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The Group Law

For convenience in doing numerical computations, we can write
down the general formula for the addition law on any curve:

Proposition (Explicit Group Law)

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the elliptic curve
E : y2 = x3 + Ax + B. Then P1 + P2 = (x3, y3) where
x3 = m2 − x1 − x2 and y3 = −m(x3 − x1)− y1,

with m =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x2
1 + A)/(2y1) if P1 = P2

.

If m is infinite, then P1 + P2 =∞.

Note that group law is rational, in the sense that the result is
always a rational function of the inputs. In particular, the sum of
two points whose coordinates lie in a field K will also lie in K .



Orders of Points on Elliptic Curves, I

Now that we’ve established some properties of the group law, we
can use it to construct analogies between the structure of the
points on an elliptic curve modulo p under addition and the units
modulo n under multiplication.

The point, so to speak, is that the points on an elliptic curve
modulo p and the invertible residue classes modulo n are both
finite abelian groups (E under the addition law, (Z/mZ)×

under multiplication).
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Our first goal is to define the order of a point on an elliptic curve.
To do this we will use the addition operation on the curve:

Definition

Suppose E is an elliptic curve defined over a field K , and P is a
point on E . For any positive integer k, we define the point kP to
be the sum P + P + · · ·+ P︸ ︷︷ ︸

k terms

, and we also define 0P =∞ and

(−k)P as the additive inverse −(kP).
The smallest positive k for which kP =∞ is then called the order
of P; if no such k exists, then we say P has infinite order.
A point of finite order is called a torsion point and a point with
mP =∞ is called an m-torsion point.

This is the same as the usual definition of the order of an element
of a group, and the (m-)torsion elements of an abelian group.
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A few remarks:

Note that kP is well-defined because the addition law is
associative: it does not matter the order in which we perform
the additions. Likewise, we can see more or less immediately
that (a + b)P = aP + bP for any integers a and b.

Over the real or complex numbers, “most” points on an
elliptic curve will have infinite order.

More precisely, as we will essentially show later, the set of
torsion points on an elliptic curve over C is countably infinite,
while the set of all points on the curve is uncountable.

As we will show in a moment, however, on an elliptic curve
modulo p all points have finite order.
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Example: Find the order of the point P = (1, 3) on the elliptic
curve E : y2 = x3 + 4x + 4 modulo 5.

We simply compute the multiples of P using the addition law
repeatedly.

We obtain 2P = P + P = (2, 0), 3P = 2P + P = (1, 2),
4P = 3P + P =∞.

Since 4P is the smallest multiple of P that gives the point ∞,
the order of P is 4.
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We can compute large multiples of a particular point using
successive doubling, in analogy to the procedure of successive
squaring:

Algorithm (Successive Doubling Algorithm)

To compute kP, first find the binary expansion of
k = bjbj−1 · · · b0. Then compute the multiples 2P, 4P, 8P, ... ,

2jP by using the doubling part of the addition law. Finally,
compute kP =

∑
0 ≤ i ≤ j
bi = 1

2bi P using the addition law.

For example, to compute 77P, we write 77 = 64 + 8 + 4 + 1
compute P, 2P, 4P, . . . , 64P via doubling, and then add up
64P + 8P + 4P + P = 77P.
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The successive doubling algorithm is analogous to successive
squaring inside Z/mZ.

We can speed the successive doubling procedure up a bit by
also using subtractions: unlike with modular arithmetic, where
it is comparatively expensive to compute inverses, if
P = (x , y) then we have the trivial formula −P = (x ,−y).

We will also observe that this procedure works for any elliptic
curve, not just an elliptic curve modulo p. The only issue is
that large multiples of a typical point will usually grow very
complicated over an infinite field.
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Orders of points on an elliptic curve share many of the same
properties as orders of units modulo an integer m, and the proofs
of these results are also essentially the same.

Proposition (Properties of Order on Elliptic Curves)

Suppose E is an elliptic curve and P is a point on E .

1. If P has finite order k and mP =∞, then k divides m.

2. If mP =∞ but (m/q)P 6=∞ for any prime divisor q of m,
then P has order m.

3. If E is an elliptic curve modulo a prime p and N is the
number of points on E modulo p, then NP =∞. In
particular, the order of P divides N.
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1. If P has finite order k and mP =∞, then k divides m.

Proof:

Suppose mP =∞ and write m = qk + r where 0 ≤ r < k.

We then have rP = mP + (−qk)P = mP + (−q)(kP) =
∞+ (−q)∞ =∞+∞ =∞.

Since rP =∞ and 0 ≤ r < k , the only possibility is to have
r = 0: otherwise this would contradict the minimality of k .
Thus m = qk so k divides m.
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2. If mP =∞ but (m/q)P 6=∞ for any prime divisor q of m,
then P has order m.

Proof:

Suppose the order of P is k . Then since mP =∞, by (1) we
know that k divides m.

If k < m, then there must be some prime q in the prime
factorization of m that appears to a strictly lower power in the
factorization of k : then k divides m/q.

But then (m/q)P =∞ since m/q is a multiple of k , but this
is contrary to the given information. Thus m = k so P has
order m.
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3. If E has a finite number N of points (in particular, if E is any
elliptic curve modulo any prime p), then NP =∞. In
particular, the order of P divides N.

Remarks:

This result is an analogue of Euler’s theorem for Z/mZ.

It is an immediate corollary of Lagrange’s theorem from group
theory (the order of any element of a group divides the
number of elements in the group).

In our case, we can give a self-contained proof by adapting
the usual argument for proving Euler’s theorem (which does,
in fact, work for any finite abelian group).
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3. If E has a finite number N of points (in particular, if E is any
elliptic curve modulo any prime p), then NP =∞. In
particular, the order of P divides N.

Proof:

Suppose the points on E are Q1,Q2, · · · ,QN and consider the
points Q1 + P,Q2 + P, · · · ,QN + P: we claim that they are
simply the points Q1,Q2, · · · ,QN again (possibly in a
different order).

Since there are N points listed and they all lie on the curve E ,
it is enough to verify that they are all distinct.

So suppose Qi + P = Qj + P. Then we can write
Qi = Qi +∞ = Qi + (P + (−P)) = (Qi + P) + (−P) =
(Qj + P) + (−P) = Qj + (P + (−P)) = Qj +∞ = Qj , where
we used associativity and the properties of ∞ and inverses.
(Morally, we simply subtracted P from both sides.)
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3. If E has a finite number N of points (in particular, if E is any
elliptic curve modulo any prime p), then NP =∞. In
particular, the order of P divides N.

Proof (continued):

Thus the points Q1 + P,Q2 + P, · · · ,QN + P are simply
Q1,Q2, · · · ,QN in some order.

Adding up all the terms then yields
(Q1 + P) + · · ·+ (QN + P) = Q1 + · · ·+ QN , and upon
rearranging and subtracting Q1 + · · ·+ QN from both sides (in
the same way as above), we obtain NP =∞ as desired.

The second statement follows immediately from NP =∞ and
(1) above.
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Example: Show that the point P = (1, 3) has order 15 on the
elliptic curve E : y2 = x3 + 4x + 4 modulo 13.

It is a straightforward check that 15P =∞ using successive
doubling: we compute 2P = (12, 8), 4P = (6, 6),
8P = (0, 11), 16P = (1, 3). Then
15P = 16P − P = (1, 3)− (1, 3) =∞.

Furthermore, we can compute 3P = 2P + P = (3, 2) and
5P = 4P + P = (10, 2).

Since neither of these quantities is ∞, we conclude that the
order of P must be 15 .
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If we can compute the orders of some points on E , we can often
use that information in conjunction with the Hasse bound to
determine the number of points on E without actually computing
them all.

In the example from the previous slide, we exhibited a point of
order 15 on the elliptic curve E : y2 = x3 + 4x + 4 modulo 13.
Thus, by our results on orders, the number of points on E
must be a multiple of 15.

By the Hasse bound, the number of points on E must satisfy
|N − 14| ≤ 2

√
13, yielding the inequality 6.78 ≤ N ≤ 21.22.

The only multiple of 15 in this range is 15 itself, so E must
have exactly 15 points.
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Example: Show that the point P = (0, 2) has order 29 on the
elliptic curve E : y2 = x3 + x + 4 modulo 23. Use the result to find
the number of points on E and the group structure of E .

It is a straightforward check that 29P =∞ using successive
doubling and subtraction: we compute 2P = (13, 12),
4P = (1, 12), 8P = (14, 5), 16P = (8, 8), 32P = (11, 9).
Then 3P = P + 2P = (11, 9) and so
29P = 32P − 3P = (11, 9)− (11, 9) =∞.

Thus, the order of P is 29, as claimed.

By the Hasse bound, the number of points on E must satisfy
|N − 24| ≤ 2

√
23, yielding the inequality 14.41 ≤ N ≤ 33.59.

The only multiple of 29 in this range is 29 itself, so E must
have 29 points.

Since 29 is prime, in fact the group structure is cyclic of order
29, and P (or any other nonidentity point) is a generator.
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Elliptic Curve Factorization, I

Now that we have a reasonably good analogy between modular
multiplication and the points on an elliptic curve modulo p under
addition, we can use these analogies to develop algorithms for
computational number theory and cryptography.

We will first discuss how to use elliptic curve arithmetic to
design an integer factorization algorithm (today).

We then discuss how to develop several cryptographic
protocols relying on the addition law on an elliptic curve.
These will include a public-key cryptosystem based on
ElGamal encryption, a key-exchange protocol based on
Diffie-Hellman key exchange, and a digital signature
algorithm.

Since I’m not assuming you’re intimately familiar with any of
the Z/mZ versions of these things, I will briefly review those
as we go.
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We first explain how to create a factorization algorithm using
elliptic curves based off of the method of Pollard’s
(p − 1)-algorithm, as first proposed by Lenstra in 1985.

In Pollard’s (p − 1)-algorithm, the basic idea is that if n = pq
and we choose a random integer a, then the order of a
modulo p is likely to differ from the order of a modulo q.

Thus, if the order of a mod p is k and the order of a mod q is
bigger than k , then ak ≡ 1 (mod p) but ak 6≡ 1 (mod q).

Then gcd(ak − 1, n) = p. Thus, we can find a factorization of
n by computing ak − 1 mod n (this is quick using successive
squaring mod n) and then taking its gcd with n (also quick
using the Euclidean algorithm).



Elliptic Curve Factorization, III

The nonobvious part is how to find an exponent k such that
ak ≡ 1 (mod p) but ak 6≡ 1 (mod q).

We don’t need to find the exact order of a mod p: any
multiple of it will suffice, as long as that multiple is not also a
multiple of the order of a mod q.

A decent option that is also easy to implement is to evaluate
the values a1!, a2!, a3!, a4!, ... , aB! modulo n (for some
bound B), since the jth term is simply the jth power of the
previous term.

This procedure is guaranteed to return a result congruent to 1
modulo p provided that the order of a divides B!.
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Algorithm (Pollard’s (p − 1)-Algorithm)

Let n be composite. Choose a bound B and a residue a modulo n.
Set x1 = a, and for 2 ≤ j ≤ B, define xj = x j

j−1 (mod n). Compute
gcd(xB − 1, n): if the gcd is between 1 and n then we have found a
divisor of n. If the gcd is 1 or n, start over with a new residue a.

If p|n and p− 1 has only small prime factors, then the order of
any element modulo p will divide B! where B is comparatively
small. On the other hand, if the other prime factors qi of n
are such that qi − 1 has a large prime factor, it is unlikely that
a randomly chosen residue will have small order modulo q.

Thus, when we apply Pollard’s (p − 1)-algorithm to a
composite integer n = pq where p − 1 has only small prime
divisors, it is likely that the procedure will quickly find the
factorization. (This is the reason for the algorithm’s name.)
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Example: Use Pollard’s (p − 1)-algorithm with a = 2 to find a
divisor of n = 4913429.

We start with a = 2, so that x1 = 2. We compute
gcd(xj − 1, n) for each value of j until we find a gcd > 1:

Value j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

xj 2 4 64 2036929 251970 3059995 1426887

gcd 1 1 1 1 1 1 2521

After the 7th step, we obtain a nontrivial divisor 2521, giving
the factorization n = 2521 · 1949 .

Observe that 2521− 1 = 2520 = 23325171 has only small
divisors, and indeed 2520 divides 7! (so we were guaranteed to
obtain it by the 7th iteration of the procedure).

However, 1949− 1 = 22 · 481 has a large prime divisor, so it
would usually take B = 481 to find 1949 as a divisor.
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The speed of Pollard’s (p− 1)-algorithm depends on the size of the
largest prime divisor of p − 1, which can vary quite substantially.

If p is an odd prime, p − 1 is clearly even, so the worst-case
scenario is to have n = pq where p = 2p0 + 1 and q = 2q0 + 1
with p, q, p0, q0 all prime and where p and q are roughly
equal. In such a case, we would require B ≈ p0 ≈ 1

2

√
n in

order to find the factorization (unless we are lucky with a).

It is also a rather involved analytic number theory problem to
estimate the “expected” running time for the algorithm. In
general, if we use a bound B = nα/2, then we would expect to
have a probability roughly α−α of finding a factorization.
When α = 1/2 this says we would have about a 25% chance
of obtaining a factorization if we take B = n1/4.
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Let’s now construct an analogous procedure using elliptic curves:

Again, suppose n = pq is a product of two primes, and
suppose we choose a (nonsingular) elliptic curve
E : y2 = x3 + Ax + B over the integers along with a point P
on the curve.

The order of P on Ep, the reduction of E modulo p, is
unlikely to be exactly equal to the order of P on Eq, the
reduction of E modulo q.

If the order of P on Ep is k and the order of P on Eq is larger
than k, then kP =∞ on Ep but kP 6=∞ on Eq.
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Now the question arises: how can we detect this behavior?

In Pollard’s (p − 1)-algorithm, we performed all our
calculations modulo n, so let’s try that here: namely, doing all
of our computations on the curve En, the reduction of the
curve E modulo n, using the addition law formulas defined
over the integers modulo n.

Assuming that this reduction is well-defined, the addition law
will still obey all of the requirements we put on it (namely, it
will be commutative, associative, have an identity ∞, and
have inverses).
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However, the addition law formulas require a division when
computing the slope of the line, and if this slope requires dividing
by a nonzero number that is not invertible mod n, then we will not
be able to evaluate the result.

Just to be clear, if we were dividing by zero itself, then we
would simply obtain a slope of ∞.

The problem is that there is no sensible way to interpret
(e.g.,) a slope of 1/2 modulo 6.

This may seem like it’s a problem, but actually, it’s exactly
what we want!
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Specifically, suppose we obtain an “illegal” denominator when we
do one of these calculations.

This means that the slope of the line is ∞ modulo one of the
prime divisors of n, but not ∞ modulo the other.

We can use this information to factor n by taking the gcd of
the problematic denominator with n.

Another way to interpret this idea is using the Chinese
remainder theorem: a point (x , y) lies on En if and only if it
lies on the curve Ep : y2 = x3 + Ax + B modulo p and the
curve Eq : y2 = x3 + Ax + B modulo q.

Thus, the points on En can equivalently be thought of as pairs
of points (P,Q) of points on Ep and Eq. We are then seeking
to detect when a multiple of a pair (P,Q) is ∞ in one
coordinate but not in the other.
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Example: Examine what happens when trying to add the point
P = (1, 3) to the point Q = (15, 4) on the elliptic curve
E21 : y2 = x3 + 4x + 4 modulo 21.

To find P + Q we first compute the slope of the line joining

them: it is
4− 3

15− 1
=

1

14
.

However, this quotient is not defined modulo 21, since 14 is
not relatively prime to 21.

In this case, we see that gcd(21, 14) = 7 is a proper divisor of
21: we have used this “failed” point addition to get a
factorization of n.
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Example: Examine what happens when trying to double the point
P = (1, 3) on the elliptic curve E21 : y2 = x3 + 4x + 4 modulo 21.

To find 2P we first compute the slope of the slope of the

tangent line, which is
3(1)2 + 4

2 · 3
=

7

6
by implicit

differentiation.

Just like before, this ratio is not defined modulo 21 since 6 is
not relatively prime to 21, and just like before, gcd(21, 6) = 3
is a proper divisor of 21.

Ultimately, what is happening in the example from the last
slide is that P + Q =∞ (mod 7) but P + Q 6=∞ (mod 3).
Here, we see 2P =∞ (mod 3) but 2P 6=∞ (mod 7).
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Now we just have to organize all of this into an algorithm. Again,
we take guidance from Pollard’s (p − 1)-algorithm.

In Pollard’s (p − 1)-algorithm, we compute gcd(ad! − 1, n) for
1 ≤ d ≤ M (for some choice of bound M) until we obtain a
gcd that is larger than 1.

The analogous calculation on an elliptic curve is to try
computing (d!)P on an elliptic curve En : y2 = x3 + Ax + B
modulo n for 1 ≤ d ≤ M, and checking if we obtain a
denominator that has a nontrivial gcd with n in the
denominator: if so, we get a factorization of n.

The only remaining question is how to choose an elliptic curve
E along with a point P. An easy way to generate a pair
(E ,P) is to choose the coordinates of P = (x0, y0) along with
the value A first, and then set B = y2

0 − x3
0 − Ax0.
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This is precisely Lenstra’s algorithm:

Algorithm (Lenstra’s Elliptic-Curve Factorization Algorithm)

Suppose n is composite.
Choose a bound M, a point P = (x0, y0), and an integer A.
Let En be the elliptic curve y2 = x3 + Ax + B modulo n with B
chosen so that P lies on E .
Set Q1 = P and for 2 ≤ j ≤ M, define Qj = jQj−1 (on En).

If at any stage of the computation the point Qj cannot be
computed, due to a necessary division by a denominator d which is
not 0 modulo n but which is not invertible modulo n, then
gcd(d , n) is a proper divisor of n. If a divisor is not found and QM

is not ∞, increase the value of M and continue the computation.
Otherwise, if QM =∞, repeat the procedure with a new choice of
P and A.
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We have already done all of the legwork to show that this algorithm
will succeed, and we have done a few “toy” examples already.

The main question is: how efficient is elliptic curve
factorization, and how well does it work in practice?

We will analyze these questions next time, and also do some
less trivial examples.



Summary

We discussed some properties of orders of points on elliptic curves.

We discussed how to use elliptic curves to do integer factorization.

Next lecture: Examples and analysis of elliptic curve factorization,
elliptic curve cryptography.


