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This material represents §7.1.2-7.1.3 from the course notes.



Recall, I

Last time we introduced elliptic curves:

Definition

An elliptic curve E over a field K is a curve having an equation of
the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

for appropriate coefficients a1, a2, a3, a4, a6 in K . This expression is
called the Weierstrass form of E .

We will primarily work in the situation where K does not have
characteristic 2 or 3, in which case we can change variables to put
E into reduced Weierstrass form y2 = x3 + Ax + B.



Recall, II

We also discussed the group law, which allows us to construct new
points on an elliptic curve from other ones:

Definition (Group Law I)

If P1 and P2 are two distinct points on the elliptic curve
E : y2 = x3 + Ax + B, let Q = (x ′, y ′) be the third intersection
point of E with the line L joining P1 and P2. We define the sum
P1 + P2 to be the point −Q = (x ′,−y ′).

Definition (Group Law II)

If P is any point on the elliptic curve E : y2 = x3 + Ax + B, let
Q = (x ′, y ′) be the third intersection point of E with the tangent
line L to E at P. We define the sum P + P to be the point
−Q = (x ′,−y ′).

Recall also that we have a point ∞ that we consider to lie on every
vertical line.



The Group Law, I

Our main result is that the addition law on an elliptic curve
(including the point at ∞) gives the points on E the structure of
an abelian group:

Theorem (The Group Law)

If K is any field and E is any elliptic curve defined over K , then for
any points P, P1, P2, and P3 on E , the following are true:

1. The addition law is commutative: P1 + P2 = P2 + P1.

2. The addition law is associative:
(P1 + P2) + P3 = P1 + (P2 + P3).

3. The point at ∞ is a two-sided identity: P +∞ = P =∞+ P.

4. The point P has a two-sided inverse −P:
P + (−P) =∞ = (−P) + P.



The Group Law, II

Proof:

We will give arguments for an elliptic curve of the form
y2 = x3 + Ax + B, but the theorem holds in full generality for
any elliptic curve.

Commutativity: Immediate from the geometric definition we
have given, since the line used in computing P1 + P2 and
P2 + P1 is the same in each case.

∞ is an identity: Consider the sum P +∞. The line passing
through P and ∞ is the vertical line through P which also
intersects E at the point −P. Then by the geometric
definition, P +∞ = −(−P) = P.

Inverses: Consider the sum P + (−P). The line passing
through P and −P is a vertical line, so the other point on it is
∞. The reflection of ∞ is also ∞, so P + (−P) =∞.



The Group Law, III

Proof (continued):

Associativity: This is the only nontrivial result in this theorem.

One approach to compute (P1 + P2) + P3 and P1 + (P2 + P3)
explicitly using the addition law. If Pi = (xi , yi ) then the
x-coordinate of (P1 + P2) + P3) is (y2−y1)

(
(y2−y1)

2

(x2−x1)
2 −2x1−x2

)
x2−x1

+y1+y3


2

(
− (y2−y1)

2

(x2−x1)
2+x1+x2+x3

)2 − (y2−y1)2
(x2−x1)2 + x1 + x2 − x3.



The Group Law, IV

Proof (continued):

The y -coordinate is

−

 (y2−y1)

(
(y2−y1)

2

(x2−x1)
2 −2x1−x2

)
x2−x1

+y1+y3






(y2−y1)

(
(y2−y1)

2

(x2−x1)
2 −2x1−x2

)
x2−x1
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2

(
− (y2−y1)
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(x2−x1)
2 +x1+x2+x3

)2 − 2(y2−y1)
2

(x2−x1)
2 +2x1+2x2−x3


− (y2−y1)

2

(x2−x1)
2+x1+x2+x3

+
(y2−y1)

(
(y2−y1)

2

(x2−x1)
2−2x1−x2

)
x2−x1 + y1

and this doesn’t even fit on the slide!

One can then compute the coordinates of the other sum and
compare them, and then reduce all of the expressions using
the relations y2

i = x3
i + Axi + B. (Calculation omitted.)



The Group Law, V

Proof (continued):

There are (as you should expect) more highbrow proofs that
are motivated by various things from algebraic geometry.

The nicest approach comes from studying divisors on curves
(which have a natural group structure to them) and then
constructing a map from divisors to points on the curve and
showing that this map agrees with the addition law.

Another approach is to use Bèzout’s theorem: two plane
curves of degrees m and n not sharing a common component
will intersect in mn points (counting multiplicities) over an
algebraically closed fields.

As a consequence, one may show that if C1 and C2 are two
plane cubics intersecting in 9 points, then any other cubic D
passing through 8 of those points must be a linear
combination of them, and thus also pass through the 9th.



The Group Law, VI

Proof (continued):

Now construct the following lines:

1. L1 through P1, P2, S .

2. M1 through ∞, S , −S .

3. L2 through −S , P3, T .

4. M2 through P2, P3, U.

5. L3 through ∞, U, −U.

6. M3 through −U, P1, T ′.

Then T = (P1 + P2) + P3 and T ′ = P1 + (P2 + P3).

Let C1 be the cubic L1L2L3 and C2 be the cubic M1M2M3.

Then C1 and E both pass through the 9 points P1, P2, P3, S ,
−S , ∞, U, −U, and T .

Since C2 also passes through the first 8 of these points, it
must also pass through the 9th, which is T .

But since C2 and E can only intersect in 9 points and they are
P1, P2, P3, S , −S , ∞, U, −U, and T ′, we must have
T ′ = T , as claimed.



The Group Law, VII

For convenience in doing numerical computations, we can write
down the general formula for the addition law on any curve:

Proposition (Explicit Group Law)

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the elliptic curve
E : y2 = x3 + Ax + B. Then P1 + P2 = (x3, y3) where
x3 = m2 − x1 − x2 and y3 = −m(x3 − x1)− y1,

with m =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x2
1 + A)/(2y1) if P1 = P2

.

If m is infinite, then P1 + P2 =∞.

Note that group law is rational, in the sense that the result is
always a rational function of the inputs. In particular, the sum of
two points whose coordinates lie in a field K will also lie in K .



The Group Law, VIII

Proof:

If P1 6= P2 then the line joining P1 and P2 has equation
y − y1 = m(x − x1) where m = (y2 − y1)/(x2 − x1).

We therefore obtain the equation
(mx −mx1 + y1)2 = x3 + Ax + B, which has the form
x3 −m2x2 + Cx + D = 0 for some C , D.

The polynomial x3 −m2x2 + Cx + D must factor as
(x − x1)(x − x2)(x − x3), so upon multiplying out we see that
x1 + x2 + x3 = m2. This yields the stated value of x3, and
then y3 = m(x3 − x1) + y1 (where we have multiplied by −1
to account for the vertical reflection).

If P1 = P2 then everything is the same, except instead m is
the slope of the tangent line at P1. By implicit differentiation,

we see that 2yy ′ = 3x2 + A so m =
3x2

1 + A

2y1
here, as claimed.



Elliptic Curves Modulo p, I

We have primarily dealt with elliptic curves over the real numbers.
Now we will look at elliptic curves modulo p where p is a prime.

All of our analysis of elliptic curves carries into this setting
essentially verbatim: in particular, the properties of the
addition law and the algebraic formulas remain the same,
though we must rely on algebra rather than geometric
intuition.

One difficulty that arises is that if we want to work over a
field of characteristic 2 or 3, we will need to use the general
Weierstrass form y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
rather than the reduced Weierstrass form y2 = x3 + Ax + B.

To keep things simple, we will therefore assume p is a prime
with p ≥ 5.



Elliptic Curves Modulo p, II

As we showed earlier, an elliptic curve y2 = x3 + Ax + B is
nonsingular modulo p precisely when its discriminant
∆ = −16(4A3 + 27B2) is nonzero.

This observation still holds modulo p.

In particular, we can see that a curve of this form will always
be singular modulo 2.

More generally, if we have any elliptic curve with integer
coefficients, we see that the primes p for which the curve is
singular mod p (the primes of “bad reduction”) are precisely
the primes dividing the discriminant ∆.

We can work out examples of the addition law using the explicit
formulas from earlier.



Elliptic Curves Modulo p, III

Example: If P1 = (1, 3) and P2 = (0, 2) on the elliptic curve
y2 = x3 + 4x + 4 modulo 5, find P1 + P2 and P1 + P1.

Recall that adding Q1 = (x1, y1) to Q2 = (x2, y2) produces
(x3, y3) where x3 = m2 − x1 − x2 and y3 = −m(x3 − x1)− y1,

and m =

{
(y2 − y1)/(x2 − x1) if Q1 6= Q2

(3x2
1 + A)/(2y1) if Q1 = Q2

.

With (x1, y1) = (1, 3) and (x2, y2) = (0, 2) we obtain
m = (2− 3)/(0− 1) = 1, so x3 = 0 and
y3 = −1(0− 1)− 3 = 3, so P1 + P2 = (0, 3).

Likewise, with (x1, y1) = (x2, y2) = (1, 3) we obtain
m = (3 + 4)/(2 · 3) = 2, so x3 = 2 and
y3 = −2(2− 1)− 3 = 0, so P1 + P1 = (2, 0).



Elliptic Curves Modulo p, III

Example: If P1 = (1, 3) and P2 = (0, 2) on the elliptic curve
y2 = x3 + 4x + 4 modulo 5, find P1 + P2 and P1 + P1.

Recall that adding Q1 = (x1, y1) to Q2 = (x2, y2) produces
(x3, y3) where x3 = m2 − x1 − x2 and y3 = −m(x3 − x1)− y1,

and m =

{
(y2 − y1)/(x2 − x1) if Q1 6= Q2

(3x2
1 + A)/(2y1) if Q1 = Q2

.

With (x1, y1) = (1, 3) and (x2, y2) = (0, 2) we obtain
m = (2− 3)/(0− 1) = 1, so x3 = 0 and
y3 = −1(0− 1)− 3 = 3, so P1 + P2 = (0, 3).

Likewise, with (x1, y1) = (x2, y2) = (1, 3) we obtain
m = (3 + 4)/(2 · 3) = 2, so x3 = 2 and
y3 = −2(2− 1)− 3 = 0, so P1 + P1 = (2, 0).



Elliptic Curves Modulo p, IV

Since there are only finitely many pairs of numbers modulo p, any
elliptic curve E will have only finitely many points modulo p, and
so we can in principle write them all down (at least if p is small).

Usually, the easiest procedure for doing this is to try plugging
in each possible value of x and then try to compute the
square root of x3 + Ax + B to find the value of y .

In our count, we also include the point at ∞ on our list.

We can then write out the complete addition table for the
points on E .



Elliptic Curves Modulo p, V

Example: Find all of the points on the (nonsingular) elliptic curve
y2 = x3 + 4x + 4 modulo 3, construct an addition table for them,
and identify the group structure.

First, we find all the points by plugging in each of the possible
x and computing the necessary square roots. We obtain

x 0 1 2

x3 + 4x + 4 1 0 2

y ±1 0 n/a

Thus, there are 4 points on the curve modulo 3: (0, 1), (0, 2),
(1, 0), and ∞.



Elliptic Curves Modulo p, V

Example: Find all of the points on the (nonsingular) elliptic curve
y2 = x3 + 4x + 4 modulo 3, construct an addition table for them,
and identify the group structure.

First, we find all the points by plugging in each of the possible
x and computing the necessary square roots. We obtain

x 0 1 2

x3 + 4x + 4 1 0 2

y ±1 0 n/a

Thus, there are 4 points on the curve modulo 3: (0, 1), (0, 2),
(1, 0), and ∞.



Elliptic Curves Modulo p, VI

Example: Find all of the points on the (nonsingular) elliptic curve
y2 = x3 + 4x + 4 modulo 3, construct an addition table for them,
and identify the group structure.

We can now compute all of the sums using the algebraic
formulas:

+ ∞ (0, 1) (0, 2) (1, 0)

∞ ∞ (0, 1) (0, 2) (1, 0)

(0, 1) (0, 1) (1, 0) ∞ (0, 2)

(0, 2) (0, 2) ∞ (1, 0) (0, 1)

(1, 0) (1, 0) (0, 2) (0, 1) ∞

We can see that (1, 0) = 2(0, 1), (0, 2) = 3(0, 1), and
∞ = 4(0, 1). Thus, the group of points is cyclic (of order 4)
and generated by the point (1, 0).



Elliptic Curves Modulo p, VI

Example: Find all of the points on the (nonsingular) elliptic curve
y2 = x3 + 4x + 4 modulo 3, construct an addition table for them,
and identify the group structure.

We can now compute all of the sums using the algebraic
formulas:

+ ∞ (0, 1) (0, 2) (1, 0)

∞ ∞ (0, 1) (0, 2) (1, 0)

(0, 1) (0, 1) (1, 0) ∞ (0, 2)

(0, 2) (0, 2) ∞ (1, 0) (0, 1)

(1, 0) (1, 0) (0, 2) (0, 1) ∞

We can see that (1, 0) = 2(0, 1), (0, 2) = 3(0, 1), and
∞ = 4(0, 1). Thus, the group of points is cyclic (of order 4)
and generated by the point (1, 0).



Elliptic Curves Modulo p, VII

Example: Verify that the elliptic curve y2 = x3 + 4x + 4 of
discriminant ∆ = −28 · 43 is nonsingular mod p and then find all
the points on the curve mod p, where p = 5, 7, 11, and 13.

Since none of 5, 7, 11, 13 divide the discriminant, the curve is
nonsingular for each of these moduli.

To count the points, we plug in each possible value of x mod
p and then try to compute the square root of x3 + Ax + B.



Elliptic Curves Modulo p, VII

Example: Verify that the elliptic curve y2 = x3 + 4x + 4 of
discriminant ∆ = −28 · 43 is nonsingular mod p and then find all
the points on the curve mod p, where p = 5, 7, 11, and 13.

Since none of 5, 7, 11, 13 divide the discriminant, the curve is
nonsingular for each of these moduli.

To count the points, we plug in each possible value of x mod
p and then try to compute the square root of x3 + Ax + B.



Elliptic Curves Modulo p, VIII

Example: Verify that the elliptic curve y2 = x3 + 4x + 4 of
discriminant ∆ = −28 · 43 is nonsingular mod p and then find all
the points on the curve mod p, where p = 5, 7, 11, and 13.

Modulo 5, we obtain
x 0 1 2 3 4

x3 + 4x + 4 4 4 0 3 4

y ±2 ±2 0 n/a ±2
and so there are 8 points modulo 5: (0, 2), (0, 3), (1, 2),
(1, 3), (2, 0), (4, 2), (4, 3), and ∞.

Modulo 7, we obtain
x 0 1 2 3 4 5 6

x3 + 4x + 4 4 2 6 1 0 2 6

y ±2 ±3 n/a ±1 0 ±3 n/a
and so there are 10 points modulo 7: (0, 2), (0, 5), (1, 3),
(1, 4), (3, 1), (3, 6), (4, 0), (5, 3), (5, 4), and ∞.



Elliptic Curves Modulo p, VIII

Example: Verify that the elliptic curve y2 = x3 + 4x + 4 of
discriminant ∆ = −28 · 43 is nonsingular mod p and then find all
the points on the curve mod p, where p = 5, 7, 11, and 13.

Modulo 5, we obtain
x 0 1 2 3 4

x3 + 4x + 4 4 4 0 3 4

y ±2 ±2 0 n/a ±2
and so there are 8 points modulo 5: (0, 2), (0, 3), (1, 2),
(1, 3), (2, 0), (4, 2), (4, 3), and ∞.

Modulo 7, we obtain
x 0 1 2 3 4 5 6

x3 + 4x + 4 4 2 6 1 0 2 6

y ±2 ±3 n/a ±1 0 ±3 n/a
and so there are 10 points modulo 7: (0, 2), (0, 5), (1, 3),
(1, 4), (3, 1), (3, 6), (4, 0), (5, 3), (5, 4), and ∞.



Elliptic Curves Modulo p, IX

Example: Verify that the elliptic curve y2 = x3 + 4x + 4 of
discriminant ∆ = −28 · 43 is nonsingular mod p and then find all
the points on the curve mod p, where p = 5, 7, 11, and 13.

Modulo 11, we obtain
x 0 1 2 3 4 5 6 7 8 9 10

x3 + 4x + 4 4 9 9 10 7 6 2 1 9 10 10

y ±2 ±3 ±3 - - - - ±1 ±3 - -
and so there are 11 points modulo 11: (0,±2), (1,±3),
(2,±3), (7,±1), (8,±3), and ∞.

Modulo 13, we obtain
x 0 1 2 3 4 5 6 7 8 9 10 12 13

x3 + 4x + 4 4 9 7 4 6 6 10 11 2 2 4 1 12

y ±2 ±3 - ±2 - - ±6 - - - ±2 ±1 ±5
and so there are 15 points modulo 13: (0,±2), (1,±3),
(3,±2), (6,±6), (10,±2), (12,±1), (13,±5), and ∞.



Elliptic Curves Modulo p, IX

Example: Verify that the elliptic curve y2 = x3 + 4x + 4 of
discriminant ∆ = −28 · 43 is nonsingular mod p and then find all
the points on the curve mod p, where p = 5, 7, 11, and 13.

Modulo 11, we obtain
x 0 1 2 3 4 5 6 7 8 9 10

x3 + 4x + 4 4 9 9 10 7 6 2 1 9 10 10

y ±2 ±3 ±3 - - - - ±1 ±3 - -
and so there are 11 points modulo 11: (0,±2), (1,±3),
(2,±3), (7,±1), (8,±3), and ∞.

Modulo 13, we obtain
x 0 1 2 3 4 5 6 7 8 9 10 12 13

x3 + 4x + 4 4 9 7 4 6 6 10 11 2 2 4 1 12

y ±2 ±3 - ±2 - - ±6 - - - ±2 ±1 ±5
and so there are 15 points modulo 13: (0,±2), (1,±3),
(3,±2), (6,±6), (10,±2), (12,±1), (13,±5), and ∞.



Elliptic Curves Modulo p, X

Notice that the number of points on the elliptic curve E modulo p
in the example above was fairly close to p for each value we tested.
It turns out that this is no accident:

Theorem (Hasse’s Theorem)

Let E be a nonsingular elliptic curve defined over a finite field with
q elements. Then the number of points Nq(E ) on E whose entries
are in K satisfies |Nq(E )− q − 1| ≤ 2

√
q.

A better bound holds for singular curves: including the singular
point itself, the number of points is always either p, p + 1, or p + 2
depending on the type of singularity.

The proof involves heavier-duty stuff than we will really be focusing
on, but I can give some of the ideas of the proof very briefly.



Elliptic Curves Modulo p, XI

Proof (outline):

First, observe that the p-power Frobenius map ϕ : E → E
defined via (x , y) 7→ (xp, yp) is a well-defined homomorphism
from the group of points on E to itself (such a map is called
an endomorphism of E ) and has degree p.

Then the group E (Fp) of Fp-rational points is the kernel of
1− ϕ, so deg(1− ϕ) = #E (Fp). The map 1− ϕ can also be
shown to be separable.

Now observe that the degree map on the space of separable
endomorphisms of E is a positive-definite quadratic form.

Finally, apply the Cauchy-Schwarz inequality:
|deg(1− ϕ)− deg(ϕ)− deg(1)| ≤ 2

√
deg(ϕ) deg(1), which

reduces to |#E (Fp)− p − 1| ≤ 2
√

p as claimed.



Elliptic Curves Modulo p, XII

To motivate why result like the Hasse bound should hold, let’s
compute the expected number of points on E modulo p.

For each of the p possible values of x , there are either 2, 1, or
0 possible values of y , according to whether x is a nonzero
square, zero, or a nonsquare.

When p is an odd prime, there are (p − 1)/2 nonzero squares
modulo p (namely 02, 12, . . . , [(p − 1)/2]2).

Thus, the expected number of values of y for any particular x

is
1

p

[
2 · p − 1

2
+ 1 · 1 + 0 · p − 1

2

]
=

1

p
[p − 1 + 1] = 1.

Since there are p possible x , the expected number of points
(x , y) is p · 1 = p. Together with the point at ∞, this gives
p + 1 expected points on the curve E .



Elliptic Curves Modulo p, XIII

Trivially, we can see that 1 ≤ Np(E ) ≤ 2p + 1: each value of x
contributes at most 2 values of y , and the point at ∞ always
counts.

We can rewrite these bounds as |Np(E )− p + 1| ≤ p.

Compare to Hasse’s theorem: |Np(E )− p + 1| ≤ 2
√

p.

We can see that Hasse’s theorem is a substantially stronger
bound, since the exponent of p is much lower.



Elliptic Curves Modulo p, XIV

In fact, we can push this a little further.

If we assume (somewhat unreasonably) that the behavior of
the x-coordinates are independent, then we are adding 1 to
the sum of p independent, identically-distributed copies of a
distribution with mean µ = 1 and standard deviation σ ≈ 1.

By the central limit theorem, we would expect the resulting
distribution to be approximately normal, with mean
1 + pµ = p + 1 and standard deviation σ

√
p ≈ √p.

We would therefore expect the “probability” of having an
elliptic curve E such that |Np(E )− p + 1| > C

√
p to be very

small whenever C is moderately large.

The Hasse bound makes this very precise – indeed, it tells us
that the distribution is actually a bit tighter around p + 1 than
the central limit theorem would predict.



Elliptic Curves Modulo p, XV

If one adopts this “central limit theorem” sort of viewpoint, it
naturally leads to the question of what the actual distribution of

the quantity
Np(E )− p + 1

2
√

p
looks like.

By the Hasse bound, we know that this quantity is always
between −1 and +1.

There are various ways one could then try to view this
quantity as having a distribution.

One way: fix p and vary the curve E .

It is known that all of the possible numbers of points satisfying
the Hasse bound are achieved by at least one E . But it is
tricky to assign a sensible notion to the distribution here, since
there are only finitely many elliptic curves E modulo a fixed p.



Elliptic Curves Modulo p, XVII

The inverse approach (fix E and vary p) has a more precise
conjecture:

Conjecture (Sato-Tate Conjecture)

Let E be an elliptic curve over Q without complex multiplication.
If θp is defined to be the real number in [0, π] such that

cos θp =
Np(E )− p + 1

2
√

p
, then for p ∈ [1,N] as N →∞, the

probability density function of θp approaches 2
π sin2 θ on [0, π].

This result was proven (for most cases) in 2008 by Clozel, Harris,
Shepherd-Barron, and Taylor.



Elliptic Curves Modulo p, XVIII

Here’s a plot of the values of θp for y2 = x3 + x + 1 against the
density function for the smallest 3000 primes:



Orders of Points on Elliptic Curves, I

Now that we’ve established some properties of the group law, we
can use it to construct analogies between the structure of the
points on an elliptic curve modulo p under addition and the units
modulo n under multiplication.

The point, so to speak, is that the points on an elliptic curve
modulo p and the invertible residue classes modulo n are both
finite abelian groups (E under the addition law, (Z/mZ)×

under multiplication).



Orders of Points on Elliptic Curves, II

Our first goal is to define the order of a point on an elliptic curve.
To do this we will use the addition operation on the curve:

Definition

Suppose E is an elliptic curve defined over a field K , and P is a
point on E . For any positive integer k, we define the point kP to
be the sum P + P + · · ·+ P︸ ︷︷ ︸

k terms

, and we also define 0P =∞ and

(−k)P as the additive inverse −(kP).
The smallest positive k for which kP =∞ is then called the order
of P; if no such k exists, then we say P has infinite order.
A point of finite order is called a torsion point and a point with
mP =∞ is called an m-torsion point.

This is the same as the usual definition of the order of an element
of a group, and the (m-)torsion elements of an abelian group.



Orders of Points on Elliptic Curves, III

A few remarks:

Note that kP is well-defined because the addition law is
associative: it does not matter the order in which we perform
the additions. Likewise, we can see more or less immediately
that (a + b)P = aP + bP for any integers a and b.

Over the real or complex numbers, “most” points on an
elliptic curve will have infinite order.

More precisely, as we will essentially show later, the set of
torsion points on an elliptic curve over C is countably infinite,
while the set of all points on the curve is uncountable.

As we will show in a moment, however, on an elliptic curve
modulo p all points have finite order.



Orders of Points on Elliptic Curves, IV

Example: Find the order of the point P = (1, 3) on the elliptic
curve E : y2 = x3 + 4x + 4 modulo 5.

We simply compute the multiples of P using the addition law
repeatedly.

We obtain 2P = P + P = (2, 0), 3P = 2P + P = (1, 2),
4P = 3P + P =∞.

Since 4P is the smallest multiple of P that gives the point ∞,
the order of P is 4.



Orders of Points on Elliptic Curves, IV

Example: Find the order of the point P = (1, 3) on the elliptic
curve E : y2 = x3 + 4x + 4 modulo 5.

We simply compute the multiples of P using the addition law
repeatedly.

We obtain 2P = P + P = (2, 0), 3P = 2P + P = (1, 2),
4P = 3P + P =∞.

Since 4P is the smallest multiple of P that gives the point ∞,
the order of P is 4.



Orders of Points on Elliptic Curves, IV

We can compute large multiples of a particular point using
successive doubling, in analogy to the procedure of successive
squaring:

Algorithm (Successive Doubling Algorithm)

To compute kP, first find the binary expansion of
k = bjbj−1 · · · b0. Then compute the multiples 2P, 4P, 8P, ... ,

2jP by using the doubling part of the addition law. Finally,
compute kP =

∑
0 ≤ i ≤ j
bi = 1

2bi P using the addition law.

For example, to compute 77P, we write 77 = 64 + 8 + 4 + 1
compute P, 2P, 4P, . . . , 64P via doubling, and then add up
64P + 8P + 4P + P = 77P.



Orders of Points on Elliptic Curves, V

The successive doubling algorithm is analogous to successive
squaring inside Z/mZ.

We can speed the successive doubling procedure up a bit by
also using subtractions: unlike with modular arithmetic, where
it is comparatively expensive to compute inverses, if
P = (x , y) then we have the trivial formula −P = (x ,−y).

We will also observe that this procedure works for any elliptic
curve, not just an elliptic curve modulo p. The only issue is
that large multiples of a typical point will usually grow very
complicated over an infinite field.



Orders of Points on Elliptic Curves, VI

Orders of points on an elliptic curve share many of the same
properties as orders of units modulo an integer m, and the proofs
of these results are also essentially the same.

Proposition (Properties of Order on Elliptic Curves)

Suppose E is an elliptic curve and P is a point on E .

1. If P has finite order k and mP =∞, then k divides m.

2. If mP =∞ but (m/q)P 6=∞ for any prime divisor q of m,
then P has order m.

3. If E is an elliptic curve modulo a prime p and N is the
number of points on E modulo p, then NP =∞. In
particular, the order of P divides N.

We will prove these properties next time.



Summary

We outlined some proofs showing that the addition law makes the
points on an elliptic curve into an abelian group.

We discussed elliptic curves modulo p.

We discussed some properties of orders of points on elliptic curves.

Next lecture: More with orders of points, elliptic curve
factorization.


