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Cubic Curves and Elliptic Curves

Cubic Curves and Weierstrass Form

The Addition Law

This material represents §7.1.1-7.1.2 from the course notes.



Overview of Chapter, I

We now move into our next chapter ∼ §7: Elliptic Curves.

Elliptic curves have a long and interesting history, and their
study involves elements from most of the major disciplines of
mathematics: algebra, geometry, analysis, number theory,
topology, and even logic.

Particularly, elliptic curves appear in the proofs of many deep
results in mathematics. As I mentioned last class, they are a
central ingredient in Wiles’s proof of Fermat’s Last Theorem.



Overview of Chapter, II

Our goals are fairly modest in comparison, but here is the plan:

In §7.1 we will begin by outlining the basic algebraic and
geometric properties of elliptic curves and motivate the group
law, which establishes that the rational points on an elliptic
curve have the structure of an abelian group, and study
elliptic curves modulo p.

Then in §7.2 we will explore these analogies and then to use
them to convert certain cryptosystems and factorization
algorithms that rely on modular arithmetic to ones that rely
on elliptic curves.

Finally, in §7.3 we will discuss some more advanced results
about rational and integral points on elliptic curves and apply
them to some applications of elliptic curves to Diophantine
equations, such as the famous congruent number problem.



Cubic Curves, I

In elementary coordinate geometry, one begins by studying the
behavior of lines in the plane, which have the general equation
ax + by + c = 0, and then afterwards studies more general
quadratic curves (the conic sections) having the general equation
ax2 + bxy + cy2 + dx + ey + f = 0.

In each case, we can do simple manipulations and changes of
variable to put the equations into a more standard form.

For example, if b 6= 0, we can rewrite the equation
ax + by + c = 0 as y = (−a/b)x + (−c/b), which for
m = −a/b and b′ = −c/b is the familiar y = mx + b′.



Cubic Curves, II

Similarly, if we have a quadratic relation
ax2 + bxy + cy2 + dx + ey + f = 0 with a 6= 0, we can make a
change of variable x1 = y + (b/(2a))x to remove the term bxy .

This will yield an equation of the form
ax2

1 + c1y2 + d1x1 + e1y + f1 = 0 for new coefficients
c1, d1, e1, f1.

If a, c1 6= 0, we can complete the square in both x1 and y by
setting x2 = x1 + d1/(2a1) and y2 = y + e1/(2c1), which
eventually yields an equation having the much simpler form
ax2

2 + c1y2
2 + f2 = 0. Otherwise, if a or c1 is zero, by swapping

variables if necessary and completing the square, we get a
parabola y2 = a2x2

2 + f2.

We conclude that every conic can be put into the form
ax2 + cy2 + f = 0 or y = ax2 + f after changing coordinates.



Cubic Curves, II

The next step is to study cubic curves:
ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0.

Like in the case of quadratic curves above, we can perform a
series of changes of variable to reduce the general form to a
simpler one.

We will not give the full details of the procedure, as it is
rather complicated.

Instead, we will summarize matters by saying that as long as
the equation is actually cubic (i.e., it is not the case that all of
a, b, c , d are zero), then the general equation above can
always be transformed using rational changes of variable into
one of the form y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, for
appropriate coefficients a1, a2, a3, a4, a6.



Cubic Curves, III

We can illustrate the kind of procedure involved with a simple
example: consider the cubic curve x3 + y3 = 1.

There are various fairly natural ways to try to lower the degree
in y , such as taking x ′ = x + y , but none of the obvious ones
will give a y2 term with coefficient 1.

Here is one way to do it...

Set a = 12/(x + y) and b = 36(x − y)/(x + y).

Then x + y = 12/a and x − y = b/(3a), so
x = (b + 36)/(6a) and y = (b − 36)/(6a).

Then x3 + y3 = 1 becomes

[
b + 36

6a

]3
+

[
b − 36

6a

]3
= 1,

which after expanding simplifies to b2/a3 + 432/a3 = 1.

This last equation is equivalent to b2 = a3 − 432.
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Elliptic Curves, I

Definition

An elliptic curve E over a field K is a curve having an equation of
the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

for appropriate coefficients a1, a2, a3, a4, a6 in K . This expression is
called the Weierstrass form of E .

We will generally restrict our attention to the situation where K is
one of the rational numbers Q, the real numbers R, the complex
numbers C, or the field Fp = Z/pZ of integers modulo p.



Elliptic Curves, II

This expression y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 is not the
simplest possible one in most cases.

As long as the characteristic of K is not 2 or 3, we can
simplify it by completing the square in y and completing the
cube in x .

Explicitly, if we set y ′ = y + (a1/2)x + (a3/2) and
x ′ = x + (a2/3), we can reduce the Weierstrass equation
above to one of the form (y ′)2 = (x ′)3 + A(x ′) + B.

An elliptic curve having an equation of the form y2 = x3 + Ax + B
is said to be in reduced Weierstrass form.

This reduced form is much nicer to use. It is also nearly
unique: the only change of variables that preserves it is one of
the form x = u2x ′, y = u3y ′ for some nonzero u, from which
we see that A = u4A′ and B = u6B ′.



Elliptic Curves, III

When K = R, we can draw graphs to visualize elliptic curves. Here
is the graph of y2 = x3 + 1:



Elliptic Curves, IV

When K = R, we can draw graphs to visualize elliptic curves. Here
is the graph of y2 = x3 − x + 1:



Elliptic Curves, V

When K = R, we can draw graphs to visualize elliptic curves. Here
is the graph of y2 = x3 − 2x + 1:



Elliptic Curves, V

Observation #1: Elliptic curves are not ellipses!

The reason for the similar name is that if one wants to
compute the arclength of an ellipse (an elliptic integral), a few
changes of variable will transform the resulting integral into

one of the general form

∫
1√

x3 + Ax + B
dx .

Upon setting y =
√

x3 + Ax + B, we see that this elliptic
integral is rather naturally related to the curve
y2 = x3 + Ax + B.

Sadly, except in very special circumstances (e.g., if
A = B = 0), the elliptic integral given above is
non-elementary.



Elliptic Curves, VI

Observation #2: The graph of an elliptic curve y2 = x3 + Ax + B
will always be symmetric about the x-axis.

This is easy to see because since if (x , y) satisfies the
equation then so does (x ,−y).

By using this observation and invoking the implicit function
theorem, we can see that the graph of an elliptic curve will
have either one or two components depending on the values
of the coefficients.

Specifically, it will have two components when the polynomial
x3 + Ax + B has three distinct real roots, and it will have one
component otherwise.



Elliptic Curves, VII

Observation #3: The tangent line at each crossing of the x-axis is
always vertical.

Using implicit differentiation, we can compute y ′ =
3x2 + A

2y
.

Thus, we see that y ′ =∞ when y is zero, provided that
3x2 + A is not also zero.

This behavior can only occur when x3 + Ax + B has a root in
common with its derivative 3x2 + A, which is in turn
equivalent to saying that x3 + Ax + B has a double root.



Elliptic Curves, VIII

Definition

If the polynomial x3 + Ax + B has a repeated root, we say that the
elliptic curve y2 = x3 + Ax + B is singular. Otherwise (if the roots
are distinct) we say the elliptic curve is nonsingular.

We can give a simple way to identify whether a given elliptic curve
is nonsingular:

Proposition (Singular Curves and the Discriminant)

The elliptic curve y2 = x3 + Ax + B is singular if and only if its
discriminant ∆ = −16(4A3 + 27B2) is zero.

Remark: The −16 is superfluous here, but there is also a definition
of ∆ in terms of the original coefficients a1, a2, a3, a4, a6 for a
general Weierstrass form. To avoid having denominators in that
expression, we do end up needing the factor of −16.



Elliptic Curves, IX

Proof:

We first remark that if p is an arbitrary polynomial, then p
has a repeated root r if and only if p(r) = p′(r) = 0.

Explicitly, if (x − r)2 divides p(x), then p(x) = (x − r)2q(x)
for some q. Then p′(x) = 2(x − r)q(x) + (x − r)2q′(x) and
so p′(r) = 0.

Conversely, if p(r) = p′(r) = 0 then p(x) = (x − r)s(x) for
some s, and then p′(x) = s(x) + (x − r)s ′(x) so p′(r) = s(r).
Thus s is also divisible by x − r so p(x) is divisible by (x − r)2.

In particular, p(x) = x3 + Ax + B has a repeated root if and
only if it has a root in common with p′(x) = 3x2 + A.

This occurs iff x2 = −A/3 which requires x(2A/3) + B = 0 so
x = −3B/(2A). Clearing denominators in
[−3B/(2A)]2 = −A/3 yields ∆ = 0 as claimed.



Elliptic Curves, X

Here is the graph of the singular elliptic curve y2 = x3 − 3x + 2:



Elliptic Curves, XI

Here is the graph of the singular curve y2 = x3 − 0.48x + 0.128:



Elliptic Curves, XII

Here is the graph of the singular curve y2 = x3:



Elliptic Curves, XIII

Each of these three curves has one singular point (i.e., a point
where the curve is nondifferentiable).

On the first two curves, the singularity is where the curve
crosses itself. This type of singularity is known as a node, and
will occur when the polynomial x3 + Ax + B has a double root.

The singular point on the third curve is the cusp at the origin
(0, 0). This type of singularity will occur when the polynomial
x3 + Ax + B has a triple root, which can only happen when
A = B = 0.

In general, singular elliptic curves tend to have unusual properties
relative to nonsingular curves. We will therefore exclude singular
elliptic curves and speak only of nonsingular elliptic curves from
this point onward.



The Addition Law on an Elliptic Curve, I

The key property of elliptic curves that make them so interesting
(and useful!) is the following algebraic and/or geometric
observation:

Observation

If we have two points that lie on an elliptic curve, we can use them
to construct a third point on the curve.



The Addition Law on an Elliptic Curve, II

Here is an interactive “proof”1 by picture (you pick two points and
I’ll give you a third one):

1This proof technique is not valid in mathematics. Your experience in other
disciplines (physics, philosophy) may vary.



The Addition Law on an Elliptic Curve, III

Here is an actual argument: suppose P1 = (x1, y1), P2 = (x2, y2)
are two distinct points on the elliptic curve E : y2 = x3 + Ax + B.

Draw the line through P1 and P2: we claim that this line L
must intersect E in a third point Q.

To see this, suppose the line through P1 and P2 has equation
y = mx + b. (Ignore the vertical-line case for now.)

Then the intersection points of L with E are the solutions to
the system y = mx + b and y2 = x3 + Ax + B.

Equivalently, we must solve (mx + b)2 = x3 + Ax + B, or
x3 + (−m2)x2 + (A− 2mb)x + (B − b2) = 0.

However, we already know that this cubic has the two roots
x = x1 and x = x2, so it must have a third root: this gives us
the third point Q we wanted.



The Addition Law on an Elliptic Curve, IV

Example: For the elliptic curve E : y2 = x3 − 7x + 10, find the
third intersection point of E with the line through the two points
P1 = (−3, 2) and P2 = (1,−2) on E .

The equation of the line is y = −x − 1.

Plugging this into the equation for E yields
(−x − 1)2 = x3 − 7x + 10, or x3 − x2 − 9x + 9 = 0.

We know this cubic has roots x = −3, 1 so we can easily find
the factorization (x + 3)(x − 1)(x − 3) = 0, so the third root
is x = 3, yielding y = −4.

Thus, the other intersection point is (3,−4).
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The Addition Law on an Elliptic Curve, V

Once we construct a third point on an elliptic curve this way, we
might try to find more points.

If we try this procedure directly using our points P1, P2, and
Q, however, we will not get anywhere: the line through any of
these two points intersects the elliptic curve at the other point.

However, we can also exploit the vertical symmetry of the
curve to make new points: if P = (x , y) lies on the curve,
then the point −P = (x ,−y) also lies on the curve.

We can then take lines through one of our starting points and
this point −P to find even more points on the curve.



The Addition Law on an Elliptic Curve, VI

Example: For the elliptic curve E : y2 = x3 − 7x + 10, with
P1 = (−3, 2) and P2 = (1,−2) on E , we calculated a third point
Q = (3,−4). Find the third intersection point of the line through
P1 and −Q with E .

We have −Q = (3, 4), so the line through P1 and −Q is
y = x/3 + 3.

Plugging this into the equation for E yields
(x/3 + 3)2 = x3 − 7x + 10, or x3 − 1

9x2 − 9x + 1 = 0.

As before, we have two roots x = −3 and x = 3, so we can
easily get the factorization (x − 1/9)(x − 3)(x + 3) = 0, so
the third root is x = 1/9.

Thus, the third intersection point is (1/9, 82/27).



The Addition Law on an Elliptic Curve, VI
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The Addition Law on an Elliptic Curve, VII

If we combine these two procedures (taking the third point on the
line through two given points and then reflecting this point
vertically), we can often generate many points on the curve
starting from just two.

Definition (Group Law I)

If P1 and P2 are two distinct points on the elliptic curve
E : y2 = x3 + Ax + B, let Q = (x ′, y ′) be the third intersection
point of E with the line L joining P1 and P2. We define the sum
P1 + P2 to be the point −Q = (x ′,−y ′).

It is clear from the definition, but just to emphasize, the sum
P1 + P2 is not the pointwise coordinate sum of P1 and P2!

It is also not immediately clear why we define the sum of two
points to be the reflection of Q rather than Q itself (though
the name of the definition should give you a hint!).



The Addition Law on an Elliptic Curve, VIII

There is one other important issue we need to address now,
however, which is the situation of having a vertical line that I
ignored earlier.

Specifically, if we attempt to add two points which are vertical
reflections of one another on the graph of y2 = x3 + Ax + B,
the resulting line will not intersect the curve again.

One option would simply be to declare that this operation is
invalid. However, there is a much better approach: we will
simply declare the curve E also includes a point at ∞ (which
we denote simply as ∞) that we consider as lying on any
vertical line.

It will become clear very soon why this is the right convention.



The Addition Law on an Elliptic Curve, IX

Example: Given the points P1 = (−3, 2) and P2 = (1,−2) on the
elliptic curve y2 = x3 − 7x + 10, find the following:

1. The sum P1 + P2.
2. The sum (P1 + P2) + P2.

Here is a plot of the curve and the line through the two points:



The Addition Law on an Elliptic Curve, X

Example: Given the points P1 = (−3, 2) and P2 = (1,−2) on the
elliptic curve y2 = x3 − 7x + 10, find the following:

1. The sum P1 + P2.

2. The sum (P1 + P2) + P2.

We already found P1 + P2 = (3, 4) earlier.

To find the sum (P1 + P2) + P2 we perform a similar
procedure: the line through P1 + P2 = (3, 4) and
P2 = (1,−2) has equation y = 3x − 5.

This yields (3x − 5)2 = x3 − 7x + 10 so that
x3 − 9x2 + 23x − 15 = 0 which factors as
(x − 1)(x − 3)(x − 5) = 0, and so the x-coordinate of
(P1 + P2) + P2 is 5.

Thus, remembering to negate, we get
(P1 + P2) + P2 = (5,−10).



The Addition Law on an Elliptic Curve, XI

We have essentially defined addition of points on an elliptic curve,
except for one case: can we add a point to itself?

Obviously, our approach of using the line through two points
P and Q does not work correctly when P = Q.

However, if P and Q are distinct points, then at least over the
real numbers, P + Q is a continuous function of the
coordinates of the points.

If we are working over R, we could therefore define the
addition P + P to be the limit as Q → P of sums P + Q.

Geometrically, the lines used in the construction also have a
limit as Q → P: they approach the tangent line to the curve
E at the point P.

Thus, a natural way to define P + P is to let L be the tangent
line to E at P, and then take Q to be the third point of
intersection of L with E .



The Addition Law on an Elliptic Curve, XI

Here is our formal definition of this “doubling” law:

Definition (Group Law II)

If P is any point on the elliptic curve E : y2 = x3 + Ax + B, let
Q = (x ′, y ′) be the third intersection point of E with the tangent
line L to E at P. We define the sum P + P to be the point
−Q = (x ′,−y ′).

We can compute the slope of the tangent line to E at P using
implicit differentiation2.

2Finally, a useful application of implicit differentiation!



The Addition Law on an Elliptic Curve, XII

Example: Given the points P1 = (−3, 2) and P2 = (1,−2) on the
elliptic curve y2 = x3 − 7x + 10, find P2 + P2 and P1 + (P2 + P2).

Differentiating implicitly yields 2yy ′ = 3x2 − 7 so that
y ′ = (3x2 − 7)/(2y). Thus, the tangent line to E at P2 has
slope 1 and its equation is y = x − 3.

The point Q lies on the intersection of y = x − 3 and
y2 = x3 − 7x + 10, so (x − 3)2 = x3 − 7x + 10 which yields
x3 − x2 − x + 1 = 0. Factoring gives (x + 1)(x − 1)2 = 0, so
the third root has x = −1 and then y = −4.

Remembering to negate, we see P2 + P2 = (−1, 4).

Using the regular addition procedure, we see the line through
P1 = (−3, 2) and P2 + P2 = (−1, 4) is y = x + 5 and so
solving (x + 5)2 = x3 − 7x + 10 yields
(x + 1)(x + 3)(x − 5) = 0 so P1 + (P2 + P2) = (5,−10).



The Addition Law on an Elliptic Curve, XII

Example: Given the points P1 = (−3, 2) and P2 = (1,−2) on the
elliptic curve y2 = x3 − 7x + 10, find P2 + P2 and P1 + (P2 + P2).

Differentiating implicitly yields 2yy ′ = 3x2 − 7 so that
y ′ = (3x2 − 7)/(2y). Thus, the tangent line to E at P2 has
slope 1 and its equation is y = x − 3.

The point Q lies on the intersection of y = x − 3 and
y2 = x3 − 7x + 10, so (x − 3)2 = x3 − 7x + 10 which yields
x3 − x2 − x + 1 = 0. Factoring gives (x + 1)(x − 1)2 = 0, so
the third root has x = −1 and then y = −4.

Remembering to negate, we see P2 + P2 = (−1, 4).

Using the regular addition procedure, we see the line through
P1 = (−3, 2) and P2 + P2 = (−1, 4) is y = x + 5 and so
solving (x + 5)2 = x3 − 7x + 10 yields
(x + 1)(x + 3)(x − 5) = 0 so P1 + (P2 + P2) = (5,−10).



The Addition Law on an Elliptic Curve, XIII

We just computed (P1 + P2) + P2 = (5,−10) = P1 + (P2 + P2),
and so here the addition law is actually associative. More is true:

Theorem (The Group Law)

If K is any field and E is any elliptic curve defined over K , then for
any points P, P1, P2, and P3 on E , the following are true:

1. The addition law is commutative: P1 + P2 = P2 + P1.

2. The addition law is associative:
(P1 + P2) + P3 = P1 + (P2 + P3).

3. The point at ∞ is a two-sided identity: P +∞ = P =∞+ P.

4. The point P has a two-sided inverse −P:
P + (−P) =∞ = (−P) + P.

A concise way of phrasing this statement is to say that the set of
points on E (including the point at ∞) forms an abelian group.



Summary

We introduced cubic curves and elliptic curves in Weierstrass form.

We discussed the addition law on elliptic curves.

Next lecture: Elliptic curves modulo p.


