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Continuation of Continued Fractions Continued, I

Theorem (Quadratic Irrationals and Continued Fractions)

Let α be a quadratic irrational with discriminant D and αn be the
nth remainder term from the continued fraction expansion of α.

1. The remainder term αn has discriminant D for all n ≥ 1.

2. If α is a reduced quadratic irrational, then αn is also reduced.

3. There are only finitely many reduced quadratic irrationals of
discriminant D.

4. The remainder term αn is reduced for sufficiently large n.

5. The continued fraction expansion of a real number α is
periodic if and only if α is a quadratic irrational.

6. The continued fraction expansion of a real number α is purely
periodic (i.e., is of the form α = [a0, a1, . . . , an]) if and only if
α is a reduced quadratic irrational.



Continuation of Continued Fractions Continued, II

6. The continued fraction expansion of a real number α is purely
periodic (i.e., is of the form α = [a0, a1, . . . , an]) if and only if
α is a reduced quadratic irrational.

Proof:

First suppose α has a purely periodic expansion.

Then α = [a0, a1, . . . , akn, α] for every positive integer k .
Since by (4) the remainders are eventually all reduced, this
means α must be reduced.

Conversely, suppose α is reduced. By (5) we know that the
continued fraction expansion is eventually periodic, say with
αk+n = αk for some k and n.

We will show that αk+n−1 = αk−1. Then by iterating this
fact, this implies αj+n = αj for all j ≥ 0.

This immediately implies α has a periodic continued fraction
expansion, because aj+n = bαj+nc = bαjc = aj for all j ≥ 0.



Continuation of Continued Fractions Continued, III

6. The continued fraction expansion of a real number α is purely
periodic (i.e., is of the form α = [a0, a1, . . . , an]) if and only if
α is a reduced quadratic irrational.

Proof (continued):

It remains to show that if α is reduced and αk+n = αk then
αk+n−1 = αk−1. First, both αk+n and αk are reduced by (2).

By definition we have αk+n = 1
αk+n−1−ak+n−1

and

αn = 1
αn−1−an−1

, so conjugating and inverting yields

− 1

αn+k
= ak+n−1 − αk+n−1 and − 1

αn
= an−1 − αn−1.

Since both αk+n−1 and αn−1 are between −1 and 0, we see

ak+n−1 = b− 1

αn+k
c = b− 1

αn
c = an−1, as claimed.



Continuation of Continued Fractions Continued, IV

Example: Show that (3 +
√

13)/4 is reduced and then find its
continued fraction expansion.

Note α = (3 +
√

13)/4 > 1 has −1/α = 3 +
√

13 > 1, so α is
reduced. Per (6) in the proposition, its continued fraction
expansion will be purely periodic.

With α = (3 +
√

13)/4, we find, successively,

n 0 1 2 3 4 5

αn
3+
√
13

4
1+
√
13

3
2+
√
13

3
1+
√
13

4 3 +
√

13 3+
√
13

4
an 1 1 1 1 6

αn − an
−1+

√
13

4
−2+

√
13

3
−1+

√
13

3
−3+

√
13

4 −3 +
√

13

and we can see at this point each term will repeat. Therefore,

the continued fraction expansion is [1, 1, 1, 1, 6] , which is

indeed periodic.
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Rational Approximation and Continued Fractions, I

Our original motivation in developing continued fractions was to
use them to give rational approximations of a real number α.

We have already proven that if we compute the continued
fraction expansion α = [a0, a1, a2, . . . ], then the successive
convergents Cn = pn/qn will converge to α as n→∞.

In particular, these convergents will give better and better
rational approximations to α.

However, we will now prove some results that make the above
heuristics far more precise: in fact we will show that (with
suitable hypotheses) the continued fraction convergents are
actually the best possible rational approximations to α.



Rational Approximation and Continued Fractions, II

Here are our main results:

Proposition (Rational Approximation and Continued Fractions)

Suppose α is any irrational real number and p/q is any rational
number. Then the following hold:

1. If pn/qn is the nth continued fraction convergent to α, and∣∣∣∣α− p

q

∣∣∣∣ < ∣∣∣∣α− pn

qn

∣∣∣∣, then q > qn.

2. In fact, if |qα− p| < |qnα− pn|, then q ≥ qn+1.

3. There are infinitely many distinct rational numbers p/q such

that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

4. If p/q is a rational number such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
, then in

fact p/q is a continued fraction convergent to α.



Rational Approximation and Continued Fractions, III

1. If pn/qn is the nth continued fraction convergent to α, and∣∣∣∣α− p

q

∣∣∣∣ < ∣∣∣∣α− pn

qn

∣∣∣∣, then q > qn.

Proof:

Consider the Farey sequence of level qn: since
|pn−1qn − pnqn−1| = 1, by our results on the Farey sequences
we see that pn−1/qn−1 and pn/qn are consecutive in this
sequence.

Hence, there is no rational number with denominator less than
qn that lies between them.

Since α is between pn−1/qn−1 and pn/qn, this means any
rational approximation p/q that is closer than either of these
must have denominator greater than qn.



Rational Approximation and Continued Fractions, IV

2. In fact, if |qα− p| < |qnα− pn|, then q ≥ qn+1.

Proof:

Suppose that q < qn+1. By basic linear algebra, there exist
integers x and y such that p = xpn + ypn+1 and
q = xqn + yqn+1. (They are integers because the determinant
pnqn+1 − pn+1qn of the associated coefficient matrix is ±1 by
our results on the convergents of the continued fraction.)

Notice that since q < qn+1, the second equation requires that
one of x , y be positive and the other is negative. Since

α− pn

qn
and α− pn+1

qn+1
also have opposite signs, this means

x

(
α− pn

qn

)
and y

(
α− pn+1

qn+1

)
have the same sign.



Rational Approximation and Continued Fractions, V

2. In fact, if |qα− p| < |qnα− pn|, then q ≥ qn+1.

Proof (continued):

Since x

(
α− pn

qn

)
and y

(
α− pn+1

qn+1

)
have the same sign,

we can then write

|qα− p| = |(xqn + yqn+1)α− (xpn + ypn+1)|
= |x(qnα− pn) + y(qn+1α− pn+1)|
= |x | · |qnα− pn|+ |y | · |qn+1α− pn+1|
≥ |qnα− pn|

Since we started by assuming that q < qn+1, we have
established the contrapositive of the desired result.



Rational Approximation and Continued Fractions, VI

3. There are infinitely many distinct rational numbers p/q such

that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Proof:

We claim that at least one of pn/qn and pn+1/qn+1 satisfies
the desired inequality, so suppose that neither does.

Then since α lies between pn/qn and pn+1/qn+1, we have∣∣∣∣pn

qn
− pn+1

qn+1

∣∣∣∣2 =

(∣∣∣∣pn

qn
− α

∣∣∣∣+

∣∣∣∣pn+1

qn+1
− α

∣∣∣∣)2

> 4

∣∣∣∣pn

qn
− α

∣∣∣∣ · ∣∣∣∣pn+1

qn+1
− α

∣∣∣∣
≥ 4 · 1

2q2
n

· 1

2q2
n+1

=
1

q2
nq2

n+1

.



Rational Approximation and Continued Fractions, VII

3. There are infinitely many distinct rational numbers p/q such

that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Proof (continued):

In the middle step we used the inequality (x + y)2 ≥ 4xy ,
which is equivalent to (x − y)2 ≥ 0, and equality cannot hold
in our case because α is irrational.

Finally, taking the square root gives

∣∣∣∣pn

qn
− pn+1

qn+1

∣∣∣∣ > 1

qnqn+1
,

but this is false since these quantities are equal.



Rational Approximation and Continued Fractions, VIII

4. If p/q is a rational number such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
, then in

fact p/q is a continued fraction convergent to α.

Proof:

Suppose p/q is not a convergent but that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Let n be such that qn ≤ q < qn+1 .

By (2), we see |qnα− pn| < |qα− p| = q

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q
, so∣∣∣∣α− pn

qn

∣∣∣∣ < 1

2qqn
.

Now we get
1

qqn
≤
∣∣∣∣pnq − pqn

qqn

∣∣∣∣ =

∣∣∣∣pq − pn

qn

∣∣∣∣ ≤∣∣∣∣pq − α
∣∣∣∣+

∣∣∣∣α− pn

qn

∣∣∣∣ < 1

2qqn
+

1

2q2
n

.

But this implies q < qn, which is a contradiction.



Rational Approximation and Continued Fractions, X

A few remarks about these results:

The first statement (if |α− p/q| < |α− pn/qn|, then q > qn)
says that the best rational approximation to α, among all
terms in the Farey sequence of level qn, is the convergent
pn/qn.

Thus, if we want to find a good rational approximation of a
given real number with small denominator, we can use
convergents from the continued fraction expansion.

Also, in the third statement (giving infinitely many p/q such
that |α− p/q| < 1/(2q2)), the constant 2 is not sharp. It is a
theorem of Hurwitz that the 2 can be replaced by

√
5 (the

idea is to look at three terms rather than just 2) but not by
any larger constant.



Rational Approximation and Continued Fractions, XI

Example: Find a rational number of small denominator with
decimal expansion 0.4614379084967 . . . .

We compute the continued fraction expansion of
α = 0.4614379084967, which is easy to do with a calculator or
computer: we get α = [0, 2, 5, 1, 57, 1, 53354674, 4, 1, 1, 6, 4].

We truncate just before the huge term in the middle to get a
guess of α = [0, 2, 5, 1, 57, 1] = 353/765. Indeed, we can
calculate that 353/765 ≈ 0.461437908496732.
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Rational Approximation and Continued Fractions, XI
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Rational Approximation and Continued Fractions, XII

Example: Find a rational number of small denominator with
decimal expansion 0.4614379084967 . . . .

Indeed, because α = [0, 2, 5, 1, 57, 1, 53354674, 4, 1, 1, 6, 4],
our other results indicate that any rational number that is a
closer approximation will have denominator roughly on order
of the next convergent

[0, 2, 5, 1, 57, 1, 53354674] =
18834200269

40816326362
.

So the rational number 353/765 we found is clearly the
simplest!

It is interesting to note that the period of the decimal
expansion of 353/765 is 16, so in fact we have identified the
rational number before the expansion started repeating!



Rational Approximation and Continued Fractions, XIII

We can also use these results, along with some of our facts about
the Farey sequences to find the best rational approximation to a
given real number α having a denominator below a given fixed
bound N.

Our starting point is to calculate the last two convergents
pn−1/qn−1 and pn/qn whose denominators are less than N.

Since the convergents alternate being above and below α, this
means α lies between these two convergents.

Furthermore, from the relation |pnqn−1 − pn−1qn| = 1 and our
results on the Farey sequences, we see that pn−1/qn−1 and
pn/qn are consecutive terms in the Farey sequence of level qn.

We can then generate all of the terms between these of level
≤ N by taking mediants, and from this short list we can
identify the best approximation of α.



Rational Approximation and Continued Fractions, XIV

Example: Find the rational number with denominator less than 100
that is closest to

√
7.

Earlier, we computed the continued fraction expansion√
7 = [2, 1, 1, 1, 4].

The first few convergents are then 2, 3, 5/2, 8/3, 37/14,
45/17, 82/31, 127/48, 590/223.

The last two convergents with denominator less than 100 are
82/31 and 127/48. The only term between them in the Farey
sequence of level 99 is their mediant, 209/79.

We can then compute that
√

7− 82/31 ≈ 5.9 · 10−4,√
7− 127/48 ≈ −8.2 · 10−5, and

√
7− 209/79 ≈ 1.8 · 10−4.

Thus, the best approximation is 127/48 .



Rational Approximation and Continued Fractions, XIV

Example: Find the rational number with denominator less than 10
that is closest to

√
7.

From above, the last two convergents with denominator less
than 10 are 5/2 and 8/3. The terms between them in the
Farey sequence of level 9 are 18/7, 13/5, and 21/8.

We can then compute that
√

7− 5/2 ≈ 0.1458,√
7− 18/7 ≈ 0.0743,

√
7− 13/5 ≈ 0.0458,√

7− 21/8 ≈ 0.0208, and
√

7− 8/3 ≈ −0.0209.

Thus, the best approximation (by a quite small margin!) is

21/8 , which, we remark, is not a continued fraction

convergent to
√

7.



Irrationality and Transcendence, I

We can use some of these properties of rational approximation we
have developed to prove the irrationality of various quantities, and
by suitably extending these results, we can even prove
transcendence in some cases.

One easy observation is that the continued fraction expansion
of a real number α terminates in a finite number of steps if
and only if α is rational. Thus, if the continued fraction of α
is infinite, then α is irrational.

We could therefore establish irrationality by computing the
continued fraction expansion of a given real number.

However, as a practical matter, this is not so easy to do. The
easiest infinite continued fractions to compute are the periodic
expansions, and as we proved, these are the expansions of
quadratic irrationals. (But these numbers are quite easy to
prove irrational.)



Irrationality and Transcendence, II

Another option, then, is to flip our approach around by instead
constructing irrational numbers via their continued fraction
expansions.

For example, we automatically know that the real number
α = [1, 2, 3, 4, 5, 6, . . . ] is irrational, since its continued
fraction expansion is not finite.

However, an obvious problem arises: we have no simple way of
giving a closed-form formula for this real number. (As it
happens, this number can be written in terms of values of a
modified Bessel function, though this is not so easy to prove.)

As we have already seen, most numbers of interest to us do
not have any obvious pattern to their continued fraction
expansion, so this approach is also difficult.



Irrationality and Transcendence, III

Our second method is to use another of our earlier results: as we
showed, if α is irrational, then there are infinitely many distinct
rational numbers p/q such that |α− p/q| < 1/q2.

Our main idea is that the converse of this statement holds as well:

Proposition (Irrationality and Approximation)

A real number α is irrational if and only if there exist infinitely
many distinct rational numbers p/q such that |α− p/q| < 1/q2.

Note that we already established the forward direction, so we just
need to prove the reverse (if there are infinitely many such p/q
then α is irrational).



Irrationality and Transcendence, IV

Proof:

Suppose α = a/b is a fixed rational number.

Then |α− p/q| = |aq − bp| /(bq). If q ≤ b then there are
only finitely many possible p/q with |α− p/q| < 1/q2 since
there are only finitely many possible denominators q and
finitely many p that work for any given q.

If q > b then we would have |aq − bp| /(bq) < 1/q2 so that
|aq − bp| < b/q < 1. But since |aq − bp| is an integer, it
would then have to be zero, in which case p/q would equal
a/b.

Putting these two cases together shows that if α is rational,
then there are only finitely many distinct rational numbers
p/q such that |α− p/q| < 1/q2, as claimed.



Irrationality and Transcendence, V

In principle, we could try to use this result to establish the
irrationality of an arbitrary irrational number. However, this can be
quite cumbersome in practice.

The numbers for which it will be effective are those that we
can write as an infinite sum of rational numbers whose terms
decrease rapidly in size: we can then obtain the desired
rational approximations by taking partial sums of the series.

As long as the tail of the series is very small (i.e., less than
1/q2) relative to the denominator q of each partial sum, we
will be able to conclude that the sum of the series is irrational.



Irrationality and Transcendence, VI

Example: Show that α =
∑∞

k=0 10−3
k

is irrational.

Let pn/qn =
∑n

k=0 10−3
k

be the nth partial sum of the series.

We observe that qn = 103
k

since each of the other terms has
a denominator dividing 103

k
.

Furthermore, it is easy to see (e.g., from the decimal

expansion of α) that the size of the tail
∑∞

k=n+1 10−3
k

is at

most 2 · 10−3
k+1

.

Then we have an easy bound
|α− pn/qn| < 2 · 10−3

k+1
< (10−3

k
)2 = 1/q2

n. Since all of the
partial sums of this series are distinct, we obtain infinitely
many such pn/qn, and therefore by our result above, α is
irrational.



Irrationality and Transcendence, VII

As first observed by Liouville, we can extend this criterion to
exclude algebraic numbers that are roots of higher-degree
polynomials by increasing the exponent of q in the bound on the
right-hand side. First, some preliminaries:

We say that a number α ∈ C is algebraic if α is the root of
some nonzero polynomial p(x) with rational coefficients.

If we consider all of the possible polynomials in Q[x ] of which
α is a root, by the well-ordering principle we can see that there
is some polynomial of minimal degree d of which α is a root.

We refer to this degree d as the algebraic degree of α over Q.
There is a unique monic polynomial of this degree d of which
α is a root; this polynomial is called the minimal polynomial
of α over Q.



Irrationality and Transcendence, VIII

Examples:

1. Quadratic irrationals have algebraic degree 2 over Q, since
they are roots of quadratic polynomials but not any
polynomial of lower degree.

2. The number 4
√

2 has minimal polynomial x4 − 2 over Q
(although this is not completely trivial to prove) and thus has
algebraic degree 4.

3. The number
√

2 +
√

3 is algebraic because it is the root of the
polynomial x4 − 5x2 + 1, and in fact (though this is again
harder to prove) that polynomial is its minimal polynomial.

4. The number π is not algebraic because it is not the root of
any nonzero polynomial with rational coefficients. (This is
even harder to prove, of course.)



Irrationality and Transcendence, IX

Some other observations:

The minimal polynomial is always irreducible (otherwise, one
factor would have α as a root and have smaller degree) and it
cannot have any repeated roots (otherwise m and its
derivative m′ would have a factor x − α in common).

We can also clear denominators to see that any algebraic
number is the root of a polynomial with integer coefficients.

If α is the root of some polynomial
cdxd + cd−1xd−1 + · · ·+ c0 where the ci are integers, then
cdα

d + cd−1α
d−1 + · · ·+ c0 = 0.

If we set β = cdα, by rescaling we can see that β is a root of
the polynomial xd + cd−1cdxd−1 + · · ·+ c0cd−1

d , which is
monic and has integer coefficients.

Thus, up to an integer factor, any algebraic number is the
root of a monic polynomial with integer coefficients.



Irrationality and Transcendence, X

With these preliminaries finished, we can now give Liouville’s result:

Theorem (Liouville’s Approximation Theorem)

Suppose α is algebraic of degree n > 1 over Q and that its
minimal polynomial m(x) has integer coefficients. Then there
exists a positive real number A such that |α− p/q| ≥ A/qn for
any rational number p/q.

The idea of the proof is to use the mean value theorem to bound
the difference between m(α) and m(p/q) and the fact that we can
express m(p/q) as 1/qn times an integer.

We can also reduce to the situation where the minimal polynomial
is monic by rescaling α, as we noted on the last slide. So the given
assumption is not really a restriction.



Irrationality and Transcendence, XI

Proof:

Suppose α is algebraic of degree n > 1 over Q and that its
minimal polynomial m(x) has integer coefficients and factors
as m(x) = (x − α)(x − β1)(x − β2) · · · (x − βn−1) over C.

Note that the βi are distinct from α because m(x) cannot
have repeated roots as we noted earlier.

Now define M be the maximum value of |m′(x)| on the
interval [α− 1, α+ 1], and set A = min(1, 1/M, |α− βi |) over
all of the roots βi .

We claim this value of A satisfies the given inequality.

To show this, suppose otherwise, so that p/q is rational and
has |α− p/q| < A/qn. Then because A ≤ 1, we have
p/q ∈ (α− 1, α + 1).

Also, because A ≤ |α− βi |, we see that p/q 6= βi for any i ,
and there is no root of m(x) between α and p/q.



Irrationality and Transcendence, XII

Proof (continued):

Now write m(x) = xd + cd−1xd−1 + · · ·+ c0.

Then m(p/q) = (p/q)d + cd−1(p/q)d−1 + · · ·+ c0
= (1/qd) · [pd + cd−1pd−1q + · · ·+ c0qd ].

So |m(p/q)| ≥ 1/qd ·
∣∣pd + cd−1pd−1q + · · ·+ c0qd

∣∣ ≥ 1/qd

because the term inside the absolute values is an integer and
it cannot be zero since m(p/q) 6= 0.

Now, by the mean value theorem, there exists x0 in the
interval with endpoints p/q and α such that
m(α)−m(p/q) = m′(x0) · (α− p/q). Taking absolute values
yields |m(α)−m(p/q)| = |m′(x0)| · |α− p/q|.
By assumption we have A ≤ 1/M and |m′(x0)| ≤ M, and also
m(α) = 0 and |m(p/q)| ≥ 1/qd .

So we get |α− p/q| =
|m(p/q)|
|m′(x0)|

≥ A

qd
as desired.



Irrationality and Transcendence, XIII

Roughly speaking, this result says that if we have an algebraic
number α of degree d , then we cannot find a rational
approximation that is “too close” to α.

If we flip the condition around, then if we have a real number
α that we can approximate extremely well, then it cannot be
algebraic.

More precisely: if α is an irrational real number such that
there exists a constant c > 0 and a sequence of rational
numbers pn/qn such that |α− pn/qn| < c/qn

n , then α is
transcendental.

The point is that this sequence of rational numbers
contradicts the assertion that α is algebraic of degree n for
every n, by Liouville’s theorem, and so α must be
transcendental.



Irrationality and Transcendence, XIV

We can use a similar sort of construction as we used earlier to
construct transcendental numbers.

We can construct such an α and corresponding rational
approximations pn/qn by taking α to be an infinite series
whose terms drop in size very quickly.

Here, we want the tail after the nth partial sum pn/qn to be
on the order of 1/qn

n rather than 1/q2
n: this will guarantee

that α will be transcendental.



Irrationality and Transcendence, XV

Example: Show that α =
∑∞

k=0 10−k! is transcendental.

Let pn/qn =
∑n

k=0 10−k! be the nth partial sum of the series.
We observe that qn = 10k! since each of the other terms has a
denominator dividing 10−k!.

Furthermore, it is easy to see (e.g., from the decimal
expansion of α) that the size of the tail

∑∞
k=n+1 10−k! is at

most 2 · 10−(n+1)!.

Then we have an easy bound
|α− pn/qn| < 2 · 10−(n+1)! = 2(10−n!)n+1 = 2/qn+1

n < 1/qn
n .

Since all of the partial sums of this series are distinct, we
obtain infinitely many such pn/qn, and therefore by our result
above, α is transcendental.



Summary

We finished our discussion of periodic continued fractions.

We discussed how to use continued fractions to do rational
approximation.

We discussed some methods for constructing irrational and
transcendental numbers.

Next lecture: Pell’s Equation (part 1).


