivial factor of q(x).

Repeat the factorization procedure on each gcd, until the full
factorization of q(x) is found.

Quadratic Residues, XI

The idea behind Berlekamp’s root-finding algorithm is that the
quadratic residues mod p are essentially randomly distributed, and
that they are the roots of x (p−1)/2 − 1.

Thus, the greatest common divisor of x (p−1)/2 − 1 with q(x)
will be equal to the product of all the terms x − ri where ri is
a quadratic residue.

So, if at least one root of q is a quadratic residue, and
another is a quadratic nonresidue, then we will obtain a
partial factorization of q(x).

The magic comes from working with q(x − a), which shifts all
of the roots of q by a. Since half of the residue classes
modulo p are quadratic residues, we expect to obtain at least
one quadratic residue and one quadratic nonresidue with
probability roughly 1− 2/2n ≥ 1/2.

Quadratic Residues, XII

I will mention a few other nice connections between the Legendre
symbol and group theory:

First, the multiplicativity of the Legendre symbol tells us that
it is a group homomorphism from the unit group (Z/pZ)× to
the multiplicative group {±1}.
Euler’s criterion tells us that this map can be computed
explicitly as the (p − 1)/2-power map.

Since the Legendre symbol map is surjective, by the first
isomorphism theorem, its kernel has index 2 (and that just a
fancier way of saying that half of the unit residue classes are
squares).

Quadratic Residues, XIII

Second, if a is a unit modulo p, then multiplication by a is a
bijection on the units modulo p.

Another way of saying this is: multiplication by a is a
permutation in the symmetric group Sp−1 on the p − 1 unit
residue classes.

The Legendre symbol then assigns a value +1 or −1 to each
of these permutations.

From group theory, we have another way of assigning a value
+1 or −1 to an arbitrary permutation: namely, to compute its
sign (whether it is a product of an even or odd number of
permutations).

In fact, these two values agree with each other! This is a
result known as Zolotarev’s lemma (and you can optionally
prove it on the homework).

Encoding Messages on Elliptic Curves, III

We can now return to the question of encoding messages on an
elliptic curve E : y2 = x3 + Ax + B modulo p, where we will now
also take p ≡ 3 (mod 4).

Since half of the units modulo p are squares, for any given x
there should exist a y with y2 = x3 + Ax + B mod p about
half of the time.

If we try to encode a message directly as the x-coordinate of a
point, we therefore should only expect to succeed about half
of the time.

A better procedure is instead to encode a message as part of
the x-coordinate of a point, and then try to choose the
remaining piece of the x-coordinate in such a way that
x3 + Ax + B is a quadratic residue modulo p.

Encoding Messages on Elliptic Curves, IV

Here’s one approach:

Suppose p has r + k + 1 bits when written in base 2, we break
the message into pieces each containing r bits.

Then, to convert an r -bit message m, we pad the beginning m
with k + 1 bits: a zero followed by k bits b1b2 · · · bk that can
be arbitrarily chosen, and set x to be the bit string
0b1 · · · bkm.

Next, we search through the possible choices of these k bits
until we find a solution y to y2 = x3 + Ax + B (mod p), and
pick one of the two possible values of y arbitrarily.

We then perform our encryption procedure using the point
(x , y) on E modulo p.

To recover the message m from a point (x , y), where
0 ≤ x < p, we simply compute x modulo 2r and write the
result as a bit string in base 2.

Encoding Messages on Elliptic Curves, V

We can set the parameters in such a way that it is very likely we
can find such a point for any given message piece r .

Since there are 2k possible choices for the bit string
b1b2 · · · bk , the probability that none of them yields a
quadratic residue x3 + Ax + B is roughly 1− 2−2

k
.

Of course, the probabilities are not entirely independent, but
they should be fairly close to independent, certainly enough
for a rough calculation like this.

Even if we merely take k = 10, the failure probability is
already so vanishingly small (= 2−1024 ≈ 1.8 · 10−309) that it
is unlikely a problem would ever occur in practical deployment.

Our calculation is also very efficient if we take p ≡ 3 (mod 4),
since then we can compute a square root of x3 + Ax + B using the
proposition from earlier.

Encoding Messages on Elliptic Curves, VI

Example: Encode the message m = 13 = 11012 as a point on the
elliptic curve y2 = x3 + 11x + 17 modulo p = 307 using a message
length r = 4 bits and a padding length of k = 4 bits.

We note that p > 256 = 28 so p has 9 bits in base 2.

We therefore want to search for a bit string b1b2b3b4 such
that x = 0b1b2b3b411012 is a quadratic residue modulo 307.

The bit string 0000 yields the value x = 13, but
x3 + 11x + 17 ≡ 208 (mod 307) is a quadratic nonresidue as
can be confirmed by evaluating 208153 ≡ −1 (mod 307).

The bit string 0001, however, yields x = 29, and
x3 + 11x + 1 ≡ 165 (mod 307) is a quadratic residue as can
be confirmed by evaluating 165153 ≡ 1 (mod 307).

Encoding Messages on Elliptic Curves, VII

Example: Encode the message m = 13 = 11012 as a point on the
elliptic curve y2 = x3 + 11x + 17 modulo p = 307 using a message
length r = 4 bits and a padding length of k = 4 bits.

To compute the associated value of y , we then compute
x (p+1)/4 ≡ 2977 ≡ 120 (mod 307), since p ≡ 3 (mod 4).

Thus, a point corresponding to the message m on the curve E
is (29, 120).

To recover the message m, we simply extract the x-coordinate
and reduce it modulo 24 = 16. This yields the correct original
message 13 = 11012.

Encoding Messages on Elliptic Curves, VIII

Example: Encode the message m = 13 = 11012 as a point on the
elliptic curve y2 = x3 + 11x + 17 modulo p = 307 using a message
length r = 4 bits and a padding length of k = 4 bits.

Of course, there are many other points on E that correspond
to the same message m: another is the additive inverse
(29, 187) of the point we found.

We could also have searched more randomly for possible bit
strings (rather than starting at 0000 and going upward), to try
to keep the procedure from being as predictable. The bit
string 1110, for example, yields another possible point
(237, 209).

Elliptic Curve Cryptography

Now that we can convert messages into points on elliptic curves,
we are ready to start creating public-key cryptosystems using
elliptic curves.

We will get into the details next time.

But you might be surprised to learn that some cryptosystems
designed for Z/mZ do not really work at all for elliptic curves,
while others will.

We will also talk about how to use elliptic curves for key
exchange and digital signature algorithms, since these are
fairly closely related to public-key encryption.

Summary

We discussed elliptic curve factorization algorithms.

We discussed some cryptography fundamentals and reviewed some
properties of quadratic residues.

We discussed how to encode messages as points on an elliptic
curve.

Next lecture: Elliptic curve cryptography (part 2).

