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Pell’s Equation (Part 3): The Super Magic Box

The Super Magic Box

Factoring Via Continued Fractions

This material represents §6.3.3 from the course notes.



The Super Magic Box, I

Theorem (Pell’s Equation, Part 1)

Let D be a positive squarefree integer. Then the following hold:

1. Let r be an integer with r2 < D. If x and y are positive
integers with x2 − Dy2 = r , then x/y is a continued fraction
convergent to

√
D.

2. The equation x2 − Dy2 = 1 always has a nontrivial integer
solution.

3. The ring Z[
√

D] has a well-defined fundamental unit
u = x1 + y1

√
D. Furthermore, if w is an arbitrary unit in

Z[
√

D], then w = ±un for some integer n (possibly negative).

4. If u = x1 + y1
√

D is the fundamental unit in Z[
√

D], then if
we define xn + yn

√
D = (x1 + y1

√
D)n for nonnegative integers

n, then (xn, yn) is a solution to x2 − Dy2 = ±1, and these are
all of the solutions up to changing the signs of xn or yn.



The Super Magic Box, II

Theorem (Pell’s Equation, Part 2)

Let D > 0 be squarefree, with
√

D = [a0, . . . , an, αn+1], and take
pn/qn = [a0, a1, . . . , an] to be the nth convergent. Define the
sequences An and Cn by setting A0 = 0 and C0 = 1, and for n ≥ 1
set An+1 = anCn − An and Cn+1 = (D − A2

n+1)/Cn.

5. The continued fraction expansion of
√

D is periodic and of
the form [a0, a1, a2, · · · , ak−1, 2a0] with a0 = b

√
Dc.

6. The sequences An and Cn are integer-valued,
αn = (An +

√
D)/Cn, pnpn−1 − Dqnqn−1 = (−1)nAn+1,

and p2
n − Dq2

n = (−1)n+1Cn+1.

7. With notation as in (5), the fundamental unit of Z[
√

D] is
pk−1 + qk−1

√
D. Its norm is −1 when k is odd and its norm

is +1 when k is even.



The Super Magic Box, III

Last time I proved items (1)-(5). Today I will go through the
morass of algebra for (6) and then finish off (7).

The purpose here is to go through the algebra that justifies
how the super magic box works, so that we can then do a
bunch of examples of the magic box calculations.

Just to emphasize, the purpose of all of this is to give a
computationally efficient procedure for computing the
continued fraction expansion of

√
D by simplifying the

calculations that are required. (It is sort of like converting
polynomial long division into synthetic division.)



The Super Magic Box, IV

6a. Define An and Cn via A0 = 0 and C0 = 1, and for n ≥ 1 set
An+1 = anCn − An and Cn+1 = (D − A2

n+1)/Cn.
Then An and Cn are integer-valued.

Proof:

We induct on n. The base case n = 0 is trivial.

For the inductive step, clearly An+1 is an integer.

For Cn+1, plugging in for An+1 and expanding yields

Cn+1 =
D − (anCn − An)2

Cn
= (2anAn − a2nCn) +

D − A2
n

Cn
and

the fraction at the end is simply Cn−1.

Thus An+1 and Cn+1 are integers.

Note that we also have shown that Cn+1 = 2anAn − a2nCn + Cn−1.
We will use this later.



The Super Magic Box, V

6b. Define An and Cn via A0 = 0 and C0 = 1, and for n ≥ 1 set
An+1 = anCn − An and Cn+1 = (D − A2

n+1)/Cn.

Then αn = (An +
√

D)/Cn.

Proof:

We induct on n. The base case n = 0 is α0 =
√

D =
0 +
√

D

1
.

For the inductive step, suppose αn =
An +

√
D

Cn
.

Then αn+1 =
1

αn − an
=

Cn

−An+1 +
√

D
=

An+1 +
√

D

(D − A2
n+1)/Cn

=

An+1 +
√

D

Cn+1
as claimed.



The Super Magic Box, VI

6cd. Define An and Cn via A0 = 0 and C0 = 1, and for n ≥ 1 set
An+1 = anCn − An and Cn+1 = (D − A2

n+1)/Cn.
Then pnpn−1 − Dqnqn−1 = (−1)nAn+1 and
p2
n − Dq2

n = (−1)n+1Cn+1.

Proof:

We induct on n. The base cases n = 0 and n = 1 are
straightforward calculations.

For the inductive step, suppose that
pnpn−1 − Dqnqn−1 = (−1)nAn+1, p2

n − Dq2
n = (−1)n+1Cn+1.

Recall that pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1.



The Super Magic Box, VII

6c. Define An and Cn via A0 = 0 and C0 = 1, and for n ≥ 1 set
An+1 = anCn − An and Cn+1 = (D − A2

n+1)/Cn.
Then pnpn−1 − Dqnqn−1 = (−1)nAn+1 and
p2
n − Dq2

n = (−1)n+1Cn+1.

Proof (continued):

We have pnpn−1 − Dqnqn−1 = (−1)nAn+1,
p2
n − Dq2

n = (−1)n+1Cn+1, pn+1 = an+1pn + pn−1 and
qn+1 = an+1qn + qn−1. Then

pn+1pn − Dqn+1qn = (an+1pn + pn−1)pn − D(an+1qn + qn−1)(qn)

= an+1(p2
n − Dq2

n) + (pnpn−1 − Dqnqn−1)

= an+1(−1)n+1Cn+1 + (−1)nAn+1

= (−1)n+1An+2



The Super Magic Box, VIII

6d. Define An and Cn via A0 = 0 and C0 = 1, and for n ≥ 1 set
An+1 = anCn − An and Cn+1 = (D − A2

n+1)/Cn.
Then pnpn−1 − Dqnqn−1 = (−1)nAn+1 and
p2
n − Dq2

n = (−1)n+1Cn+1.

Proof (continued):

We have pnpn−1 − Dqnqn−1 = (−1)nAn+1,
p2
n − Dq2

n = (−1)n+1Cn+1, Cn+1 = 2anAn − a2nCn + Cn−1,
pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1. Then

p2
n+1 − Dq2

n+1 = (an+1pn + pn−1)2 − D(an+1qn + qn−1)2

= a2n+1(p2
n−Dq2

n)+2an+1(pnpn−1−Dqnqn−1)+(p2
n−1−Dq2

n−1)

= a2n+1(−1)n+1Cn+1 + 2an+1(−1)nAn+1 + (−1)nCn

= (−1)n+1[a2n+1Cn+1 − 2an+1An+1 − Cn]

= (−1)n+2Cn+2



The Super Magic Box, IX

7. If
√

D = [a0, a1, a2, . . . , ak−1, 2a0] and
pk−1/qk−1 = [a0, a1, . . . , ak−1], then the fundamental unit of
Z[
√

D] is pk−1 + qk−1
√

D. Its norm is −1 when k is odd and
its norm is +1 when k is even.

Proof:

Suppose that
√

D = [a0, a1, a2, . . . , ak−1, 2a0].

Then since the expansion is periodic, we have
a0 +

√
D = [2a0, a1, . . . , ak−1, a0 +

√
D], so αk+1 =

√
D − a0.

By (6b), this means
Ak +

√
D

Ck
= −a0 +

√
D, and so since

√
D is irrational the only way this can occur is when Ck = 1.

Then by (6d), p2
k−1 − Dq2

k−1 = (−1)kCk = (−1)k . Thus,

pk−1 + qk−1
√

D is a unit in Z[
√

D] and its norm is (−1)k .



The Super Magic Box, X

7. If
√

D = [a0, a1, a2, · · · , ak−1, 2a0] and
pk−1/qk−1 = [a0, a1, . . . , ak−1], then the fundamental unit of
Z[
√

D] is pk−1 + qk−1
√

D. Its norm is +1 when r is even and
its norm is −1 when r is odd.

Proof (continued):

Conversely, suppose that pn + qn

√
D is a unit in Z[

√
D] so

that p2
n − Dq2

n = ±1.

By (1), pn/qn is a convergent to
√

D.

Then by (6), we have p2
n − Dq2

n = (−1)n+1Cn+1 and so we
must have Cn+1 = 1 and (−1)n+1 equal to the norm of
pn + qn

√
D.



Pell’s Equation Continued, XVIII

7. If
√

D = [a0, a1, a2, · · · , ak−1, 2a0] and
pk−1/qk−1 = [a0, a1, . . . , ak−1], then the fundamental unit of
Z[
√

D] is pk−1 + qk−1
√

D. Its norm is +1 when r is even and
its norm is −1 when r is odd.

Proof (finally):

But if Cn+1 = 1, since all remainders are between 0 and 1, we
must have αn+1 =

√
D − b

√
Dc = α0. By periodicity, the

only way this can occur is if n + 1 is a multiple of k .

The fundamental unit corresponds to the smallest possible
value of n, which (per the calculation above) is n = k − 1.

Thus, the fundamental unit of Z[
√

D] is indeed
pk−1 + qk−1

√
D as claimed, and its norm is (−1)k as

calculated earlier.



Pell’s Equation Continued Fractions, XXIV

We have reduced the seemingly quite difficult problem of solving
Pell’s equation x2 − Dy2 = ±1 to the very approachable problem
of computing the continued fraction expansion of

√
D.

We can organize these calculations quite a bit more efficiently
using the sequences An and Cn from (6).

The point is that these sequences automatically encode the
remainder term, because αn = (An +

√
D)/Cn.

Thus, what we can do is just compute these sequences An and
Cn recursively: starting with A0 = 0 and C0 = 1, for n ≥ 1 we
set An+1 = anCn − An and Cn+1 = (D − A2

n+1)/Cn.

Furthermore, we have an = bαnc = b(An +
√

D)/Cnc.
Once we have the terms an from the continued fraction
expansion, we can then compute the convergent terms pn and
qn using the magic box procedure from a few lectures ago.



The Super Magic Box, XI

If we combine all of these things, we get the “super magic box”:

The rows in the table are An, Cn, an, pn, qn, and p2
n − Dq2

n.

We compute the sequences an, An, Cn via the recurrences
An+1 = anCn − An,
Cn+1 = (D − A2

n+1)/Cn,
an+1 = b(An+1 + a0)/Cn+1c
with initial conditions A0 = 0, C0 = 1, and a0 = b

√
Dc.

Once we reach a term with Ck = 1 we stop, since we will have
finished computing the full continued fraction expansion in the
previous step.

We can then evaluate the convergents pn/qn via
pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2
with initial conditions p−1 = 1, p0 = a0, q−1 = 0, q0 = 1.



The Super Magic Box, XII

Example: Find the fundamental unit in Z[
√

14] using the super
magic box.

Here is the start of the super magic box calculation:

n −1 0 1 2 3 4

An = an−1Cn−1 − An−1 0

Cn = (D − A2
n)/Cn−1 1

an = b(An + a0)/Cnc 3

pn = anpn−1 + pn−2 1 3

qn = anqn−1 + qn−2 0 1

p2
n − 14q2

n −5



The Super Magic Box, XIII

Example: Find the fundamental unit in Z[
√

14] using the super
magic box.

Here is the completed super magic box:

n −1 0 1 2 3 4

An = an−1Cn−1 − An−1 0 3 2 2 3

Cn = (D − A2
n)/Cn−1 1 5 2 5 1

an = b(An + a0)/Cnc 3 1 2 1 6

pn = anpn−1 + pn−2 1 3 4 11 15 101

qn = anqn−1 + qn−2 0 1 1 3 4 27

p2
n − 14q2

n −5 2 −5 1 −5

Thus,
√

14 = [3, 1, 2, 1, 6] and the fundamental unit in
Z[
√

14] is 15 + 4
√

14 with norm 1.



The Super Magic Box, XIV

Example: Find the smallest nontrivial solution to the Pell equation
x2 − 29y2 = 1.

Here is the super magic box calculation for D = 29:
n −1 0 1 2 3 4 5

An = an−1Cn−1 − An−1 0 5 3 2 3 5

Cn = (D − A2
n)/Cn−1 1 4 5 5 4 1

an = b(An + a0)/Cnc 5 2 1 1 2 10

pn = anpn−1 + pn−2 1 5 11 16 27 70

qn = anqn−1 + qn−2 0 1 2 3 5 13

p2
n − 29q2

n −4 5 −5 −4 −1

From this calculation we can see that the fundamental unit of
Z[
√

29] is 70 + 13
√

29 and it has norm −1.



The Super Magic Box, XIV

Example: Find the smallest nontrivial solution to the Pell equation
x2 − 29y2 = 1.

Here is the super magic box calculation for D = 29:
n −1 0 1 2 3 4 5

An = an−1Cn−1 − An−1 0 5 3 2 3 5

Cn = (D − A2
n)/Cn−1 1 4 5 5 4 1

an = b(An + a0)/Cnc 5 2 1 1 2 10

pn = anpn−1 + pn−2 1 5 11 16 27 70

qn = anqn−1 + qn−2 0 1 2 3 5 13

p2
n − 29q2

n −4 5 −5 −4 −1

From this calculation we can see that the fundamental unit of
Z[
√

29] is 70 + 13
√

29 and it has norm −1.



The Super Magic Box, XV

Example: Find the smallest nontrivial solution to the Pell equation
x2 − 29y2 = 1.

Since the fundamental unit 70 + 13
√

29 has norm −1, the
smallest nontrivial solution is given by its square.

We compute (70 + 13
√

29)2 = 9801 + 1820
√

29, yielding the
solution (x , y) = (9801, 1820).

Notice that the super magic box calculation is quite short and
easy to do by hand, quite unlike a brute-force search for
solutions to x2 − 29y2 = 1!



The Super Magic Box, XV

Example: Find the smallest nontrivial solution to the Pell equation
x2 − 29y2 = 1.

Since the fundamental unit 70 + 13
√

29 has norm −1, the
smallest nontrivial solution is given by its square.

We compute (70 + 13
√

29)2 = 9801 + 1820
√

29, yielding the
solution (x , y) = (9801, 1820).

Notice that the super magic box calculation is quite short and
easy to do by hand, quite unlike a brute-force search for
solutions to x2 − 29y2 = 1!



The Super Magic Box, XVI

Example (Audience Participation): Pick an integer D with
15 ≤ D ≤ 99 that is not contained in the set {19, 22, 61} and
compute the fundamental unit in Z[

√
D] using the magic box.

n −1 0 1 2 3 4 5 6 7 8

An = an−1Cn−1 − An−1 0
Cn = (D − A2

n)/Cn−1 1
an = b(An + a0)/Cnc
pn = anpn−1 + pn−2 1
qn = anqn−1 + qn−2 0 1

p2
n − Dq2

n



The Super Magic Box, XVI

Example (Audience Participation): Pick an integer D with
15 ≤ D ≤ 99 that is not contained in the set {19, 22, 61} and
compute the fundamental unit in Z[

√
D] using the magic box.

n −1 0 1 2 3 4 5 6 7 8

An = an−1Cn−1 − An−1 0
Cn = (D − A2

n)/Cn−1 1
an = b(An + a0)/Cnc
pn = anpn−1 + pn−2 1
qn = anqn−1 + qn−2 0 1

p2
n − Dq2

n



Continued Fraction Factorization, I

As it turns out, we can use the ideas from the super magic box
algorithm to give an integer factorization algorithm, as first
proposed by Lehmer and Powers in 1931. So suppose that D is
some large composite integer.

The idea, as with other factorization algorithms such as the
quadratic sieve, is to find a solution to the congruence
x2 ≡ y2 (mod D) where x 6≡ y (mod D).

The claim then is that we can find a factorization of D by
computing gcd(x + y ,D).

Note that we can calculate this gcd very efficiently via the
Euclidean algorithm (it runs in linear time in its input size), so
if we can find a solution to the congruence, we can rapidly
find the factorization.



Continued Fraction Factorization, II

More precisely we have the following:

Lemma (Sieve Factoring Lemma)

Suppose that x2 ≡ y2 (mod D) where x 6≡ ±y (mod D). Then
1<gcd(x + y ,D)<D, so gcd(x + y ,D) is a nontrivial factor of D.

Proof:

By hypothesis, (x + y)(x − y) is divisible by D.

But the gcd of x + y and D cannot be 1, since then
necessarily D would divide x − y .

The gcd also cannot be D, since then necessarily D would
divide x + y .

This means 1 < gcd(x + y ,D) < D, and so gcd(x + y ,D) is a
nontrivial common divisor of n.



Continued Fraction Factorization, III

We can use the continued fraction convergents in the super magic
box algorithm to try to find a solution to x2 ≡ y2 (mod D).

The idea is that, as we have shown, p2
n−Dq2

n = (−1)n+1Cn+1,
and so modulo D we see p2

n ≡ (−1)n+1Cn+1 (mod D).

So, if we are able to find a convergent such that n is odd and
Cn+1 is a perfect square, we will obtain a congruence of the
form p2

n ≡ k2 (mod D).

By our factorization lemma, this will give us a factorization of
D as long as pn 6≡ ±k (mod D).



Continued Fraction Factorization, IV

Example: Use the super magic box to factor D = 1271.

Here is the super magic box calculation for D = 1271:

n −1 0 1 2 3 4 5 · · ·
An = an−1Cn−1 − An−1 0 35 11 14 29 31 · · ·
Cn = (D − A2

n)/Cn−1 1 46 25 43 10 31 · · ·
an = b(An + a0)/Cnc 35 1 1 1 6 2 · · ·
pn = anpn−1 + pn−2 1 35 36 71 107 713 1533 · · ·
qn = anqn−1 + qn−2 0 1 1 2 3 20 43 · · ·

p2
n − 1271q2

n −46 25 −43 10 −31 31 · · ·
Note C2 = 25 is a perfect square. Therefore, p2

1 = 362 will be
congruent to Cn modulo D, so we see 362 ≡ 52 (mod 1271).

We can easily compute gcd(36 + 5, 1271) = 41, and so we
obtain the factorization 1271 = 41 · 31.



Continued Fraction Factorization, V

Of course, this method requires some amount of luck to find a
factorization quickly, since there is no guarantee that we will find a
term with (−1)n+1Cn+1 a perfect square early in the calculation.

However, all we really need are two terms whose squares are
congruent modulo D. Since |Cn+1| <

√
D, this means if we

compute 2
√

D terms of the continued fraction expansion, we
will be guaranteed to find two values of (−1)n+1Cn+1 that are
congruent modulo D, and thus we will obtain two convergents
whose numerators satisfy p2

m ≡ p2
n (mod D).

That is not very efficient by itself, since trial division would
only take

√
D steps. And it might happen that the

numerators of these terms have pm ≡ ±pn (mod D), in which
case we will need to search for other tuples until we find a pair
such that pm 6≡ ±pn (mod D).



Continued Fraction Factorization, VI

However, if we combine these ideas with those of the quadratic
sieve, we can improve the speed of this procedure.

Instead of trying to find a single value of a for which a2

modulo n is a square, we instead compute a number of
different values of a such that a2 modulo n has all of its prime
divisors in a small fixed set.

Then, by taking products of some of these values, one can
obtain a congruence of the form a2 ≡ b2 (mod n) with
a 6= ±b (mod n).

For example, modulo 2077, if we search for powers that have
small prime divisors we will find 462 ≡ 31131 and
592 ≡ 2233131. Multiplying them yields the equality
(46 · 59)2 ≡ (2132131)2, which is the same as 6372 ≡ 2342.

Then gcd(637− 234, 2077) = 31, giving a divisor of 2077.



Continued Fraction Factorization, VII

In general, this kind of search requires (i) finding many squares
whose factorizations only involve small primes, and then (ii) finding
a product of such factorizations that has a square value.

Goal (i) we can achieve using convergents arising from the
magic box, because we know that all of the values of Cn will
have |Cn| < 2

√
D + 1: these are “small” relative to the

modulus D, and are likely to have nice factorizations more
often than larger values.

Goal (ii) can be done efficiently with linear algebra: the idea is
to find a nonzero linear dependence between the vectors of
prime-factorization exponents, considered modulo 2.



Continued Fraction Factorization, VIII

For example, suppose we wanted to find a set of elements among
6, 10, 30, 150 whose product is a perfect square.

We first find the prime factorizations 6 = 213150,
10 = 213051, 30 = 213151, 150 = 213152.

Then we take the four vectors of exponents 〈1, 1, 0〉, 〈1, 0, 1〉,
〈1, 1, 1〉, 〈1, 1, 2〉 and search for a linear combination of these
vectors whose entries are all even.

In this case, we can see that 〈1, 1, 0〉+ 〈1, 1, 2〉 = 〈2, 2, 2〉,
corresponding to the product 6 · 150 = 900 = 302.

There are simple linear-algebra procedures for finding such a
linear combination by row-reducing an appropriate matrix
(which is quite computationally efficient, especially because
we are only working with entries in binary).



Continued Fraction Factorization, IX

If we tune all of the computations suitably well, one may show that
the resulting sieving algorithm will find a factorization of D in

approximately e
√
2 ln n ln ln n time.

This is quite a lot faster, asymptotically, than trial division
(which takes roughly

√
D time) or other algorithms like

Pollard’s ρ-algorithm (which heuristically takes D1/4 time).

There is an improvement on the quadratic sieve called the
general number field sieve, which runs in roughly
e1.95(ln n)

1/3(ln ln n)2/3 time.

The principle of the general number field sieve is similar to the
quadratic sieve, but instead of working in Q it works in more
general number fields like Q(

√
2) = {a + b

√
2 : a, b ∈ Q}.



Summary

We finished our proofs about the solutions to Pell’s equations.

We described the super magic box algorithm and used it to
compute fundamental solutions for various D.

We discussed an integer factorization algorithm arising from the
super magic box.

Next lecture: Miscellaneous Diophantine equations (part 1).


