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Lecture #8 of 38 ∼ February 4, 2021

Pell’s Equation (Part 2)

Pell’s Equation and Rational Approximation

Proofs of Some Results

Computing Solutions to Pell’s Equation

This material represents §6.3.1-6.3.2 from the course notes.



Pell’s, I

We continue our study of Pell’s equation x2 − Dy2 = r .

We can recast much of our discussion in terms of the norm
map on Z[

√
D] = {a + b

√
D : a, b ∈ Z}, defined as via

N(a + b
√

D) = a2 − Db2.

The norm map is always integer-valued and is also
multiplicative.

As we observed, solving x2 − Dy2 = r is equivalent to solving
N(x + y

√
D) = r .

We also pointed out last time that an element α = a + b
√

D
is a unit in Z[

√
D] if and only its norm N(α) = a2 − Db2 is 1

or −1.



Pell’s E, II

As we will show, Z[
√

D] always has a “smallest” nontrivial unit:

Definition

For a fixed positive squarefree D, a fundamental solution (x1, y1)
to Pell’s equation is a pair (x1, y1) of positive integers such that
x2
1 − Dy2

1 = ±1 and x1 + y1
√

D is minimal.

The fundamental unit of Z[
√

D] is u = x1 + y1
√

D.



Pell’s Eq, III

Examples: By searching for solutions to x2 − Dy2 = ±1 we can
generate fundamental units for various small nonsquare D:

D 2 3 5 6 7

Fund. Unit 1 +
√

2 2 +
√

3 2 +
√

5 5 + 2
√

6 8 + 3
√

7

Norm −1 1 −1 1 1

D 8 10 11 12 13

Fund. Unit 3 +
√

8 3 +
√

10 10 + 3
√

11 7 + 2
√

12 18 + 5
√

13

Norm 1 −1 1 1 −1

D 14 15 17 18 19

Fund. Unit 15 + 4
√

14 4 +
√

15 4 +
√

17 17 + 4
√

18 HW #3

Norm 1 1 −1 1 HW #3



Pell’s Equ, IV

One of the other key ideas for solving Pell’s equation is the
observation that if x2 − Dy2 is small and x , y are positive, then
x/y is a good approximation to

√
D.

To illustrate, suppose we have a solution of x2 − Dy2 = 1.

Dividing by y2 yields (x/y)2 − D = 1/y2, and now solving for
x/y gives x/y =

√
D + 1/y2 =

√
D ·
√

1 + 1/(Dy2) ≈√
D · (1 + 1/(2Dy2)) =

√
D + 1/(2y2

√
D) using the

linearization
√

1 + z ≈ 1 + z/2.

In fact, the linearization is an overestimate since
(1 + z/2)2 = 1 + z + z2/4 > 1 + z .

Thus, we obtain the inequality

∣∣∣∣xy −√D

∣∣∣∣ < 1

2y2
√

D
.



Pell’s Equa, II

The point is that if x2 − Dy2 = 1, then x/y is a good

approximation to
√

D:

∣∣∣∣xy −√D

∣∣∣∣ < 1

2y2
√

D
.

In fact, the approximation is extremely good. From our results
on continued fractions and rational approximation, we know
that if α is irrational and p/q has the property that
|α− p/q| < 1/(2q2), then in fact p/q is a continued fraction
convergent to α.

So, since
√

D > 1, this means any solution to x2 − Dy2 = 1
must arise as a continued fraction convergent to

√
D.



Pell’s Equat, III

We can see quite explicitly that the solutions to x2 − 2y2 = 1 arise
from continued fraction convergents to√

2 = [1, 2] = [1, 2, 2, 2, . . . ].

The first few convergents are 1/1, 3/2, 7/5, 17/12, 41/29,
99/70, ... , which (as ordered pairs) have x2 − 2y2

respectively equal to −1, 1, −1, 1, −1, 1, ....

These convergents are precisely the solutions to
x2 − 2y2 = ±1 we identified earlier.

We remark also that the period of the continued fraction
expansion here is equal to 1 and the fundamental unit
corresponds to the convergent [1].



Pell’s Equati, V

Let’s try it out for D = 3.

Here, we have
√

3 = [1, 1, 2] = [1, 1, 2, 1, 2, . . . ] with
convergents 1/1, 2/1, 5/3, 7/4, 19/11, 26/15, 71/41, ... .

As ordered pairs, these convergents have x2 − 3y2 respectively
equal to −2, 1, −2, 1, −2, 1, ....

Here, we can see that we do not obtain any solutions to
x2 − 3y2 = −1 (since in fact there are none as we proved
earlier) but we do obtain solutions to x2 − 3y2 = −2 and
x2 − 3y2 = 1.

The period of the continued fraction expansion here is equal
to 2, while the fundamental unit corresponds to the
convergent [1, 2].



Pell’s Equatio, VI

Let’s try D = 7.

Here, we have
√

7 = [2, 1, 1, 1, 4] = [2, 1, 1, 1, 4, 1, 1, 1, 4, . . . ]
with convergents 2/1, 3/1, 5/2, 8/3, 37/14, 45/17, 82/31,
127/48, 590/223, ....

As ordered pairs, these convergents have x2 − 7y2 respectively
equal to −3, 2, −3, 1, −3, 2, −3, 1, −3, ....

Here again we obtain no solutions to x2 − 3y2 = −1 but we
do obtain solutions to x2 − 3y2 = −3, x2 − 3y2 = 2, and
x2 − 3y2 = 1.

The period of the continued fraction expansion here is equal
to 4, while the fundamental unit corresponds to the
convergent [2, 1, 1, 1].



Pell’s Equation, VII

Let’s try one more: D = 13.

Here,
√

13 = [3, 1, 1, 1, 6] = [3, 1, 1, 1, 1, 6, . . . ] with
convergents 3/1, 4/1, 7/2, 11/3, 18/5, 119/33, 137/38,
256/71, 393/109, 649/180, ... .

As ordered pairs, these convergents have x2 − 13y2

respectively equal to −4, 3, −3, 4, −1, 4, −3, 3, −4, 1, ....

Here we obtain solutions to x2 − 13y2 = r for
r = −4,−3,−1, 1, 3, 4.

The period of the continued fraction expansion here is equal
to 4, while the fundamental unit corresponds to the
convergent [3, 1, 1, 1, 1].

It appears that the fundamental unit is obtained after one period
of the continued fraction expansion, regardless of whether it has
norm 1 or −1. Let’s prove this!



Pell’s Equation C, VIII

Theorem (Pell’s Equation, Part 1)

Let D be a positive squarefree integer. Then the following hold:

1. Let r be an integer with r2 < D. If x and y are positive
integers with x2 − Dy2 = r , then x/y is a continued fraction
convergent to

√
D.

2. x2 − Dy2 = 1 always has a nontrivial integer solution.

3. The ring Z[
√

D] has a well-defined fundamental unit
u = x1 + y1

√
D. Furthermore, if w is an arbitrary unit in

Z[
√

D], then w = ±un for some integer n (possibly negative).

4. If u = x1 + y1
√

D is the fundamental unit in Z[
√

D], then if
we define xn + yn

√
D = (x1 + y1

√
D)n for nonnegative integers

n, then (xn, yn) is a solution to x2 − Dy2 = ±1, and these are
all of the solutions up to changing the signs of xn or yn.



Pell’s Equation Co, IX

Theorem (Pell’s Equation, Part 2)

Let D > 0 be squarefree, with
√

D = [a0, . . . , an, αn+1], and take
pn/qn = [a0, a1, . . . , an] to be the nth convergent. Define the
sequences An and Cn by setting A0 = 0 and C0 = 1, and for n ≥ 1
set An+1 = anCn − An and Cn+1 = (D − A2

n+1)/Cn.

5. The continued fraction expansion of
√

D is periodic and of
the form [a0, a1, a2, · · · , ak−1, 2a0] with a0 = b

√
Dc.

6. The sequences An and Cn are integer-valued,
αn = (An +

√
D)/Cn, pnpn−1 − Dqnqn−1 = (−1)nAn+1,

and p2
n − Dq2

n = (−1)n+1Cn+1.

7. With notation as in (5), the fundamental unit of Z[
√

D] is
pk−1 + qk−1

√
D. Its norm is −1 when k is odd and its norm

is +1 when k is even.



Pell’s Equation Con, X

1. Let r be an integer with r2 < D. If x and y are positive
integers with x2 − Dy2 = r , then x/y is a continued fraction
convergent to

√
D.

Proof:

First suppose r > 0. We show |x/y −
√

D| < 1/(2y2), which
implies x/y is a continued fraction convergent to

√
D.

Using
√

1 + t < 1 + t/2 for t > 0 yields
x/y =

√
D
√

1 + r/(Dy2) <
√

D(1 + r/(2Dy2)).

Thus,

∣∣∣∣xy −√D

∣∣∣∣ < r

2
√

Dy2
≤ 1

2y2
, as claimed.

If r < 0, then x2 − Dy2 = r implies y2 − (1/D)x2 = |r |/D.

Then since (|r |/D)2 < 1/D, by the argument above (which
does not require D to be integral) we see y/x is a continued
fraction convergent to 1/

√
D, so x/y is a continued fraction

convergent to its reciprocal, 1/(1/
√

D) =
√

D.



Pell’s Equation Cont, XI

2. The equation x2 − Dy2 = 1 always has a nontrivial solution in
integers (x , y).

Proof:

If p/q is a continued fraction convergent to
√

D, then p/q is
within 1/q2 ≤ 1 of

√
D, so |p/q −

√
D| < 1/q2 and

|p/q +
√

D| < 1 + 2
√

D.

Then
∣∣p2 − Dq2

∣∣ = q2 |p/q −
√

D| · |p/q +
√

D|
< q2 · (1/q2) · (1 + 2

√
D) = 1 + 2

√
D.

Since
√

D is irrational, there are an infinite number of
convergents but only a finite number of possible values for
p2 − Dq2.

Therefore, by the pigeonhole principle, there is some r such
that p2 − Dq2 = r has infinitely many solutions. Choose such
an r .



Pell’s Equation Conti, XII

2. The equation x2 − Dy2 = 1 always has a nontrivial solution in
integers (x , y).

Proof (continued):

Select r such that p2 − Dq2 = r has infinitely many solutions.

Then there are only finitely many possible pairs for the
reduction of (p, q) modulo r , so again by pigeonhole there are
two distinct convergents x/y and s/t such that
x2 −Dy2 = s2 −Dt2 = r , x ≡ s (mod r), and y ≡ t (mod r).

Now we compute u = x+y
√
D

s+t
√
D

= xs−Dyt
r + −xt+ys

r

√
D.

Observe that xs − Dyt ≡ x2 − Dy2 ≡ 0 (mod r) and
−xt + ys ≡ 0 (mod r), so in fact u ∈ Z[

√
D].

But N(u) = N(x+y
√
D)

N(s+t
√
D)

= 1, so u is a unit in Z[
√

D] and(xs − Dyt

r
,
−xt + ys

r

)
is a nontrivial solution to Pell’s equation.



Pell’s Equation Contin, XIII

3. The ring Z[
√

D] has a well-defined fundamental unit
u = x1 + y1

√
D. Furthermore, if w is an arbitrary unit in

Z[
√

D], then w = ±un for some integer n (possibly negative).

Proof:

The fundamental unit is well-defined by (2), since we are
assured of the existence of at least one solution to
x2 − Dy2 = ±1. Observe (trivially) that because
u = x1 + y1

√
D with x1, y1 positive, we have u > 1.

If w is any arbitrary unit, then by scaling by −1 if necessary,
we may assume w is positive.

Then there exists a unique integer n such that w ∈ [un, un+1)
since u is a real number greater than 1 and these intervals
[un, un+1) partition the interval (0,∞).



Pell’s Equation Continu, XIV

3. The ring Z[
√

D] has a well-defined fundamental unit
u = x1 + y1

√
D. Furthermore, if w is an arbitrary unit in

Z[
√

D], then w = ±un for some integer n (possibly negative).

Proof (continued):

For w ∈ [un, un+1), we see w · u−n ∈ [1, u), and w · u−n is
also a unit in Z[

√
D].

If this unit x + y
√

D were not equal to 1, then (possibly after
flipping signs on one of its terms) it would yield a positive
solution (x , y) to Pell’s equation x2 − Dy2 = ±1 such that
x + y

√
D < u.

But this contradicts the minimality of u, so in fact we must
have w · u−n = 1, whence w = un.

Since we chose the sign of w to be positive, the units in
Z[
√

D] are then of the form ±un, as claimed.



Pell’s Equation Continue, XV

3. The ring Z[
√

D] has a well-defined fundamental unit
u = x1 + y1

√
D. Furthermore, if w is an arbitrary unit in

Z[
√

D], then w = ±un for some integer n (possibly negative).

Remarks:

This result says that the unit group structure of Z[
√

D] is
isomorphic to (Z/2Z)× Z: the Z/2Z factor represents the ±
sign while the Z factor represents the power n of the
fundamental unit u.

It is a special case of Dirichlet’s unit theorem, which states
that the unit group of the ring of algebraic integers in any
algebraic number field K is a finitely generated abelian group
whose rank is r = r1 + r2 − 1, where r1 is the number of real
embeddings of K and r2 is the number of conjugate pairs of
complex embeddings.

Our result is the case K = Q(
√

D), with r1 = 2 and r2 = 0.



Pell’s Equation Continued, XVI

4. If u = x1 + y1
√

D is the fundamental unit in Z[
√

D], then if
we define xn + yn

√
D = (x1 + y1

√
D)n for nonnegative integers

n, then (xn, yn) is a solution to x2 − Dy2 = ±1, and these are
all of the solutions up to changing the signs of xn or yn.

Proof:

This is merely a rewriting of (3) in terms of solutions to
x2 − Dy2 = ±1 rather than units in Z[

√
D].

As we already showed, the solutions to x2 − Dy2 = ±1
correspond precisely to units x + y

√
D in Z[

√
D].

Since the units are ±(x1 + y1
√

D)n for arbitrary integers, and
we can pick the signs of the coordinates using the ± and
selecting n to be positive or negative, the full list of solutions
is indeed as claimed.



Pell’s Equation Continued F, XVII

5. The continued fraction expansion of
√

D is periodic and of
the form [a0, a1, a2, · · · , ak−1, 2a0] with a0 = b

√
Dc.

Proof:

Consider instead the continued fraction expansion of
α = a0 +

√
D where a0 = b

√
Dc: we claim that it is

[2a0, a1, a2, . . . ak−1] for some positive integer k .

The zeroth term is bαc = ba0 +
√

Dc = a0 + b
√

Dc = 2a0.

It remains to see that the expansion is purely periodic; by our
results, this is equivalent to saying that α = a0 +

√
D is

reduced. Clearly α > 1, and also −1/α =
1√

D − a0
> 1

because 0 <
√

D − a0 < 1 by the definition of a0.

Therefore, α = a0 +
√

D is reduced, so its continued fraction
is periodic with even starting term as claimed. The claims
about the expansion of

√
D are then immediate.



Pell’s Equation Continued Fr, XVIII

I will skip the proofs of items (6) and (7) today because they are a
bit messy (we’ll do them next time, though!), so that we will have
time to do some examples.

The main fact to remember from (7) is that we can compute
the fundamental unit of Z[

√
D] by truncating the continued

fraction expansion of
√

D right before its last term in the
repeating part.

Explicitly: if
√

D = [a0, a1, a2, . . . , ak−1, 2a0] and
pk−1/qk−1 = [a0, a1, . . . , ak−1], then the fundamental unit of
Z[
√

D] is pk−1 + qk−1
√

D.

The norm of the fundamental unit also dictates whether there
is a solution to the negative Pell equation x2 − Dy2 = −1: if
the norm is −1 then there is a solution (odd powers of the
fundamental unit) while if the norm is +1 then there is no
solution.



Pell’s Equation Continued Fra, XIX

Now that we have all of these wonderful results, we can fairly
easily compute the fundamental unit in Z[

√
D].

All we need to do is find the continued fraction expansion of√
D until we hit the periodic part, and then compute the

appropriate convergent.

We then get a complete characterization of the solutions to
the Pell equation(s) x2 − Dy2 = ±1 by taking powers of the
fundamental unit.



Pell’s Equation Continued Frac, XX

Example: Observe that
√

2 = [1, 2].

1. Find the fundamental unit of Z[
√

2] and describe all the units.

2. Find the smallest nontrivial solution to x2 − 2y2 = 1.

3. Find a solution to x2 − 2y2 = 1 with x > 2021.

The desired convergent is [1] = 1/1 so we get the
fundamental unit u = 1 +

√
2 — as we computed earlier, but

which is also extremely easy to find anyway.

Thus, the units of Z[
√

2] are ±(1 +
√

2)n for n ∈ Z.

Since the fundamental unit has norm −1, the smallest
solution will be the square (1 +

√
2)2 = 3 + 2

√
2 yielding

(x , y) = (3, 2).

To find a solution with x > 2021 we just have to take a big
enough even power of the fundamental unit. The smallest one
is (1 +

√
2)10 = 3363 + 2378

√
2, so we get a solution

(x , y) = (3363, 2378).



Pell’s Equation Continued Frac, XX

Example: Observe that
√

2 = [1, 2].

1. Find the fundamental unit of Z[
√

2] and describe all the units.

2. Find the smallest nontrivial solution to x2 − 2y2 = 1.

3. Find a solution to x2 − 2y2 = 1 with x > 2021.

The desired convergent is [1] = 1/1 so we get the
fundamental unit u = 1 +

√
2 — as we computed earlier, but

which is also extremely easy to find anyway.

Thus, the units of Z[
√

2] are ±(1 +
√

2)n for n ∈ Z.

Since the fundamental unit has norm −1, the smallest
solution will be the square (1 +

√
2)2 = 3 + 2

√
2 yielding

(x , y) = (3, 2).

To find a solution with x > 2021 we just have to take a big
enough even power of the fundamental unit. The smallest one
is (1 +

√
2)10 = 3363 + 2378

√
2, so we get a solution

(x , y) = (3363, 2378).



Pell’s Equation Continued Fract, XXI

Example: Observe that
√

7 = [2, 1, 1, 1, 4].

1. Find the fundamental unit of Z[
√

7] and describe all the units.

2. Determine whether or not x2 − 7y2 = −1 has a solution.

3. Find the smallest two nontrivial solutions to x2 − 7y2 = 1.

The desired convergent is C4 = [2, 1, 1, 1] = 8/3, and we can
indeed verify that 82 − 7 · 32 = 1.

Thus, the fundamental unit is u = 8 + 3
√

7, and the full set of
units is ±(8 + 3

√
7)n for n ∈ Z.

Since 4 is even, the norm of the fundamental unit is +1, so
there are no solutions to x2 − 7y2 = −1.

The smallest two units are u = 8 + 3
√

7 and u2 = 127 + 48
√

7
yielding the pairs (x , y) = (8, 3) and (127, 48).



Pell’s Equation Continued Fract, XXI

Example: Observe that
√

7 = [2, 1, 1, 1, 4].

1. Find the fundamental unit of Z[
√

7] and describe all the units.

2. Determine whether or not x2 − 7y2 = −1 has a solution.

3. Find the smallest two nontrivial solutions to x2 − 7y2 = 1.

The desired convergent is C4 = [2, 1, 1, 1] = 8/3, and we can
indeed verify that 82 − 7 · 32 = 1.

Thus, the fundamental unit is u = 8 + 3
√

7, and the full set of
units is ±(8 + 3

√
7)n for n ∈ Z.

Since 4 is even, the norm of the fundamental unit is +1, so
there are no solutions to x2 − 7y2 = −1.

The smallest two units are u = 8 + 3
√

7 and u2 = 127 + 48
√

7
yielding the pairs (x , y) = (8, 3) and (127, 48).



Pell’s Equation Continued Fracti, XXII

Example: Observe that
√

13 = [3, 1, 1, 1, 1, 6].

1. Find the fundamental unit of Z[
√

13].

2. Determine whether or not x2 − 13y2 = −1 has a solution.

3. Find the smallest two nontrivial solutions to x2 − 13y2 = 1.

The desired convergent is C5 = [3, 1, 1, 1, 1] = 18/5, and we
can indeed verify that 182 − 13 · 52 = −1.

Thus, the fundamental unit is u = 18 + 5
√

13.

Since 5 is odd, the norm of the fundamental unit is −1, so
there are solutions to x2 − 13y2 = −1, and the smallest is
(x , y) = (18, 5).

The smallest two units of positive norm are then
u2 = 649 + 180

√
13 and u4 = 842401 + 233640

√
13 yielding

the pairs (x , y) = (649, 180) and (842401, 233640).



Pell’s Equation Continued Fracti, XXII

Example: Observe that
√

13 = [3, 1, 1, 1, 1, 6].

1. Find the fundamental unit of Z[
√

13].

2. Determine whether or not x2 − 13y2 = −1 has a solution.

3. Find the smallest two nontrivial solutions to x2 − 13y2 = 1.

The desired convergent is C5 = [3, 1, 1, 1, 1] = 18/5, and we
can indeed verify that 182 − 13 · 52 = −1.

Thus, the fundamental unit is u = 18 + 5
√

13.

Since 5 is odd, the norm of the fundamental unit is −1, so
there are solutions to x2 − 13y2 = −1, and the smallest is
(x , y) = (18, 5).

The smallest two units of positive norm are then
u2 = 649 + 180

√
13 and u4 = 842401 + 233640

√
13 yielding

the pairs (x , y) = (649, 180) and (842401, 233640).



Pell’s Equation Continued Fractio, XXIII

We have reduced the seemingly quite difficult problem of solving
Pell’s equation x2 − Dy2 = ±1 to the very approachable problem
of computing the continued fraction expansion of

√
D.

Nonetheless, the method we have been using to find the
continued fraction expansion for

√
D requires a lot of

computation, since each step requires us to keep track of the
remainder term by rationalizing the resulting square root in
the denominator.



Pell’s Equation Continued Fraction, XXIV

Next time, I will explain the purpose of the sequences An and Cn

that show up in parts (6) and (7) of the theorem.

The point is that these sequences automatically encode the
remainder term, because αn = (An +

√
D)/Cn.

The identities in (6) then give us an efficient way to calculate
these sequences An and Cn recursively, along with the relation
an = bαnc = b(An +

√
D)/Cnc.

Once we have the terms an from the continued fraction
expansion, we can then compute the convergent terms pn and
qn using the magic box procedure from a few lectures ago.

We can put all of these calculations together into a computational
device that is sometimes called the “super magic box”. It is quite
easy to do by hand even for moderately large D, and is far more
efficient than the “naive” numerical approach for computing a
continued fraction.



Summary

We proved a bunch of things about the connections between
continued fractions and the solutions to Pell’s equation.

We did a few examples of computing fundamental units using
continued fractions.

Next lecture: The super magic box, more Diophantine equations.


