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Miscellaneous Diophantine Equations

This material represents §6.4 from the course notes.



Miscellaneous Diophantine Equations, XVII

Example: Find all solutions to the Diophantine equation
3a − 2b = 1.

The idea of this result is to use congruence conditions.

Clearly a and b must be nonnegative, else the denominators of
the rational numbers involved could not be equal.

Clearly b = 0 does not work, while b = 1 gives a = 1.

Now suppose b ≥ 2 and consider the equation modulo 4: we
obtain 3a ≡ 1 (mod 4), meaning that a is even, say, a = 2k.

Then we have 2b = 32k − 1 = (3k + 1)(3k − 1), so 3k + 1 and
3k − 1 must both be powers of 2.

But their difference is 2, and so they must be 4 and 2
respectively. Thus, the only other solution is (a, b) = (2, 3).
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Miscellaneous Diophantine Equations, XVIII

This result is a special case of a result called Catalan’s conjecture
(proven in 2002 by Mihailescu) that 8 and 9 are the only perfect
powers that are consecutive.

In other words, the only solutions to xa − yb = 1 in integers
greater than 1 is (a, b, x , y) = (2, 3, 3, 2).

In 1976, Tijdeman used results on linear forms in logarithms
to show that any solution to xa − yb = 1 in integers greater
than 1 would have to have a, b below an (extremely large)
finite bound, which established that there were only finitely
many solutions.

However, the bound was on the order of ee
ee

730

, which is
completely infeasible to check computationally.



Miscellaneous Diophantine Equations, XIX

Example: Show that the Diophantine equation y2 = x3 + 7 has no
solutions.

The idea of this result is to rewrite the equation slightly,
exploit congruence conditions, and then quadratic reciprocity
to obtain a contradiction.

First, if x is even, then this equation yields y2 ≡ 3 (mod 4),
which is not possible.

Thus, x is odd and so y is even. This requires x3 + 7 ≡ 0
(mod 4) so that x3 ≡ 1 (mod 4) and thus x ≡ 1 (mod 4).

Now we write the equation as
y2 + 1 = x3 + 8 = (x + 2)(x2 − 2x + 4).

To proceed further, we require a fact about divisors of integers
of the form n2 + 1:
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Miscellaneous Diophantine Equations, XX

Proposition (Prime Divisors of n2 + 1)

If p is an odd prime and there is a solution to y2 ≡ −1 (mod p),
then p must be congruent to 1 modulo 4. Thus, every odd prime
divisor of an integer of the form n2 + 1 is congruent to 1 modulo 4.

First note that y2 ≡ −1 (mod p) implies that y has order 4
modulo p (since y4 ≡ 1 but no lower power can be 1 mod p). We
now give two arguments for why this implies p ≡ 1 (mod 4).

1. Let u be a primitive root u modulo p. Then ur = a for some
r , so u4r = 1 and the order of u cannot be smaller than 4r .
But since u is a primitive root, its order equals the number of
nonzero residues modulo p, which is p − 1.

2. By Lagrange’s theorem, the order of any element in a group
divides the order of the group. The group of nonzero residues
modulo p has order p − 1, and since there is an element of
order 4, that means 4 divides p − 1.



Miscellaneous Diophantine Equations, XXI

Example: Show that the Diophantine equation y2 = x3 + 7 has no
solutions.

Returning to our original problem, recall that we have shown
that x ≡ 1 (mod 4), and also that
y2 + 1 = x3 + 8 = (x + 2)(x2 − 2x + 4).

By the proposition, any odd prime divisor, and therefore any
odd divisor (prime or otherwise), of y2 + 1 = x3 + 8 must be
congruent to 1 modulo 4.

But x + 2 is a divisor of x3 + 8 congruent to 3 modulo 4, so
we have a contradiction.

Therefore, there are no solutions to the given Diophantine
equation.



Miscellaneous Diophantine Equations, XXII

Example: Show that the Diophantine equation y2 = x3 + 7 has no
solutions.

We remark that there is always a solution to the equation
y2 = x3 + 7 modulo p for every prime p. (We will essentially
show this in a week or two when we discuss elliptic curves
modulo p.)

Thus, the natural approach of “reduce mod p to try to find a
contradiction” is not effective here.

In fact (although this is much harder to prove!) there are not
even any rational solutions to y2 = x3 + 7.

As another (entirely irrelevant) remark, this elliptic curve was
used in an early specification of the elliptic curve digital
signature algorithm, and shows up in many practical
implementations, including in the hashing signatures used by
bitcoin.



Miscellaneous Diophantine Equations, XXIII

Example: Show that there are infinitely many perfect squares that
are the sum of two other consecutive perfect squares.

The idea of this result is to rearrange the equation and use
properties of Pell’s equation.

Suppose that a2 = b2 + (b + 1)2 so that a2 = 2b2 + 2b + 1.

Multiplying both sides by 2 and completing the square on the
right-hand side yields 2a2 = (2b + 1)2 + 1, so that
(2b + 1)2 − 2a2 = −1.

This is a Pell equation of the form x2 − 2y2 = −1, where
x = 2b + 1.
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Miscellaneous Diophantine Equations, XXIV

Example: Show that there are infinitely many perfect squares that
are the sum of two other consecutive perfect squares.

Since the fundamental unit of Z[
√

2] is u = 1 +
√

2 which has
norm −1, we know that x2 − 2y2 = −1 will have infinitely
many solutions given by odd powers of u:
x + y

√
2 = (1 +

√
2)2k+1 for k ≥ 0.

Therefore, since x is always odd in such solutions, each of
these infinitely many solutions yields a different pair (a, b)
with a2 = b2 + (b + 1)2.

For example, the first few pairs (a, b) are (a, b) = (1, 0),
(5, 3), (29, 20), (169, 119), (985, 696), (5741, 4059), and so
forth.



Miscellaneous Diophantine Equations, XXIV

Example: Show that there are infinitely many perfect squares that
are the sum of two other consecutive perfect squares.

It is also possible to approach this problem using our
characterization of the Pythagorean triples: the question is
equivalent to having either 2st = s2 − t2 + 1 or
2st = s2 − t2 − 1, depending on whether n is odd or even.

Then, by completing the square, we see that this is equivalent
to (s − t)2 − 2t2 = ±1, and so once again we are reduced to
solving Pell’s equation x2 − 2y2 = ±1.



Miscellaneous Diophantine Equations, XXV

Example: Show that there are infinitely many noncongruent
triangles whose side lengths are consecutive integers and whose
area is also an integer.

Suppose the side lengths are d − 1, d , and d + 1. Then by
Heron’s formula, we have s = 3d/2 so the area is given by

A =

√
3d

2
· d − 2

2
· d

2
· d + 2

2
=

d
√

3(d2 − 4)

4
.

Then we see d must be even, say with d = 2x , and then
A = x

√
3(x2 − 1), which is integral precisely when 3(x2 − 1)

is a perfect square.

This perfect square must be a multiple of 3, so if
3(x2 − 1) = (3y)2, we see x2 − 3y2 = 1.
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1The area of a triangle with side lengths a, b, c is equal to
K =

√
s(s − a)(s − b)(s − c) where s = (a+ b + c)/2 is the semiperimeter



Miscellaneous Diophantine Equations, XXVI

Example: Show that there are infinitely many noncongruent
triangles whose side lengths are consecutive integers and whose
area is also an integer.

Thus, the side lengths are d − 1, d , and d + 1 where d = 2x
and x2 − 3y2 = 1. The area is then x

√
3(x2 − 1) = 3xy .

Since the fundamental solution of this Pell’s equation is
2 +
√

3, we see that there are infinitely many such n, obtained
from the powers xn + yn = (2 +

√
3)n.

The first few such triangles (for j = 1, 2, 3, 4) are 3-4-5 (area
6), 13-14-15 (area 84), 51-52-53 (area 1170), and
193-194-195 (area 16296).
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The Fermat Equation xn + y n = zn, I

One of the most famous Diophantine equations is Fermat’s
equation xn + yn = zn, for a fixed integer n ≥ 3.

Clearly, there are solutions if one of the variables is equal to 0:
the question is whether this equation possesses any other
solutions.

It is enough to prove the nonexistence of nontrivial solutions
in the cases n = 4 and n = p where p is an odd prime, since
any n > 2 is divisible by 4 or an odd prime.



The Fermat Equation xn + y n = zn, II

This result was famously conjectured by Fermat in 1637, who
wrote (in the margin of his book, in Latin) “It is impossible to
separate a cube into two cubes, or a fourth power into two fourth
powers, or in general, any power higher than the second, into two
like powers. I have discovered a truly marvellous proof of this,
which this margin is too narrow to contain.”

It is now believed that Fermat probably did not have a correct
proof of this result.

As we will discuss more in later chapters, a substantial
amount of number theory and abstract algebra was developed
in the mid-19th and early-20th centuries in an attempt to
establish the nonexistence of nontrivial integer solutions to
xn + yn = zn.



The Fermat Equation xn + y n = zn, III

One of the easier cases is n = 4, which is in fact the subject of one
of Fermat’s very few theorems for which he gave an actual proof:

Theorem (Fermat’s Theorem)

The Diophantine equation x4 + y4 = z2 has no solutions with
xyz 6= 0. In particular, x4 + y4 = z4 has no nontrivial solutions.

We show the result using a technique equivalent to induction that
is often called Fermat’s method of infinite descent, which in fact
first appeared in the proof of this very result.

The idea is to consider the smallest nontrivial solution of the
equation in positive integers and use it to construct a smaller
solution: the well-ordering principle of the integers then yields
a contradiction, since we cannot have an infinite decreasing
sequence of positive integers.



The Fermat Equation xn + y n = zn, IV

Proof:

Suppose the equation has nontrivial solutions and let u be the
smallest positive integer such that x4 + y4 = u2 has a solution.

Observe that gcd(x , y) = 1, otherwise we could replace x , y , u
with x/d , y/d , u/d2 to obtain a smaller solution.

By reducing both sides modulo 4, we see that one of x , y is
even and the other is odd: without loss of generality, assume
x is even.

Then (x2, y2, u) is a primitive Pythagorean triple, so from our
parametrization we see that x2 = 2st, y2 = s2 − t2, and
u = s2 + t2 for some integers s > t > 0 of opposite parity.



The Fermat Equation xn + y n = zn, V

Proof:

We have x2 = 2st, y2 = s2 − t2, and u = s2 + t2 for some
integers s > t > 0 of opposite parity.

Since y2 = s2 − t2, it must be the case that s is odd and t is
even: otherwise, y2 = s2 − t2 would be −1 modulo 4.

If we set t = 2k, we see (x/2)2 = sk where gcd(s, k) = 1, so
both s and k are perfect squares by the uniqueness of prime
factorizations.

Setting s = a2 and k = b2 yields the system
y2 = s2 − t2 = a4 − 4b4, so that y2 + (2b2)2 = a4.



The Fermat Equation xn + y n = zn, VI

Proof:

We have x2 = 2st, y2 = s2 − t2, and u = s2 + t2, where
t = 2k , s = a2 and k = b2.

Since y2 + (2b2)2 = a4, this means (y , 2b2, t) is also a
primitive Pythagorean triple, so there exist relatively prime
integers m and n such that 2b2 = 2mn, y = m2 − n2, and
a2 = m2 + n2.

The first equation gives b2 = mn, so m and n are both
squares: say, m = v2 and n = w2.

Then, at last, we see that a2 = v4 + w4, meaning that we
have a new solution (v ,w , a) to the original equation. Clearly
a ≤ a2 = s < s2 + t2 = u, so this solution is smaller.

This is a contradiction since we started with the smallest
solution, so there are no nontrivial solutions to x4 + y4 = u2.



The Fermat Equation xn + y n = zn, VII

We can use an approach similar to the factorization-in-Z[i ]
procedure to handle the case where n = 3.

The idea is to factor the equation x3 + y3 = z3 in the ring
Z[ρ], where ρ = (1 +

√
−3)/2 is a non-real cube root of unity.

The elements of this ring are of the form a + bρ for a, b ∈ Z,
(this is in fact a ring because p2 = −ρ− 1).

It can be shown that Z[ρ] has unique factorization (we will in
fact prove this later in the semester), so inside Z[ρ], we can
factor x3 + y3 = z3 as (x + y)(x + ρy)(x + ρ2y) = z3.

Now the idea is to show that, up to small factors, the terms
x + y , x + ρy , x + ρ2y are relatively prime in Z[ρ].

Up to these small factors, each of these terms must therefore
be a perfect cube, but this cannot actually occur. (The
precise details are rather lengthy and technical, so we will skip
them for now.)



The Fermat Equation xn + y n = zn, VIII

The argument in the n = 3 case lends itself to a natural
generalization, namely, factoring xn + yn = zn over the ring Z[ζn]
where ζn = e2πi/n is an nth root of unity.

However, quite unfortunately, for most n, the ring Z[ζn] does
not have unique factorization!

So (alas!) this technique does not work in general.

However, determining when this approach can succeed was
one of the original historical motivations for studying unique
factorization in general rings.



The Fermat Equation xn + y n = zn, X

The cases n = 5 and n = 7 were shown in the 1800s by various
mathematicians using various techniques.

A number of other cases were shown individually, and then
results of Germain and others established infinite classes of
prime n for which there are no nontrivial solutions to the
equation.

However, the lack of a solution to Fermat’s equation for every
n > 2 was not established until 1995, with Andrew Wiles’s
celebrated proof of the Taniyama-Shimura-Weil conjecture.
(Wiles announced his result in 1993, but a gap was discovered
later that year. Wiles, working with Richard Taylor, closed the
gap by 1994.)



The Fermat Equation xn + y n = zn, XI

One of the initial steps in Wiles’s proof stemmed from an
observation made by Frey in 1984, which connects the solutions to
ap + bp = cp to a certain elliptic curve.

Such a curve would have a number of unusual properties, and
(in particular) is what is called a semistable elliptic curve, and
it would also fail to be modular.

Wiles’s results proved that every semistable elliptic curve is
modular, which, when combined with Frey’s observations,
shows that the Fermat equation cannot have a solution in
nonzero integers.

Over the next few chapters, we will develop more of the
background necessary to understand this result. But we will
close by noting that, as with most major mathematical
advances, the fundamental ideas put forward in Wiles’s work
are just as important as the end result of his proof.



Summary

We discussed some more miscellaneous Diophantine equations and
some methods for solving them.

We discussed Fermat’s equation xn + yn = zn.

Next lecture: Elliptic curves and the group law.


