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Miscellaneous Diophantine Equations
@ Miscellaneous Diophantine Equations

This material represents §6.4 from the course notes.
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Our goal now is to give a roundup of a bunch of miscellaneous
Diophantine equations and discuss some methods for solving them.

@ As | said in the first lecture, there is no general procedure for
solving an arbitrary Diophantine equation.

@ As such, the methods we use tend to feel a bit ad hoc, since
there are very many different things one may try to solve
these equations.

@ The goal is to mention most of the more standard sorts of
techniques (using modular arithmetic, descent arguments,
factorization in Z or in Z[\@] exploiting inequalities, etc.)
and illustrate their applications via example.
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Example: Solve the Diophantine equation — + — = —— in
x y 2021

positive integers (x, y).
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Example: Solve the Diophantine equation — + — = —— in
x y 2021

positive integers (x, y).
@ The idea here is to rearrange the equation and factor.
o Note that x,y > 2022.
@ Clearing denominators yields 2021y + 2021x = xy, so that
xy —2021x — 2021y = 0.
o Adding 20212 to both sides then allows us to factor this
equation as (x — 2021)(y — 2021) = 20212

@ Since x,y > 2022 we can then simply find the possible
factorizations of 20212 as a product of two positive integers.
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Example: Solve the Diophantine equation — + — = —— in
x y 2021

positive integers (x, y).
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Example: Solve the Diophantine equation — + — = —— in
x y 2021

positive integers (x, y).

e With (x —2021)(y — 2021) = 20212, we can see that
20212 = 432 . 472 has 9 possible factorizations as the product
of two positive integers, 5 of which correspond to having
x >y: 1-20212, 43 - (43 - 47%), 47 - (432 - 47), 2021 - 2021.

@ These factorizations yield five possible pairs
(x — 2021,y — 2021) = (1,4084441), (43,94987),
(47,86903), (1849, 2209), (2021, 2021).

@ Thus we get the solutions (x, y) = (2022, 4086462),
(2064,97008), (2068, 88924), (3870,4230), and (4042, 4042).
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Example: Show that there are no solutions to the Diophantine
equation x? + y? + z2 = 4%(8b + 7).
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Example: Show that there are no solutions to the Diophantine
equation x? + y? + z2 = 4%(8b + 7).
@ The idea of this proof is to use modular arithmetic and
induction on a. Clearly, a > 0.
@ For the base case a = 0, consider the equation modulo 8.

o Each of the squares x?, y2, and z2 is either 0, 1, or 4 mod 8,
so it is not possible to obtain a sum of 7 mod 8 by adding
three of them.

o Therefore, there are no solutions to x> + y? + z> = 8b+ 7.
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Example: Show that there are no solutions to the Diophantine
equation x? + y? + z% = 4%(8b + 7).
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Example: Show that there are no solutions to the Diophantine
equation x? + y? + z% = 4%(8b + 7).

For the inductive step, now suppose there are no solutions for
a <k, and take a =k + 1.

Consider the equation x? + y? + z% = 4k¥1(8b + 7) modulo 4.
Each of the squares is 0 or 1, while the term 4¥1(8b+7) is 0
mod 4, so all of the squares must be 0 mod 4.

Then (x/2)% + (y/2)% + (z/2)% = 4%(8b + 7), but by the
inductive hypothesis, this equation has no solutions.

Therefore there are no solutions for a = k + 1 either, so by
induction, there are no solutions for any a.
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Example: Show that there are no solutions to the Diophantine
equation x? + y? + z2 = 4%(8b + 7).
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Example: Show that there are no solutions to the Diophantine
equation x? + y? + z2 = 4%(8b + 7).
@ In fact, these are the only integers that cannot be written as a
sum of three squares, as first proven by Legendre.

@ Gauss gave a formula for the number of such representations,
similar to Fermat's formula for the number of ways of writing
an integer as a sum of two squares.

@ We will prove this characterization of sums of three squares
(along with sums of two squares and sums of four squares)
later in the semester.
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Example: Find all of the solutions to the Diophantine equation
y2=x*+4x3 + x>+ 2x + 1.
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Example: Find all of the solutions to the Diophantine equation
y2=x*+4x3 + x>+ 2x + 1.
@ The idea of this result is to attempt to complete the square of
the x-terms, and then use some simple inequalities to bound
how big x and y can be.

@ We complete the square of the x-terms and obtain
XP A3 X2+ 2x+ 1= (x4 2x — 3/2)2 + (8x —5/4).

o If x is large then this tells us that
VX% 4+ 4x3 + x2 + 2x + 1 = x2 + 2x — 3/2, which is between
the two integers x? 4+ 2x — 2 and x% + 2x — 1.

@ Thus, we can bound |x| by comparing x* + 4x3 + x? + 2x + 1
to the squares (x2 + 2x — 2)2 and (x? + 2x — 1)2.
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Example: Find all of the solutions to the Diophantine equation
y2=x*+4x3 + x>+ 2x + 1.
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Example: Find all of the solutions to the Diophantine equation
y2=x*+4x3 + x>+ 2x + 1.

o First, we have y2 — (x? + x — 2)2 = x2 + 10x — 3. This
quadratic is positive outside the interval [-10.3,0.3].

o Likewise, we also see that (x2 + x — 1) — y? = x? — 6x is
positive outside [0, 6].

@ Hence, if x € [-10, 6], then we have the strict inequalities
(x? +x —2) < y? < (x® + x — 1)?, which is impossible if x
and y are both integers.

@ Now we just have to check the 17 possible integers x, namely,
x = —10,—-9,...,6 to see which ones yield an integral value
of y.

@ This is not hard to do by hand but it's even easier via
computer. This will show the solutions are (x,y) = (—4,£3),
(0,£1), (1,£3), and (6, +47).
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A few remarks about the more general Diophantine equation
y? = q(x) where g(x) is a polynomial with integer coefficients:

@ In degree 1, there are infinitely many solutions unless there is
some modular-arithmetic constraint (e.g., y? = 4x + 3).

@ In even degrees, one can adapt the proof method we just used
to show that there are only finitely many solutions for any
monic polynomial g(x) € Z[x] that is not a perfect square.

o Of course, if g(x) is a perfect square, then y? = g(x) will
clearly have infinitely many solutions (any x will work!).

e If g(x) is not monic, the question is more subtle, since for
example, y?> = 3x? + 1 has infinitely many solutions, while
y? = 3x? — 1 has none. In general, in degree 2, any such
equation can be converted into a conic and analyzed using the
tools we have developed for Pell's equation.
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One can also study the more general Diophantine equation
y? = q(x) where g(x) is a polynomial with integer coefficients.

@ In degree > 3 there are only finitely many integral solutions:
this is a result known as Siegel's theorem.

@ Even in the situation where g is monic of degree 3, the
situation is quite complicated: such equations

2 _ 3 2 . . . . . .
y© = x>+ ax“ + bx + c yield elliptic curves, which is the topic
of our next chapter.

@ A much stronger result was proven by Faltings. A special case
of this result implies that if deg g > 5 and q is a squarefree
polynomial, then in fact there are only finitely many rational
solutions to y? = q(x).
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Example: Solve the Diophantine equation x? + y? = z3 for
ged(x,y) = 1.
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Example: Solve the Diophantine equation x? + y? = z3 for
ged(x,y) = 1.

The idea of this proof is first to exploit the arithmetic of the
Gaussian integers Z[i].

So suppose x, y are relatively prime. If x, y were both odd,
then we would have z3 = 2 (mod 4), but 2 is not a cube
modulo 4.

Since x, y are not both even since gcd(x, y) = 1, we conclude
that one is even and the other is odd.

Now, over Z[i], factor the equation as (x + iy)(x — iy) = 23

We claim that x + iy and x — iy are relatively prime: any
common divisor would divide both 2x and 2y, hence divide 2.
But 1+ i (the only Gaussian prime dividing 2) does not divide
X + iy, since x, y are of opposite parity.
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Example: Solve the Diophantine equation x? + y? = z3 for
ged(x,y) = 1.
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Example: Solve the Diophantine equation x? + y? = z3 for
ged(x,y) = 1.
@ Thus, x+ iy and x — iy are relatively prime, and their product
is a perfect cube.

@ By the uniqueness of prime factorization in Z[i], we conclude
that x + iy must be a unit times a cube.

@ But since each unit in Z[i] is actually a cube, we conclude
that x + iy = (a + bi)3 for some a + bi € Z[i].

o Equating real and imaginary parts yields x = a® — 3ab?,
y =3a’b— b3, and then z = (a+ bi)(a — bi) = 2> + b°.
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Example: Solve the Diophantine equation x? + y? = z3 for
ged(x,y) = 1.
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Example: Solve the Diophantine equation x? + y? = z3 for
ged(x,y) = 1.
o If x,y are not relatively prime, there are additional solutions.
@ To see how these arise, suppose p is an integer prime dividing
both x,y. Then p?|z3 so p|z.
@ Setting x = px’, y = py’, z = pZ’ then yields
(xX')?+ (v')? = p()*.
o If we again factor over Z[i] we see that p|(x’ + iy")(x" — iy’).
o If pis irreducible in Z[i], which occurs whenever p = 3 (mod
4), then in fact p would have to divide one term (and thus by
conjugating it would divide the other) which by repeating the
argument would force p3|x, p3|y, and p?|z. We could then
pull out the factors of p and solve the reduced equation

(x/P*)? + (y/p?)* = (z/P?)*.
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Example: Solve the Diophantine equation x? + y? = z3 for
ged(x,y) = 1.
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Example: Solve the Diophantine equation x? + y? = z3 for
ged(x,y) = 1.
@ However if p factors in Z[i] as 77, which occurs for p = 2 and
for p=1 (mod 4) we could then have x' 4+ iy’ = 7 - w with
x' — iy’ =7 - W, where now ww = z5.
@ These yield additional solutions upon expanding out the real
and imaginary parts.
o For example, taking p =5 = (2+i)(2 — i), so that m = 24/,
yields solutions x + iy = 5(2 + i)(a + bi)3 so that (x,y) =
(102 — 15a2%b — 30ab? + 5b3,5a% + 30a%b — 15ab% — 10b).
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Example: Show that the only solution to the Diophantine equation
y2=x3—1is (x,y) = (1,0).
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Example: Show that the only solution to the Diophantine equation
y2=x3—1is (x,y) = (1,0).

Clearly, gcd(x y) = 1 since any common divisor would also
divide y? — x3 = —1.

Now, rearranging the equation into the form 1 + y? = x3 and
applying the previous result shows that 1 = a3 — 3ab? for
a,beZ.

Factoring gives 1 = a(a® — 3b?).

Clearly, a € 41, and then the only solution is easily seen to be
(a,b) = (1,0), yielding (x,y) = (1,0).
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Example: Find all solutions to the Diophantine equation
77 —4b =3



Miscellaneous Diophantine Equations, XVI

Example: Find all solutions to the Diophantine equation

77—

40 =3,
The idea of this result is to use congruence conditions.

Clearly a and b must be nonnegative, since otherwise the
denominators of the rational numbers involved could not be
equal.

Clearly b = 0 does not work, while b =1 gives a = 1.

Now suppose b > 2 and consider the equation modulo 8: we
obtain 72 = 3 (mod 8).

However, there are no solutions to this equation, because 72
can only be 7 or 1 modulo 8.

Therefore, the only solution is (a, b) = (1,1).



Summary

We discussed some miscellaneous Diophantine equations and some
methods for solving them.

Next lecture: Miscellaneous Diophantine equations (part 2).



