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Transcendence + Pell’s Equation (Part 1)

Transcendence

Pell’s Equation Background

Pell’s Equation and The Norm Map on Z[
√

D]

Pell’s Equation and Rational Approximation

This material represents §6.2.6-6.3.1 from the course notes.



Transcendence, I

Last time, I explained how we can use our rational approximation
results to prove that a given real number α is irrational:

Proposition (Irrationality and Approximation)

A real number α is irrational if and only if there exist infinitely
many distinct rational numbers p/q such that |α− p/q| < 1/q2.

Example: The real number α =
∑∞

k=0 10−3
k

is irrational because

its partial sums pn/qn =
∑n

k=0 10−3
k

all satisfy the inequality
|α− pn/qn| < 1/q2

n.



Transcendence, II

As first observed by Liouville, we can extend this criterion to
exclude algebraic numbers that are roots of higher-degree
polynomials by increasing the exponent of q in the bound on the
right-hand side. First, some preliminaries:

We say that a number α ∈ C is algebraic if α is the root of
some nonzero polynomial p(x) with rational coefficients.

If we consider all of the possible polynomials in Q[x ] of which
α is a root, by the well-ordering principle we can see that there
is some polynomial of minimal degree d of which α is a root.

We refer to this degree d as the algebraic degree of α over Q.
There is a unique monic polynomial of this degree d of which
α is a root; this polynomial is called the minimal polynomial
of α over Q.



Transcendence, III

Examples:

1. Quadratic irrationals have algebraic degree 2 over Q, since
they are roots of quadratic polynomials but not any
polynomial of lower degree.

2. The number 4
√

2 has minimal polynomial x4 − 2 over Q
(although this is not completely trivial to prove) and thus has
algebraic degree 4.

3. The number
√

2 +
√

3 is algebraic because it is the root of the
polynomial x4 − 5x2 + 1, and in fact (though this is again
harder to prove) that polynomial is its minimal polynomial.

4. The number π is not algebraic because it is not the root of
any nonzero polynomial with rational coefficients. (This is
even harder to prove, of course.)



Transcendence, IV

Some other observations:

The minimal polynomial is always irreducible (otherwise, one
factor would have α as a root and have smaller degree) and it
cannot have any repeated roots (otherwise m and its
derivative m′ would have a factor x − α in common).

We can also clear denominators to see that any algebraic
number is the root of a polynomial with integer coefficients.

If α is the root of some polynomial
cdxd + cd−1xd−1 + · · ·+ c0 where the ci are integers, then
cdα

d + cd−1α
d−1 + · · ·+ c0 = 0.

If we set β = cdα, by rescaling we can see that β is a root of
the polynomial xd + cd−1cdxd−1 + · · ·+ c0cd−1

d , which is
monic and has integer coefficients.

Thus, up to an integer factor, any algebraic number is the
root of a monic polynomial with integer coefficients.



Transcendence, V

With these preliminaries finished, we can now give Liouville’s result:

Theorem (Liouville’s Approximation Theorem)

Suppose α is algebraic of degree n > 1 over Q and that its
minimal polynomial m(x) has integer coefficients. Then there
exists a positive real number A such that |α− p/q| ≥ A/qn for
any rational number p/q.

The idea of the proof is to use the mean value theorem to bound
the difference between m(α) and m(p/q) and the fact that we can
express m(p/q) as 1/qn times an integer.

We can also reduce to the situation where the minimal polynomial
is monic by rescaling α, as we noted on the last slide. So the given
assumption is not really a restriction.



Transcendence, VI

Proof:

Suppose α is algebraic of degree n > 1 over Q and that its
minimal polynomial m(x) has integer coefficients and factors
as m(x) = (x − α)(x − β1)(x − β2) · · · (x − βn−1) over C.

Note that the βi are distinct from α because m(x) cannot
have repeated roots as we noted earlier.

Now define M be the maximum value of |m′(x)| on the
interval [α− 1, α+ 1], and set A = min(1, 1/M, |α− βi |) over
all of the roots βi .

We claim this value of A satisfies the given inequality.

To show this, suppose otherwise, so that p/q is rational and
has |α− p/q| < A/qn. Then because A ≤ 1, we have
p/q ∈ (α− 1, α + 1).

Also, because A ≤ |α− βi |, we see that p/q 6= βi for any i ,
and there is no root of m(x) between α and p/q.



Transcendence, VII

Proof (continued):

Now write m(x) = xd + cd−1xd−1 + · · ·+ c0.

Then m(p/q) = (p/q)d + cd−1(p/q)d−1 + · · ·+ c0
= (1/qd) · [pd + cd−1pd−1q + · · ·+ c0qd ].

So |m(p/q)| ≥ 1/qd ·
∣∣pd + cd−1pd−1q + · · ·+ c0qd

∣∣ ≥ 1/qd

because the term inside the absolute values is an integer and
it cannot be zero since m(p/q) 6= 0.

Now, by the mean value theorem, there exists x0 in the
interval with endpoints p/q and α such that
m(α)−m(p/q) = m′(x0) · (α− p/q). Taking absolute values
yields |m(α)−m(p/q)| = |m′(x0)| · |α− p/q|.
By assumption we have A ≤ 1/M and |m′(x0)| ≤ M, and also
m(α) = 0 and |m(p/q)| ≥ 1/qd .

So we get |α− p/q| =
|m(p/q)|
|m′(x0)|

≥ A

qd
as desired.



Transcendence, VIII

Roughly speaking, this result says that if we have an algebraic
number α of degree d , then we cannot find a rational
approximation that is “too close” to α.

If we flip the condition around, then if we have a real number
α that we can approximate extremely well, then it cannot be
algebraic.

More precisely: if α is an irrational real number such that
there exists a constant c > 0 and a sequence of rational
numbers pn/qn such that |α− pn/qn| < c/qn

n , then α is
transcendental.

The point is that this sequence of rational numbers
contradicts the assertion that α is algebraic of degree n for
every n, by Liouville’s theorem, and so α must be
transcendental.



Transcendence, IX

We can use a similar sort of construction as we used earlier to
construct transcendental numbers.

We can construct such an α and corresponding rational
approximations pn/qn by taking α to be an infinite series
whose terms drop in size very quickly.

Here, we want the tail after the nth partial sum pn/qn to be
on the order of 1/qn

n rather than 1/q2
n: this will guarantee

that α will be transcendental.



Transcendence, X

Example: Show that α =
∑∞

k=0 10−k! is transcendental.

Let pn/qn =
∑n

k=0 10−k! be the nth partial sum of the series.
We observe that qn = 10k! since each of the other terms has a
denominator dividing 10−k!.

Furthermore, it is easy to see (e.g., from the decimal
expansion of α) that the size of the tail

∑∞
k=n+1 10−k! is at

most 2 · 10−(n+1)!.

Then we have an easy bound
|α− pn/qn| < 2 · 10−(n+1)! = 2(10−n!)n+1 = 2/qn+1

n < 1/qn
n .

Since all of the partial sums of this series are distinct, we
obtain infinitely many such pn/qn, and therefore by our result
above, α is transcendental.



Pell’s Equation Intro, I

We now switch back into discussing Diophantine equations. We
will spend the next few lectures studying the class of equations of
the form x2 − Dy2 = r where D is a positive nonsquare integer
and r is an arbitrary integer.

Such equations are often referred to under the general
heading of Pell’s equation, named after the English
mathematician John Pell.

However, this name is a misattribution by Euler, and it is
quite possible that Pell never actually studied these equations.

Equations of this type have been studied throughout history,
with notable early contributions made by the Indian scholars
Brahmaguptra, Bhaskara II, and Narayana.

Certain instances of Pell’s equation (most notably D = 2)
were also studied by the ancient Greeks, including Diophantus.



Pell’s Equation Intro, II

What we would like to be able to do is find a recipe for generating
solutions to Pell’s equation in the situations that they do exist, and
to understand more about the structures of these solutions.

The general approach we will follow is similar to the treatment
developed by Lagrange in the mid-1700s.

The main ideas in the more modern approach to Pell’s
equation is to exploit the language of more general rings to
simplify much of the calculation.

Perhaps unsurprisingly, the techniques we will develop will also
eventually involve our results on continued fraction expansions
and rational approximations.



Pell’s Equation Intro: D = 2, I

Let’s start by exploring the case D = 2 for various small r : thus,
we are seeking integer solutions to the Diophantine equation
x2 − 2y2 = r for small values of r .

We can do a search by plugging in small nonnegative values of
x and y from 0 to 20 and looking for pairs where x2 − 2y2 is
close to zero.

On the next slide, I’ve collected them via the value of r .



Pell’s Equation Intro: D = 2, II

Solutions to x2 − 2y2 = r for small |r | and 0 ≤ x , y ≤ 50:

r 1 2 3

(x , y) (1, 0),(3, 2),(17, 12) (2, 1),(10, 7) none

r −1 −2 −3

(x , y) (1, 1),(7, 5),(41, 29) (0, 1),(4, 3),(24, 17) none

r 4 5 6

(x , y) (2, 0),(6, 4),(34, 24) none none

r −4 −5 −6

(x , y) (2, 2),(14, 10) none none

r 7 8 9

(x , y) (3, 1),(5, 3),(13, 9),(27, 19) (2, 4),(20, 14) (3, 0),(9, 6)

r −7 −8 9

(x , y) (1, 2),(5, 4),(11, 8),(31, 22) (0, 2),(8, 6),(48, 34) (3, 3),(21, 15)



Pell’s Equation Intro: D = 2, III

A few basic observations:

For some values of r (namely, r = ±3) there seem to be no
solutions (though of course the table itself does not prove
this, since the search is only for x , y ≤ 50), while for other
small values of r there are solutions.

It also seems that there is a solution to x2 − 2y2 = r if and
only if there is also a solution to x2 − 2y2 = −r .

The smaller values of |r | have more solutions in the range we
searched than the larger values did.

The solutions for a fixed value of r seem to grow fairly
quickly: no value of r has more than 3 solutions in the range
we searched.



Pell’s Equation Intro: D = 2, IV

By using some basic modular arithmetic we can show that there
are no solutions to x2 − 2y2 = r for some values of r .

We cannot expect to get any contradictions modulo 2, and it
is not hard to check that x2 − 2y2 can also take any value
modulo 4.

However, if we work modulo 8, we can see that x2 ∈ {0, 1, 4}
mod 8 and −2y2 ∈ {0, 6} mod 8.

Thus, x2 − 2y2 ∈ {0, 1, 2, 4, 6, 7} mod 8, and so it cannot be
congruent to 3 or 5 mod 8.

This means that for r ≡ 3, 5 mod 8, there are no solutions to
x2 − 2y2 = r . This explains the lack of solutions for
r = ±3,±5 in our table.



Pell’s Equation Intro: D = 2, V

We can also get some more nonexistence results by looking at
other small moduli.

For example, if we look modulo 3, then because
x2 − 2y2 ≡ x2 + y2 mod 3, this quantity can equal zero mod
3 only when (x , y) ≡ (0, 0) mod 3.

But in such cases, x2 − 2y2 = r is then actually divisible by 9,
and so it cannot be 3 or 6 modulo 9.

This means that for r ≡ 3, 6 mod 9, there are no solutions to
x2 − 2y2 = r . This explains the lack of solutions for
r = ±3,±6 in our table.



Pell’s Equation Intro: D = 2, VI

Solutions to x2 − 2y2 = r for small |r | and 0 ≤ x , y ≤ 50:

r 1 2 3

(x , y) (1, 0),(3, 2),(17, 12) (2, 1),(10, 7) none

r −1 −2 −3

(x , y) (1, 1),(7, 5),(41, 29) (0, 1),(4, 3),(24, 17) none

r 4 5 6

(x , y) (2, 0),(6, 4),(34, 24) none none

r −4 −5 −6

(x , y) (2, 2),(14, 10) none none

r 7 8 9

(x , y) (3, 1),(5, 3),(13, 9),(27, 19) (2, 4),(20, 14) (3, 0),(9, 6)

r −7 −8 9

(x , y) (1, 2),(5, 4),(11, 8),(31, 22) (0, 2),(8, 6),(48, 34) (3, 3),(21, 15)



Pell’s Equation Intro: D = 2, VII

Another pattern we can observe from the examples above is that
x2 − 2y2 = r seems to have a solution if and only if x2 − 2y2 = −r
does, and that some of the solutions seem to be related.

Let’s look for a relationship between the pairs (1, 0), (3, 2),
(17, 12) from r = +1 and (1, 1), (7, 5), (41, 29) from r = −1.

From the larger numbers, it is not hard to spot a pattern: if
(a, b) is a solution with a2 − 2b2 = 1, then (a + 2b, a + b)
seems to be a solution with a2 − 2b2 = −1.

In fact, this also works the other way around: if (a, b) is a
solution with a2 − 2b2 = −1, then (a + 2b, a + b) is a solution
with a2 − 2b2 = 1.



Pell’s Equation Intro: D = 2, VIII

Indeed, the same pattern holds up for the other values of r (±2,
±4, ±7, etc.): if (a, b) is a solution with a2 − 2b2 = −r , then
(a + 2b, a + b) seems to be a solution with a2 − 2b2 = r .

Indeed, this is easy to check algebraically: if a2 − 2b2 = −r ,
then (a + 2b)2 − 2(a + b)2 = −(a2 − 2b2) = r .

We can see quite easily that if we start with any solution to
x2 − 2y2 = r (even the “trivial” solution (±1, 0) to
x2 − 2y2 = 1) we can generate new solutions to
x2 − 2y2 = ±r by applying this rule mapping
(a, b) 7→ (a + 2b, a + b).



Pell’s Equation Intro: D = 2, IX

We can use this recipe (a, b) 7→ (a + 2b, a + b) to generate many
more solutions starting from a single one.

For example, starting with (1, 0) we obtain
(1, 0) 7→ (1, 1) 7→ (3, 2) 7→ (7, 5) 7→ (17, 12) 7→ (41, 29) 7→
(99, 70) 7→ (239, 169) 7→ · · · . The odd terms in the sequence
are solutions to x2 − 2y2 = 1 while the even terms are
solutions to x2 − 2y2 = −1.

If we iterate the rule twice, mapping
(a, b) 7→ (a + 2b, a + b) 7→ (3a + 4b, 2a + 3b), we obtain a
recipe for generating new solutions to x2 − 2y2 = r from old
solutions.



Pell’s Equation Intro: D = 3, I

Let’s now examine the case D = 3 for small r : now we are seeking
integer solutions to x2 − 3y2 = r .

On the next slide, just like with D = 2, are the results of
searching for 0 ≤ x , y ≤ 50 for solutions to x2 − 3y2 = r .



Pell’s Equation Intro: D = 3, II

Solutions to x2 − 3y2 = r for small |r | and 0 ≤ x , y ≤ 50:

r 1 2 3
(x , y) (1, 0),(2, 1),(7, 4),(26, 15) none none

r −1 −2 −3
(x , y) none (1, 1),(5, 3),(19, 11) (0, 1),(3, 2),(12, 7),(45, 26)

r 4 5 6
(x , y) (2, 0),(4, 2),(14, 8) none (3, 1),(9, 5),(33, 19)

r −4 −5 −6
(x , y) none none none

r 7 8 9
(x , y) none none (3, 0),(6, 3),(21, 12)

r −7 −8 −9
(x , y) none (2, 2),(10, 6),(38, 22) none



Pell’s Equation Intro: D = 3, III

Some things are quite similar to the case D = 2: for example, we
can establish the nonexistence of solutions to x2 − 3y2 = r in a
number of cases using modular arithmetic.

For example, if r ≡ 2 mod 3 (which includes the cases
r = −7,−4,−1, 2, 5, 8), then taking x2 − 3y2 = r modulo 3
gives x2 ≡ 2 (mod 3), which has no solution when r ≡ 2
(mod 3) since 2 is not a quadratic residue.

Similarly, if r ≡ 3 mod 9 (including the cases r = −6, 3) then
any solution to x2 − 3y2 = r requires x to be divisible by 3. If
x = 3a then cancelling the factor of 3 yields 3a2 − y2 = (r/3)
so that y2 − 3a2 = −(r/3) ≡ 2 mod 3, but this has no
solution by the above.



Pell’s Equation Intro: D = 3, IV

Some things are quite similar to the case D = 2: if we have a
solution to x2 − 3y2 = r then it seems that we will always have
several solutions.

If we search for a recipe (like in the case with D = 2) to
generate new solutions to x2 − 3y2 = 1 from old ones, we can
eventually stumble upon the map (a, b) 7→ (2a + 3b, a + 2b).

For example, this operation maps (1, 0) 7→ (2, 1) 7→ (7, 4) 7→
(26, 15) 7→ (97, 56) 7→ (362, 209) 7→ · · · .
This map will always yield new solutions: if a2 − 3b2 = r then
(2a+3b)2−3(a+2b)2 = [4a2+12ab+9b2]−[3a2+12ab+12b2]
= a2 − 3b2 = r as well.

We can see that all of the tuples in each cell of the table are
actually generated from the smallest solution in this way.



Pell’s Equation Intro: D = 3, V

However, there is one obvious thing that is very different in the
case D = 3: it seems that if there is a solution to x2 − 3y2 = r
then there is no solution to x2 − 3y2 = −r .

In contrast, for D = 2, we saw that having a solution to
x2 − 2y2 = r always forces existence of a solution to
x2 − 2y2 = −r and vice versa.

This is dictated by our operation (a, b) 7→ (a + 2b, a + b)
constructing a solution of one equation from a solution of the
other.



Pell’s Equation Intro: Z[
√
D], I

We can explain many of the patterns witnessed above by using
properties of the ring Z[

√
D] = {a + b

√
D : a, b ∈ Z} and the

associated norm map N(a + b
√

D) = a2 − Db2.

First, notice that the norm map is always integer-valued, and
also satisfies the property that
N(a + b

√
D) = (a + b

√
D)(a− b

√
D) = αα.

The other crucial fact is that the norm map is multiplicative,
which follows from the much easier fact that the conjugation
operation is multiplicative.

Explicitly, suppose α, β ∈ Z[
√

D].

Then N(αβ) = αβαβ = αβ · αβ = αα · ββ = N(α)N(β).



Pell’s Equation Intro: Z[
√
D], II

The obvious connection to Pell’s equation is that solving
x2 − Dy2 = r is equivalent to solving N(x + y

√
D) = r .

Many of the relations we observed can be explained using the
fact that the norm map is multiplicative.

In the particular situation where N(β) = ±1, we can see that
N(αβk) = (−1)k r .

Thus, multiplying the element α by β, β2, β3, ... will yield
more solutions to x2 − Dy2 = ±r .

Indeed, we can generate such a sequence whenever we can
find the elements in Z[

√
D] of norm ±1.



Pell’s Equation Intro: Z[
√
D], III

We have a very convenient characterization of the elements of
norm ±1 inside Z[

√
D]:

Proposition (Units in Z[
√

D])

An element α = a + b
√

D is a unit in Z[
√

D] if and only its norm
N(α) = a2 − Db2 is 1 or −1.

Proof:

First suppose α is a unit with inverse β, so that αβ = 1.

Then N(α)N(β) = N(αβ) = N(1) = 1. But N(α) and N(β)
are integers, so the only possibility is to have N(α) = 1 or −1.

Conversely, if N(α) = ±1 then αα = ±1, so α · (±α) = 1.
Then ±α is a multiplicative inverse of α, so α is a unit.



Pell’s Equation Intro: Z[
√
D], IV

As an illustration, we can see quite easily that inside Z[
√

2] we
have N(1 +

√
2) = (1 +

√
2)(1−

√
2) = −1.

Thus, by the multiplicativity of the norm map, if a + b
√

2 has
norm r , then (a + b

√
2)(1 +

√
2) = (a + 2b) + (a + b)

√
2 will

have norm −r .

This is precisely the map (a, b) 7→ (a + 2b, a + b) we identified
above, but now it is much clearer where it comes from.

Likewise, the map (a, b) 7→ (2a + 3b, a + 2b) for solutions to
x2 − 3y2 = r arises from the fact that we have
N(2 +

√
3) = (2 +

√
3)(2−

√
3) = 1 in Z[

√
3].

We can then multiply out to see that if N(a + b
√

3) = r , then
(a + b

√
3)(2 +

√
3) = (2a + 3b) + (a + 2b)

√
2 will also have

norm r .



Pell’s Equation Intro: Z[
√
D], V

All of this discussion suggests that should start by looking for the
solutions of x2−Dy2 = ±1, which is equivalent to determining the
units in Z[

√
D].

Based on our (admittedly small) searches above for solutions
of x2 − Dy2 = ±1, it would appear that the units all have the
form ±αn where α is the “smallest” solution to
x2 − Dy2 = ±1 in the sense that α = x + y

√
D with x , y > 0

and where x is minimal.

We will in fact be able to prove that these are all of the units,
but it will take a little bit more effort first.



Pell’s Equation Intro: Z[
√
D], VI

However, under the hypothesis that the units are all powers of a
single “smallest unit”, we can give an explicit definition for what
that smallest unit would be:

Definition

For a fixed positive squarefree D, a fundamental solution (x1, y1)
to Pell’s equation is a pair (x1, y1) of positive integers such that
x2
1 − Dy2

1 = ±1 and x1 + y1
√

D is minimal.

The fundamental unit of Z[
√

D] is u = x1 + y1
√

D.

Note that this fundamental solution and the fundamental unit are
well defined, assuming they do exist: there will be a unique
minimal positive value for x1 + y1

√
D over all pairs (x1, y1)

satisfying x2
1 − Dy2

1 = ±1.



Pell’s Equation Intro: Z[
√
D], VII

Examples: By searching for solutions to x2 − Dy2 = ±1 we can
generate fundamental units for various small nonsquare D:

D 2 3 5 6 7

Fund. Unit 1 +
√

2 2 +
√

3 2 +
√

5 5 + 2
√

6 8 + 3
√

7

Norm −1 1 −1 1 1

D 8 10 11 12 13

Fund. Unit 3 +
√

8 3 +
√

10 10 + 3
√

11 7 + 2
√

12 18 + 5
√

13

Norm 1 −1 1 1 −1

D 14 15 17 18 19

Fund. Unit 15 + 4
√

14 4 +
√

15 4 +
√

17 17 + 4
√

18 HW #3

Norm 1 1 −1 1 HW #3



Pell’s Equation Intro: Rational Approximation, I

One of the other key ideas for solving Pell’s equation is the
observation that if x2 − Dy2 is small and x , y are positive, then
x/y is a good approximation to

√
D.

To illustrate, suppose we have a solution of x2 − Dy2 = 1.

Dividing by y2 yields (x/y)2 − D = 1/y2, and now solving for
x/y gives x/y =

√
D + 1/y2 =

√
D ·
√

1 + 1/(Dy2) ≈√
D · (1 + 1/(2Dy2)) =

√
D + 1/(2y2

√
D) using the

linearization
√

1 + z ≈ 1 + z/2.

In fact, the linearization is an overestimate since
(1 + z/2)2 = 1 + z + z2/4 > 1 + z .

Thus, we obtain the inequality

∣∣∣∣xy −√D

∣∣∣∣ < 1

2y2
√

D
.



Pell’s Equation Intro: Rational Approximation, II

The point is that if x2 − Dy2 = 1, then x/y is a good

approximation to
√

D:

∣∣∣∣xy −√D

∣∣∣∣ < 1

2y2
√

D
.

In fact, the approximation is extremely good. From our results
on continued fractions and rational approximation, we know
that if α is irrational and p/q has the property that
|α− p/q| < 1/(2q2), then in fact p/q is a continued fraction
convergent to α.

So, since
√

D > 1, this means any solution to x2 − Dy2 = 1
must arise as a continued fraction convergent to

√
D.



Pell’s Equation Intro: Rational Approximation, III

We can see quite explicitly that the solutions to x2 − 2y2 = 1 arise
from continued fraction convergents to√

2 = [1, 2] = [1, 2, 2, 2, . . . ].

The first few convergents are 1/1, 3/2, 7/5, 17/12, 41/29,
99/70, ... , which (as ordered pairs) have x2 − 2y2

respectively equal to −1, 1, −1, 1, −1, 1, ....

These convergents are precisely the solutions to
x2 − 2y2 = ±1 we identified earlier.

We remark also that the period of the continued fraction
expansion here is equal to 1 and the fundamental unit
corresponds to the convergent [1].



Pell’s Equation Intro: Rational Approximation, IV

Let’s try it out for D = 3.

Here, we have
√

3 = [1, 1, 2] = [1, 1, 2, 1, 2, . . . ] with
convergents 1/1, 2/1, 5/3, 7/4, 19/11, 26/15, 71/41, ... .

As ordered pairs, these convergents have x2 − 3y2 respectively
equal to −2, 1, −2, 1, −2, 1, ....

Here, we can see that we do not obtain any solutions to
x2 − 3y2 = −1 (since in fact there are none as we proved
earlier) but we do obtain solutions to x2 − 3y2 = −2 and
x2 − 3y2 = 1.

The period of the continued fraction expansion here is equal
to 2, while the fundamental unit corresponds to the
convergent [1, 2].



Pell’s Equation Intro: Rational Approximation, V

Let’s try D = 7.

Here, we have
√

7 = [2, 1, 1, 1, 4] = [2, 1, 1, 1, 4, 1, 1, 1, 4, . . . ]
with convergents 2/1, 3/1, 5/2, 8/3, 37/14, 45/17, 82/31,
127/48, 590/223, ....

As ordered pairs, these convergents have x2 − 7y2 respectively
equal to −3, 2, −3, 1, −3, 2, −3, 1, −3, ....

Here again we obtain no solutions to x2 − 3y2 = −1 but we
do obtain solutions to x2 − 3y2 = −3, x2 − 3y2 = 2, and
x2 − 3y2 = 1.

The period of the continued fraction expansion here is equal
to 4, while the fundamental unit corresponds to the
convergent [2, 1, 1, 1].



Pell’s Equation Intro: Rational Approximation, VI

Let’s try one more: D = 13.

Here,
√

13 = [3, 1, 1, 1, 6] = [3, 1, 1, 1, 1, 6, . . . ] with
convergents 3/1, 4/1, 7/2, 11/3, 18/5, 119/33, 137/38,
256/71, 393/109, 649/180, ... .

As ordered pairs, these convergents have x2 − 13y2

respectively equal to −4, 3, −3, 4, −1, 4, −3, 3, −4, 1, ....

Here we obtain solutions to x2 − 13y2 = r for
r = −4,−3,−1, 1, 3, 4.

The period of the continued fraction expansion here is equal
to 4, while the fundamental unit corresponds to the
convergent [3, 1, 1, 1, 1].

It appears that the fundamental unit is obtained after one period
of the continued fraction expansion, regardless of whether it has
norm 1 or −1. We will prove this, and some other facts, next time!



Summary

We discussed some examples and patterns in solutions to Pell’s
equation.

We discussed the relationships between solutions to Pell’s equation
and the ring structure of Z[

√
D].

We discussed the connection between solutions to Pell’s equation
and rational approximation via continued fractions.

Next lecture: Pell’s Equation (part 2).


