
Math 4527 (Number Theory 2)

Lecture #5 of 38 ∼ January 28, 2021

Continued Fractions (Part 2)

Computing Infinite Continued Fractions

Periodic Continued Fractions

This material represents §6.2.3 from the course notes.



Reminders, I

Definition

A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+ 1

ak−1 +
1

ak

, where the ai are positive

real numbers. For brevity, we will denote this expression using the
much more compact notation [a0, a1, · · · , ak ]. If the ai are
integers, we term it a simple continued fraction.

Definition

If C = [a0, a1, · · · , ak ] is given, then the continued fraction
Cn = [a0, a1, · · · , an] for n < k is called the nth convergent to C .



Reminders, II

Here are some simple properties of continued fraction convergents:

Proposition (Properties of Convergents)

Let C = [a0, a1, . . . , ak ] where the ai are positive, and define
p−1 = 1, p0 = a0, and pn = anpn−1 + pn−2, and also q−1 = 0,
q0 = 1, and qn = anqn−1 + qn−2.

1. The convergent Cn = pn/qn.

2. We have pnqn−1 − pn−1qn = (−1)n−1 and
pnqn−2 − pn−2qn = (−1)n−2an.

3. We have Cn −Cn−1 =
(−1)n−1

qn−1qn
and Cn −Cn−2 =

(−1)n−2an
qn−2qn

.

4. We have C1 > C3 > C5 > · · · > C6 > C4 > C2, and

|C − Cn| ≤
1

qnqn+1
<

1

q2
n

.



Reminders, III

Definition

Given a sequence a0, a1, a2, ... of positive integers, we define the
infinite continued fraction α = [a0, a1, a2, . . . ] to be the limit
lim
n→∞

[a0, a1, . . . , an] of its finite continued fraction convergents.

As we showed last time, every irrational real number has a unique
infinite continued fraction expansion, which we can find
numerically using our procedure of “subtract off the integer part,
reciprocate, and repeat”.

Many computer algebra systems have commands for computing
continued fraction expansions. For example, in Mathematica, the
command ContinuedFraction[α,n] will compute the first n
terms of the expansion for α.



Continued Fractions Continued, I

Example: Find the continued fraction expansion of 8 +
√

6.

With α = 8 +
√

6, we find, successively,

n 0 1 2 3 4 · · ·

αn 8 +
√

6

√
6 + 2

2
2 +
√

6

√
6 + 2

2
2 +
√

6 · · ·
an 10 2 4 2 4 · · ·

αn − an
√

6− 2

√
6− 2

2

√
6− 2

√
6− 2

2

√
6− 2 · · ·

and since each term after this will repeat, we see that

8 +
√

6 = [10, 2, 4, 2, 4, 2, 4, . . . ] .



Continued Fractions Continued, I

Example: Find the continued fraction expansion of 8 +
√

6.

With α = 8 +
√

6, we find, successively,

n 0 1 2 3 4 · · ·

αn 8 +
√

6

√
6 + 2

2
2 +
√

6

√
6 + 2

2
2 +
√

6 · · ·
an 10 2 4 2 4 · · ·

αn − an
√

6− 2

√
6− 2

2

√
6− 2

√
6− 2

2

√
6− 2 · · ·

and since each term after this will repeat, we see that

8 +
√

6 = [10, 2, 4, 2, 4, 2, 4, . . . ] .



Continued Fractions Continued, VII

Example: Find the continued fraction expansion of π.

It seems very unlikely we should expect to find a nice pattern
for π, especially since we cannot even simplify any of the
remainder terms (they will just be rational functions of π).

The first 15 terms are
π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, . . . ]. No
particular pattern seems apparent here.



Continued Fractions Continued, VII

Example: Find the continued fraction expansion of π.

It seems very unlikely we should expect to find a nice pattern
for π, especially since we cannot even simplify any of the
remainder terms (they will just be rational functions of π).

The first 15 terms are
π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, . . . ]. No
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Continued Fractions Continued, VIII

Example: Find the continued fraction expansion of
√

7.

With α =
√

7, we find, successively,

n 0 1 2 3 4 · · ·

αn

√
7

√
7 + 2

3

√
7 + 1

2

√
7 + 1

3

√
7 + 2 · · ·

an 2 1 1 1 4 · · ·

αn − an
√

7− 2

√
7− 1

3

√
7− 1

2

√
7− 2

3

√
7− 2 · · ·

and since each term after this will repeat, we see that√
7 = [2, 1, 1, 1, 4, 1, 1, 1, 4, . . . ] .



Continued Fractions Continued, VIII

Example: Find the continued fraction expansion of
√

7.

With α =
√

7, we find, successively,

n 0 1 2 3 4 · · ·

αn

√
7

√
7 + 2

3

√
7 + 1

2

√
7 + 1

3

√
7 + 2 · · ·

an 2 1 1 1 4 · · ·

αn − an
√

7− 2

√
7− 1

3

√
7− 1

2

√
7− 2

3

√
7− 2 · · ·

and since each term after this will repeat, we see that√
7 = [2, 1, 1, 1, 4, 1, 1, 1, 4, . . . ] .



Continued Fractions Continued, IX

In some of the examples, the continued fraction expansion
eventually started repeating. Let’s now examine such expansions a
bit more:

Definition

An infinite continued fraction [a0, a1, a2, . . . ] is (eventually)
periodic if there is some integer n such that ar = an+r for all
sufficiently large r . We employ the notation
[a0, a1, a2, . . . , ak , ak+1, ak+2, . . . , ak+n] to indicate that the block
of integers under the bar repeats indefinitely.

This is the same notation used for repeating decimals.



Continued Fractions Continued, X

Example: Find the real number α = [1] and its first ten
convergents.

By the periodicity of the expansion, we know that

α = 1 +
1

α
=
α + 1

α
.

This yields a quadratic equation for α, namely α2 = α + 1,

whose solutions are α =
1±
√

5

2
. Since α > 1, we need the

plus sign, so α =
1 +
√

5

2
is the golden ratio.

We can compute the convergents explicitly: the first ten are

1, 2,
3

2
,

5

3
,

8

5
,

13

8
,

21

13
,

34

21
,

55

34
, and

89

55
.



Continued Fractions Continued, XI

Notice that the convergents of α = [1] are ratios of consecutive
Fibonacci numbers.

This is easy to show using the definition of α: by definition we

have
pn+1

qn+1
= 1 +

1

pn/qn
=

qn

pn + qn
.

Thus, pn+1 = qn and so we can write
qn+1 = pn + qn = qn−1 + qn.

Along with the initial conditions p1 = q2 = q1 = 1, this is
precisely the definition of the Fibonacci numbers.

In fact, our results about the convergence of the convergents

provide a proof that lim
n→∞

Fn+1

Fn
=

1 +
√

5

2
.



Continued Fractions Continued, XII

Example: Find the real number α = [2, 5].

By the periodicity of the expansion, we know that

α = 2 +
1

5 +
1

α

= 2 +
α

5α + 1
=

11α + 2

5α + 1
.

This yields a quadratic equation for α, namely

α(5α + 1) = 11α + 2, whose solutions are α =
5±
√

35

5
.

Since α > 1, we need the plus sign, so α =
5 +
√

35

5
.



Continued Fractions Continued, XII

Example: Find the real number α = [2, 5].

By the periodicity of the expansion, we know that

α = 2 +
1

5 +
1

α

= 2 +
α

5α + 1
=

11α + 2

5α + 1
.

This yields a quadratic equation for α, namely

α(5α + 1) = 11α + 2, whose solutions are α =
5±
√

35

5
.

Since α > 1, we need the plus sign, so α =
5 +
√

35

5
.



Continued Fractions Continued, XIII

So far, all of the periodic continued fractions we have seen have
been solutions of a quadratic polynomial in Q[x ]. This is not an
accident:

Theorem (Periodic Continued Fractions)

If α has a periodic continued fraction, then α is an irrational root
of a quadratic polynomial with integer coefficients.

We call an irrational root of a quadratic polynomial with integer
coefficients a quadratic irrational. The quadratic irrationals are the

numbers of the form
p +
√

D

q
where p and q are integers and D is

a positive nonsquare integer.



Continued Fractions Continued, XIV

Proof:

Let α = [a0, a1, a2, · · · , ak , ak+1, ak+2, · · · , ak+n], and
γ = [ak+1, ak+1, · · · , ak+n].

Then by the periodicity of the expansion, we have
γ = [ak+1, · · · , ak+n, γ].

Expanding this out yields γ =
pn−1γ + pn−2
qn−1γ + qn−2

, which is a

quadratic equation for γ.

Since γ is irrational (being an infinite continued fraction), we

conclude that γ = b+
√
c

d for some integers b, c , and d .

Then α = [a0, a1, a2, · · · , ak , γ] is also a rational function in γ
(and irrational), so clearing the denominator shows that

α = e+
√
f

g for some integers e, f , and g , which is also a
quadratic irrational.



Continued Fractions Continued, XV

The converse of this theorem is true as well, which is to say, every
quadratic irrational has a periodic continued fraction expansion.
But it will take a fair bit more work. We will use an approach
motivated by the arithmetic of Q(

√
D).

Definition

Let α be a quadratic irrational. The minimal polynomial m(x) of α
is the unique quadratic polynomial of which α is a root having the
form ax2 + bx + c for relatively prime integers a, b, c where a > 0.
We also define the discriminant of α to be the value b2 − 4ac ∈ N.

In other settings, the minimal polynomial is assumed to be monic
and have rational coefficients. We take integer coefficients in our
definition here because we want to work with properties that rely
on having integer coefficients rather than rational coefficients.



Continued Fractions Continued, XVI

Examples:

1. The minimal polynomial of
√

2 is x2 − 2, of discriminant 8.

2. The minimal polynomial of the golden ratio (1 +
√

5)/2 is
x2 − x − 1, of discriminant 5.

3. The minimal polynomial of (3 +
√

13)/7 is 49x2 − 42x − 4, of
discriminant 2548.

4. The minimal polynomial of
√

6/5− 3 is 25x2 + 150x + 219, of
discriminant 600.

It is not hard to see that the minimal polynomial exists and is
well-defined. The discriminant of a quadratic irrational is also
always a positive integer, since b2 − 4ac is the term under the
square root in the quadratic formula.



Continued Fractions Continued, XVII

A few more definitions:

Definition

Suppose α is a quadratic irrational.

If α =
p +
√

D

q
, its conjugate is defined to be α =

p −
√

D

q
. The

conjugate is the other root of the minimal polynomial of α.
We also say that α is reduced if α > 1 and also −1/α > 1.

In general, the minimal polynomial of α will be
q2(x − α)(x − α) = q2x2 − 2pqx + (p2 − D) up to scaling by a
divisor of q (the coefficients need not be relatively prime, since
p2 − D could have a factor in common with q).



Continued Fractions Continued, XVIII

Examples:

1. The conjugate of α =
√

2 is α = −
√

2. Then α is not
reduced since −1/α =

√
2/2 is not greater than 1.

2. The conjugate of β = (1 +
√

5)/2 is β = (1−
√

5)/2. Then β
is reduced since both β and −1/β = β are greater than 1.

3. The conjugate of γ =
√

7− 2 is γ = −
√

7− 2. Then γ is not
reduced since γ is not greater than 1.

By first establishing some results about reduced quadratic
irrationals, we can now prove that every quadratic irrational has a
periodic continued fraction expansion.



Continued Fractions Continued, XIX

Theorem (Quadratic Irrationals and Continued Fractions)

Let α be a quadratic irrational with discriminant D and αn be the
nth remainder term from the continued fraction expansion of α.

1. The remainder term αn has discriminant D for all n ≥ 1.

2. If α is a reduced quadratic irrational, then αn is also reduced.

3. There are only finitely many reduced quadratic irrationals of
discriminant D.

4. The remainder term αn is reduced for sufficiently large n.

5. The continued fraction expansion of a real number α is
periodic if and only if α is a quadratic irrational.

6. The continued fraction expansion of a real number α is purely
periodic (i.e., is of the form α = [a0, a1, . . . , an]) if and only if
α is a reduced quadratic irrational.



Continued Fractions Continued, XX

1. The remainder term αn has discriminant D for all n ≥ 1.

Proof:

It is enough to show α1 has discriminant D, since then the
result for all αn follows by a trivial induction.

So suppose α has minimal polynomial m(x) = ax2 + bx + c
and write bαc = a0.

Since α = a0 + 1/α1 this means
a(a0 + 1/α1)2 + b(a0 + 1/α1) + c = 0, whence
a(a0α1 + 1)2 + b(a0α1 + 1)α1 + c(α1)2 = 0; equivalently,
(aa20 + ba0 + c)α2

1 + (2aa0 + b)α1 + a = 0.

Since a, b, c are relatively prime, so are aa20 + ba0 + c ,
2aa0 + b, and a.

Thus up to sign, the minimal polynomial of α1 is
(aa20 + ba0 + c)x + (2aa0 + b)x + a, and so its discriminant is
(2aa0 + b)2 − 4a(aa20 + ba0 + c) = b2 − 4ac = D, as claimed.



Continued Fractions Continued, XXI

2. If α is a reduced quadratic irrational, then αn is also reduced.

Proof:

We show that if α is reduced then α1 is reduced, and then
apply a trivial induction.

If α is reduced, then α1 =
1

α− bαc
> 1 since

0 < α− bαc < 1.

Also, α1 =
1

α− bαc
is negative because α is negative, and its

absolute value is between 0 and 1 because bαc ≥ 1. Thus,
−1/α1 > 1 as required, and so α1 is reduced.



Continued Fractions Continued, XXII

3. There are only finitely many reduced quadratic irrationals of
discriminant D.

Proof:

Suppose α is a reduced quadratic irrational of discriminant D
and minimal polynomial m(x) = ax2 + bx + c , where
b2 − 4ac = D and a > 0.

Since α =
−b +

√
D

2a
is reduced, we have −1/α > 1 and so

−1 < α < 0.

Thus α + α = −b/a is positive, so since a > 0 that means
b < 0.

Furthermore, α =
−b −

√
D

2a
and a > 0, this requires

−b −
√

D < 0 and so b > −
√

D. Thus −
√

D < b < 0 and so
there are finitely many possible b.



Continued Fractions Continued, XXIII

3. There are only finitely many reduced quadratic irrationals of
discriminant D.

Proof (continued):

We just showed −
√

D < b < 0.

Then since α =
−b +

√
D

2a
must have α > 1, we see that

a < −b +
√

D < 2
√

D.

Since a is positive, there are finitely many possible a.

Then, finally, since c = (b2 − D)/(4a), there are finitely many
possible triples (a, b, c) and thus finitely many possible α.



Continued Fractions Continued, XXIV

4. The remainder term αn is reduced for sufficiently large n.

Proof:

By definition, for any n ≥ 1, we have αn = 1
αn−1−bαn−1c > 1.

It remains to obtain a bound on −1/αn.

First, by definition we have α = [a0, a1, . . . , an, αn], so if we

set [a0, a1, . . . , an] = pn/qn, then so that α =
pnαn + pn−1
qnαn + qn−1

.

Conjugating yields α =
pnαn + pn−1
qnαn + qn−1

since the pi and qi are

integers hence unchanged by conjugating.

Rearranging this last expression gives

− 1

αn
= − qnα− pn

qn−1α− pn−1
=

qn

qn−1
· α− pn/qn

α− pn−1/qn−1
.



Continued Fractions Continued, XXV

4. The remainder term αn is reduced for sufficiently large n.

Proof (continued):

We have − 1

αn
= − qnα− pn

qn−1α− pn−1
=

qn

qn−1
· α− pn/qn

α− pn−1/qn−1
.

For large n, as we have shown, pn/qn → α, and thus the

second term approaches
α− α
α− α

= 1 (note that the

denominator is nonzero because α is irrational).

The first term qn/qn−1 is always greater than 1, and its limit
cannot equal 1 because qn ≥ qn−1 + qn−2, so dividing by qn−1
and taking the limit would give 1 ≥ 1 + 1, impossible.

Therefore, for sufficiently large n, we see −1/αn > 1, and so
αn is reduced.



Continued Fractions Continued, XXVI

5. The continued fraction expansion of a real number α is
periodic if and only if α is a quadratic irrational.

Proof:

We proved earlier that if α has a periodic continued fraction
expansion, then α is a quadratic irrational.

For the converse, suppose α is a quadratic irrational of
discriminant D. Then by (1), every remainder term in the
continued fraction expansion of α has discriminant D.

By (4), the nth remainder term is reduced for sufficiently large
n. But by (3), there are only finitely many such remainder
terms, so by the pigeonhole principle there must be at least
one repetition somewhere.

But once a remainder term repeats, the rest of the expansion
will be the same, and so the expansion is periodic, as claimed.



Continued Fractions Continued, XXVII

6. The continued fraction expansion of a real number α is purely
periodic (i.e., is of the form α = [a0, a1, . . . , an]) if and only if
α is a reduced quadratic irrational.

Proof:

First suppose α has a purely periodic expansion.

Then α = [a0, a1, . . . , akn, α] for every positive integer k .
Since by (4) the remainders are eventually all reduced, this
means α must be reduced.

Conversely, suppose α is reduced. By (5) we know that the
continued fraction expansion is eventually periodic, say with
αk+n = αk for some k and n.

We will show that αk+n−1 = αk−1. Then by iterating this
fact, this implies αj+n = αj for all j ≥ 0.

Then we see immediately that α has a periodic continued
fraction expansion, as aj+n = bαj+nc = bαjc = aj for all j ≥ 0.



Continued Fractions Continued, XXVIII

6. The continued fraction expansion of a real number α is purely
periodic (i.e., is of the form α = [a0, a1, . . . , an]) if and only if
α is a reduced quadratic irrational.

Proof (continued):

It remains to show that if α is reduced and αk+n = αk then
αk+n−1 = αk−1. First, both αk+n and αk are reduced by (2).

By definition we have αk+n = 1
αk+n−1−ak+n−1

and

αn = 1
αn−1−an−1

, so conjugating and inverting yields

− 1

αn+k
= ak+n−1 − αk+n−1 and − 1

αn
= an−1 − αn−1.

Since both αk+n−1 and αn−1 are between −1 and 0, we see

ak+n−1 = b− 1

αn+k
c = b− 1

αn
c = an−1, as claimed.



Continued Fractions Continued, XXIX

Example: Find the continued fraction expansion of (3 +
√

13)/4.

Note α = (3 +
√

13)/4 > 1 has −1/α = 3 +
√

13 > 1, so α is
reduced. Per (6) above, its continued fraction expansion will
be purely periodic.

With α = (3 +
√

13)/4, we find, successively,

n 0 1 2 3 4 5

αn
3+
√
13

4
1+
√
13

3
2+
√
13

3
1+
√
13

4 3 +
√

13 3+
√
13

4
an 1 1 1 1 6

αn − an
−1+

√
13

4
−2+

√
13

3
−1+

√
13

3
−3+

√
13

4 −3 +
√

13

and we can see at this point each term will repeat. Therefore,

the continued fraction expansion is [1, 1, 1, 1, 6] , which is

indeed periodic.



Summary

We continued our discussion of infinite continued fractions.

We discussed periodic continued fractions and proved that periodic
continued fractions correspond to quadratic irrationals.

Next lecture: Rational approximation via continued fractions.


