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Miscellaneous Diophantine Equations

Miscellaneous Diophantine Equations

This material represents §6.4 from the course notes.



Miscellaneous Diophantine Equations, I

Our goal now is to give a roundup of a bunch of miscellaneous
Diophantine equations and discuss some methods for solving them.

As I said in the first lecture, there is no general procedure for
solving an arbitrary Diophantine equation.

As such, the methods we use tend to feel a bit ad hoc, since
there are very many different things one may try to solve
these equations.

The goal is to mention most of the more standard sorts of
techniques (using modular arithmetic, descent arguments,
factorization in Z or in Z[

√
D], exploiting inequalities, etc.)

and illustrate their applications via example.



Miscellaneous Diophantine Equations, II

Example: Solve the Diophantine equation
1

x
+

1

y
=

1

2021
in

positive integers (x , y).

The idea here is to rearrange the equation and factor.

Note that x , y ≥ 2022.

Clearing denominators yields 2021y + 2021x = xy , so that
xy − 2021x − 2021y = 0.

Adding 20212 to both sides then allows us to factor this
equation as (x − 2021)(y − 2021) = 20212.

Since x , y ≥ 2022 we can then simply find the possible
factorizations of 20212 as a product of two positive integers.
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Miscellaneous Diophantine Equations, III

Example: Solve the Diophantine equation
1

x
+

1

y
=

1

2021
in

positive integers (x , y).

With (x − 2021)(y − 2021) = 20212, we can see that
20212 = 432 · 472 has 9 possible factorizations as the product
of two positive integers, 5 of which correspond to having
x ≥ y : 1 · 20212, 43 · (43 · 472), 47 · (432 · 47), 2021 · 2021.

These factorizations yield five possible pairs
(x − 2021, y − 2021) = (1, 4084441), (43, 94987),
(47, 86903), (1849, 2209), (2021, 2021).

Thus we get the solutions (x , y) = (2022, 4086462),
(2064, 97008), (2068, 88924), (3870, 4230), and (4042, 4042).
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Miscellaneous Diophantine Equations, IV

Example: Show that there are no solutions to the Diophantine
equation x2 + y2 + z2 = 4a(8b + 7).

The idea of this proof is to use modular arithmetic and
induction on a. Clearly, a ≥ 0.

For the base case a = 0, consider the equation modulo 8.

Each of the squares x2, y2, and z2 is either 0, 1, or 4 mod 8,
so it is not possible to obtain a sum of 7 mod 8 by adding
three of them.

Therefore, there are no solutions to x2 + y2 + z2 = 8b + 7.
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Miscellaneous Diophantine Equations, V

Example: Show that there are no solutions to the Diophantine
equation x2 + y2 + z2 = 4a(8b + 7).

For the inductive step, now suppose there are no solutions for
a ≤ k , and take a = k + 1.

Consider the equation x2 + y2 + z2 = 4k+1(8b + 7) modulo 4.

Each of the squares is 0 or 1, while the term 4k+1(8b + 7) is 0
mod 4, so all of the squares must be 0 mod 4.

Then (x/2)2 + (y/2)2 + (z/2)2 = 4k(8b + 7), but by the
inductive hypothesis, this equation has no solutions.

Therefore there are no solutions for a = k + 1 either, so by
induction, there are no solutions for any a.
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Miscellaneous Diophantine Equations, VI

Example: Show that there are no solutions to the Diophantine
equation x2 + y2 + z2 = 4a(8b + 7).

In fact, these are the only integers that cannot be written as a
sum of three squares, as first proven by Legendre.

Gauss gave a formula for the number of such representations,
similar to Fermat’s formula for the number of ways of writing
an integer as a sum of two squares.

We will prove this characterization of sums of three squares
(along with sums of two squares and sums of four squares)
later in the semester.
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Miscellaneous Diophantine Equations, VII

Example: Find all of the solutions to the Diophantine equation
y2 = x4 + 4x3 + x2 + 2x + 1.

The idea of this result is to attempt to complete the square of
the x-terms, and then use some simple inequalities to bound
how big x and y can be.

We complete the square of the x-terms and obtain
x4 + 4x3 + x2 + 2x + 1 =

(
x2 + 2x − 3/2

)2
+ (8x − 5/4).

If x is large then this tells us that√
x4 + 4x3 + x2 + 2x + 1 ≈ x2 + 2x − 3/2, which is between

the two integers x2 + 2x − 2 and x2 + 2x − 1.

Thus, we can bound |x | by comparing x4 + 4x3 + x2 + 2x + 1
to the squares (x2 + 2x − 2)2 and (x2 + 2x − 1)2.
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Miscellaneous Diophantine Equations, VIII

Example: Find all of the solutions to the Diophantine equation
y2 = x4 + 4x3 + x2 + 2x + 1.

First, we have y2 − (x2 + x − 2)2 = x2 + 10x − 3. This
quadratic is positive outside the interval [−10.3, 0.3].

Likewise, we also see that (x2 + x − 1)2 − y2 = x2 − 6x is
positive outside [0, 6].

Hence, if x 6∈ [−10, 6], then we have the strict inequalities
(x2 + x − 2) < y2 < (x2 + x − 1)2, which is impossible if x
and y are both integers.

Now we just have to check the 17 possible integers x , namely,
x = −10,−9, . . . , 6 to see which ones yield an integral value
of y .

This is not hard to do by hand but it’s even easier via
computer. This will show the solutions are (x , y) = (−4,±3),
(0,±1), (1,±3), and (6,±47).
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Miscellaneous Diophantine Equations, IX

A few remarks about the more general Diophantine equation
y2 = q(x) where q(x) is a polynomial with integer coefficients:

In degree 1, there are infinitely many solutions unless there is
some modular-arithmetic constraint (e.g., y2 = 4x + 3).

In even degrees, one can adapt the proof method we just used
to show that there are only finitely many solutions for any
monic polynomial q(x) ∈ Z[x ] that is not a perfect square.

Of course, if q(x) is a perfect square, then y2 = q(x) will
clearly have infinitely many solutions (any x will work!).

If q(x) is not monic, the question is more subtle, since for
example, y2 = 3x2 + 1 has infinitely many solutions, while
y2 = 3x2 − 1 has none. In general, in degree 2, any such
equation can be converted into a conic and analyzed using the
tools we have developed for Pell’s equation.



Miscellaneous Diophantine Equations, X

One can also study the more general Diophantine equation
y2 = q(x) where q(x) is a polynomial with integer coefficients.

In degree ≥ 3 there are only finitely many integral solutions:
this is a result known as Siegel’s theorem.

Even in the situation where q is monic of degree 3, the
situation is quite complicated: such equations
y2 = x3 + ax2 + bx + c yield elliptic curves, which is the topic
of our next chapter.

A much stronger result was proven by Faltings. A special case
of this result implies that if deg q ≥ 5 and q is a squarefree
polynomial, then in fact there are only finitely many rational
solutions to y2 = q(x).



Miscellaneous Diophantine Equations, XI

Example: Solve the Diophantine equation x2 + y2 = z3 for
gcd(x , y) = 1.

The idea of this proof is first to exploit the arithmetic of the
Gaussian integers Z[i ].

So suppose x , y are relatively prime. If x , y were both odd,
then we would have z3 ≡ 2 (mod 4), but 2 is not a cube
modulo 4.

Since x , y are not both even since gcd(x , y) = 1, we conclude
that one is even and the other is odd.

Now, over Z[i ], factor the equation as (x + iy)(x − iy) = z3.

We claim that x + iy and x − iy are relatively prime: any
common divisor would divide both 2x and 2y , hence divide 2.
But 1 + i (the only Gaussian prime dividing 2) does not divide
x + iy , since x , y are of opposite parity.
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Miscellaneous Diophantine Equations, XII

Example: Solve the Diophantine equation x2 + y2 = z3 for
gcd(x , y) = 1.

Thus, x + iy and x − iy are relatively prime, and their product
is a perfect cube.

By the uniqueness of prime factorization in Z[i ], we conclude
that x + iy must be a unit times a cube.

But since each unit in Z[i ] is actually a cube, we conclude
that x + iy = (a + bi)3 for some a + bi ∈ Z[i ].

Equating real and imaginary parts yields x = a3 − 3ab2,
y = 3a2b − b3, and then z = (a + bi)(a− bi) = a2 + b2.
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Miscellaneous Diophantine Equations, XIII

Example: Solve the Diophantine equation x2 + y2 = z3 for
gcd(x , y) = 1.

If x , y are not relatively prime, there are additional solutions.

To see how these arise, suppose p is an integer prime dividing
both x , y . Then p2|z3 so p|z .

Setting x = px ′, y = py ′, z = pz ′ then yields
(x ′)2 + (y ′)2 = p(z ′)2.

If we again factor over Z[i ] we see that p|(x ′ + iy ′)(x ′ − iy ′).

If p is irreducible in Z[i ], which occurs whenever p ≡ 3 (mod
4), then in fact p would have to divide one term (and thus by
conjugating it would divide the other) which by repeating the
argument would force p3|x , p3|y , and p2|z . We could then
pull out the factors of p and solve the reduced equation
(x/p3)2 + (y/p3)2 = (z/p2)3.
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Miscellaneous Diophantine Equations, XIV

Example: Solve the Diophantine equation x2 + y2 = z3 for
gcd(x , y) = 1.

However if p factors in Z[i ] as ππ, which occurs for p = 2 and
for p ≡ 1 (mod 4) we could then have x ′ + iy ′ = π · w with
x ′ − iy ′ = π · w , where now ww = z3.

These yield additional solutions upon expanding out the real
and imaginary parts.

For example, taking p = 5 = (2 + i)(2− i), so that π = 2 + i ,
yields solutions x + iy = 5(2 + i)(a + bi)3 so that (x , y) =
(10a3 − 15a2b − 30ab2 + 5b3, 5a3 + 30a2b − 15ab2 − 10b3).
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Miscellaneous Diophantine Equations, XV

Example: Show that the only solution to the Diophantine equation
y2 = x3 − 1 is (x , y) = (1, 0).

Clearly, gcd(x , y) = 1 since any common divisor would also
divide y2 − x3 = −1.

Now, rearranging the equation into the form 1 + y2 = x3 and
applying the previous result shows that 1 = a3 − 3ab2 for
a, b ∈ Z.

Factoring gives 1 = a(a2 − 3b2).

Clearly, a ∈ ±1, and then the only solution is easily seen to be
(a, b) = (1, 0), yielding (x , y) = (1, 0).
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Miscellaneous Diophantine Equations, XVI

Example: Find all solutions to the Diophantine equation
7a − 4b = 3.

The idea of this result is to use congruence conditions.

Clearly a and b must be nonnegative, since otherwise the
denominators of the rational numbers involved could not be
equal.

Clearly b = 0 does not work, while b = 1 gives a = 1.

Now suppose b ≥ 2 and consider the equation modulo 8: we
obtain 7a ≡ 3 (mod 8).

However, there are no solutions to this equation, because 7a

can only be 7 or 1 modulo 8.

Therefore, the only solution is (a, b) = (1, 1).
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Summary

We discussed some miscellaneous Diophantine equations and some
methods for solving them.

Next lecture: Miscellaneous Diophantine equations (part 2).


