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Continued Fractions (Part 1)

Finite Continued Fractions

Infinite Continued Fractions

This material represents §6.2.2-§6.2.3 from the course notes.



Continued Fractions, I

We now discuss another method for generating rational
approximations of a given real number α.

If we want to give an approximation to α, it will be of the
form a0 + x where a0 = bαc is the greatest integer less than
or equal to α and 0 ≤ x < 1.

In such a situation, we have 1/x > 1, so we could
approximate 1/x as an integer a1 = b1/xc, yielding an

approximation to α of the form a0 +
1

a1
.

For example, if we wanted to approximate π, we would
compute bπc = 3, and then note x = π − 3 = 0.141592 . . .
has 1/x ≈ 7.06251 . . . , and so we get the well-known
approximation to π of 3 + 1/7 = 22/7.



Continued Fractions, II

Alternatively, instead writing α = a0 + x and stopping after
approximating x ≈ 1/n, we could instead approximate 1/x in the
same way.

Specifically, we can write 1/x = a1 + y where a1 = b1/xc and
0 ≤ y < 1.

We can continue this procedure as long as each of the
rounded-off values are not exact integers.

For π, the next step would be noting that
y = 1/x − 7 ≈ 0.06251 has 1/y ≈ 15.9966, and so we get an
approximation 1/x − 7 ≈ 16, which yields an approximation to
π of 3 + 1/(7 + 1/16) = 355/113 ≈ 3.14159292, which is
accurate to 6 decimal places.



Continued Fractions, III

We can continue this procedure to generate increasingly accurate
rational approximations of α as “continued fractions”:

Definition

A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+ 1

ak−1 +
1

ak

, where the ai are positive

real numbers. For brevity, we will denote this expression using the
much more compact notation [a0, a1, · · · , ak ]. If the ai are
integers, we term it a simple continued fraction.



Continued Fractions, IV

Examples:

1. [2, 3, 4] = 2 +
1

3 +
1

4

=
30

13
.

2. [1, 1, 1, 1, 1] = 1 +
1

1 +
1

1 +
1

1 +
1

1

=
8

5
.

3. [1/2, 1/3, 1/4] =
1

2
+

1
1

3
+

1

1/4

=
19

26
.



Continued Fractions, V

We note a few basic properties of continued fractions that follow
immediately from the definition:

1. [a0, a1, . . . , ak ] = a0 +
1

[a1, . . . , ak ]
.

2. [a0, a1, . . . , ak ] = [a0, a1, . . . , ak−1 +
1

ak
].

3. Every finite simple continued fraction is a rational number:
thus, no irrational number can be written as a finite simple
continued fraction.

4. Conversely, any rational number a/b can be written as a
simple continued fraction, as follows from an easy induction
on b. Explicitly, if b = 1 then a/b = [a], and then for b > 1 if
we divide to write b = qa + r , we have a/b = q + 1/(b/r),
and b/r has a smaller denominator than a/b.



Continued Fractions, VI

In fact, per the last slide, we can see a nice connection between
the Euclidean algorithm and continued fractions.

Specifically, suppose a/b is in lowest terms, and apply the
Euclidean algorithm to write

a = q1b + r1

b = q2r1 + r2
...

rk−1 = qk rk + 1

rk = qk+1

where we know the last remainder is 1 = gcd(p, q).

Then
a

b
= q1 +

1

b/r1
= q1 +

1

q2 + 1/(r1/r2)
= · · ·

= [q1, q2, . . . , qk , qk+1].



Continued Fractions, VII

Indeed, from this Euclidean algorithm calculation, we can see that
the simple continued fraction expansion of any rational number is
essentially unique.

Specifically, by the uniqueness of the Euclidean algorithm, all
of the quotients are unique.

Thus, up to the length of the expression, it is unique.

It is not hard to see that the only way to alter the length of
the expression is to write
[q1, q2, · · · , qk ] = [q1, q2, · · · , qk − 1, 1].

If we exclude the case where the final term is equal to 1, then
every positive rational number can be written uniquely as a
continued fraction.



Continued Fractions, VIII

Example: Find the continued fraction expansion of 18/7.

Applying the Euclidean algorithm yields

17 = 2 · 7 + 4

7 = 1 · 4 + 3

4 = 1 · 3 + 1

3 = 3 · 1

Reading off the quotients then yields 18/7 = [2, 1, 1, 3].

Of course, we could just do this explicitly by rounding down
and peeling off the integer part at each stage:
18

7
= 2 +

4

7
= 2 +

1

7/4
= 2 +

1

1 +
1

4/3

= 2 +
1

1 +
1

1 + 1/3

.



Continued Fractions, VIII

Example: Find the continued fraction expansion of 18/7.

Applying the Euclidean algorithm yields

17 = 2 · 7 + 4

7 = 1 · 4 + 3

4 = 1 · 3 + 1

3 = 3 · 1

Reading off the quotients then yields 18/7 = [2, 1, 1, 3].

Of course, we could just do this explicitly by rounding down
and peeling off the integer part at each stage:
18

7
= 2 +

4

7
= 2 +

1

7/4
= 2 +

1

1 +
1

4/3

= 2 +
1

1 +
1

1 + 1/3

.



Continued Fractions, IX

If we truncate a continued fraction after some number of terms, we
will obtain an approximation to the true value.

Definition

If C = [a0, a1, · · · , ak ] is given, then the continued fraction
Cn = [a0, a1, · · · , an] for n < k is called the nth convergent to C .

Example:

For
256

221
= [1, 6, 3, 5, 2] ≈ 1.15837, we see [1] = 1,

[1, 6] =
7

6
≈ 1.66667,

[1, 6, 3] =
22

19
≈ 1.15789,

[1, 6, 3, 5] =
117

101
≈ 1.15842.



Continued Fractions, X

Here are some simple properties of continued fraction convergents:

Proposition (Properties of Convergents)

Let C = [a0, a1, . . . , ak ] where the ai are positive, and define
p−1 = 1, p0 = a0, and pn = anpn−1 + pn−2, and also q−1 = 0,
q0 = 1, and qn = anqn−1 + qn−2.

1. The convergent Cn = pn/qn.

2. We have pnqn−1 − pn−1qn = (−1)n−1 and
pnqn−2 − pn−2qn = (−1)n−2an.

3. We have Cn −Cn−1 =
(−1)n−1

qn−1qn
and Cn −Cn−2 =

(−1)n−2an
qn−2qn

.

4. We have C1 > C3 > C5 > · · · > C6 > C4 > C2, and

|C − Cn| ≤
1

qnqn+1
<

1

q2
n

.



Continued Fractions, XI

1. The convergent Cn = pn/qn.

Proof:

Induct on n. The base cases n = 1 and n = 2 are trivial, since
[a0] = a0/1 and [a0, a1] = a0 + 1/a1 = (a0a1 + 1)/a1.

First, observe that

[a0, a1, . . . , am−1, am, am+1] = [a0, a1, . . . , am−1, am +
1

am+1
].

Now by definition, [a0, a1, . . . , am−1, x ] =
pm−1x + pm−2
qm−1x + qm−2

.

Thus, setting x = am +
1

am+1
and simplifying gives

[a0, a1, . . . , am−1, am +
1

am+1
] =

am+1pm + pm−1
am+1qm + qm−1

=
pm+1

qm+1
.



Continued Fractions, XII

2. We have pnqn−1 − pn−1qn = (−1)n−1 and
pnqn−2 − pn−2qn = (−1)n−2an.

Proof:

For the first statement, by the recursion we can write

pnqn−1 − pn−1qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 − qn−2)

= −(pn−1qn−2 − pn−2qn−2)

so since p1q0 − p0q1 = 1, by a trivial induction we see that
pnqn−1 − pn−1qn = (−1)n−1.

The second statement follows in the same way. (Exercise for
you, if you want.)



Continued Fractions, XIII

3. We have Cn −Cn−1 =
(−1)n−1

qn−1qn
and Cn −Cn−2 =

(−1)n−2an
qn−2qn

.

Proof:

For the first, divide pnqn−1 − pn−1qn = (−1)n−1 and
pnqn−2 − pn−2qn = (−1)n−2an from (2) by qnqn−1.

This yields
pn

qn
− pn−1

qn−1
=

(−1)n−1

qn−1qn
.

The second one follows by dividing the other relation from (2)
by qnqn−2 respectively.



Continued Fractions, XIV

4. We have C1 > C3 > C5 > · · · > C6 > C4 > C2, and

|C − Cn| ≤
1

qnqn+1
<

1

q2
n

.

Proof:

From Cn − Cn−2 =
(−1)n−2an

qn−2qn
in (3), we see that Cn < Cn−2

if n is odd, and Cn > Cn−2 if n is even.

Hence, by a trivial induction, we see C1 > C3 > C5 > · · · and
· · · > C6 > C4 > C2.

Furthermore, since C2n+1 > C2n for every n, we can combine
the two chains of inequalities to obtain the third statement.

For the last statement, the inequalities above imply that C is
between Cn and Cn+1 for every n, hence the triangle

inequality implies |C − Cn| ≤ |Cn+1 − Cn| =
1

qnqn+1
<

1

q2
n

.



Continued Fractions, XV

Part (4) of the previous proposition gives us a more precise
estimate for how good the approximation of a number α by its
continued fraction convergents can be.

Specifically, it says that the estimate Cn = pn/qn is within an
error of 1/q2

n, which is very close.

If, for example, we used an arbitrary denominator D, then we
could have an error as large as 1/(2D) for the best estimate
by a rational with denominator D.

The continued fraction convergent does quite a lot better
than this (since the denominator exponent is 2 rather than 1).

Do note, however, that it is the same order of magnitude as
the estimate from Farey fractions we got earlier: if α is
irrational, then there are infinitely many distinct rational
numbers p/q such that |α− p/q| < 1/q2.



Continued Fractions, XVI

What we would like to do now is extend our discussion of
continued fractions to cover irrational numbers α.

Of course, as we already noted, irrational numbers do not
have a finite continued fraction expansion: so what, for
example, would it mean to ask for the continued fraction
expansion of

√
2, or of π, or ln(2)?

To handle this, we simply extend our definition of continued
fraction to an infinite continued fraction by taking a limit.

Definition

Given a sequence a0, a1, a2, ... of positive integers, we define the
infinite continued fraction α = [a0, a1, a2, . . . ] to be the limit
lim
n→∞

[a0, a1, . . . , an] of its finite continued fraction convergents.



Continued Fractions, XVII

It is not clear a priori that the limit lim
n→∞

[a0, a1, · · · , an], but in fact

it always does.

From our results, for Cn = [a0, a1, · · · , an], we have
C1 > C3 > C5 > · · · > C6 > C4 > C2.

Thus, the sequence C1, C3, C5, ... is monotone decreasing
and bounded below (by C2), hence it has a limit by the
monotone convergence theorem1.

Similarly, the sequence C2, C4, C6, ... is monotone increasing
and bounded above (by C1), hence it also has a limit by the
monotone convergence theorem.

These limits must be equal because |Cn − Cn+1| < 1/q2
n → 0.

1Any monotone increasing sequence that is bounded above (i.e., any
sequence a1 < a2 < a3 < · · · such that all terms are less than some finite
number M) has a limit. By negating, any monotone decreasing sequence
bounded below also has a limit.



Continued Fractions, XVIII

Some other ways to see that the limit lim
n→∞

[a0, a1, · · · , an] exists:

We could observe that the intervals [C2n,C2n−1] form a set of
nested closed intervals of lengths tending to zero.

Then by the nested intervals theorem2, their intersection is a
single point C equal to the limit of the sequence Ci .

A third way is to note |Cj − Ck | ≤ |Cj − Cj+1| ≤ 1/q2
j for all

k ≥ j , so the sequence C1,C2, . . . is Cauchy.

2The nested intervals theorem says that if I1, I2, I3, . . . is an infinite
sequence of nested closed intervals (i.e., where In+1 ⊆ In for each n) that are
bounded, then the intersection ∩∞

n=1In is also a closed interval. Furthermore, if
the lengths of the intervals tend to zero, then the intersection consists of a
single point.



Continued Fractions, XIX

We can now establish some of the basic properties of infinite
continued fractions.

Proposition (Properties of Infinite Continued Fractions)

Let α = [a0, a1, a2, . . . ] be an infinite simple continued fraction
with nth convergent Cn = [a0, a1, · · · , an] = pn/qn. Then the
following hold:

1. We have |α− Cn| ≤
1

qnqn+1
<

1

q2
n

.

2. Any infinite continued fraction α is irrational. Furthermore,
any two different irrational numbers have different infinite
continued fraction expansions.

The first part is immediate from the finite case we did earlier, since
α lies between Cn and Cn+1. The second part has actual content.



Continued Fractions, XX

2. Any infinite continued fraction α is irrational. Furthermore,
any two different irrational numbers have different infinite
continued fraction expansions.

Proof:

For the first statement, suppose α = p/q were rational. By

the proposition above, we know that 0 <

∣∣∣∣p

q
− pn

qn

∣∣∣∣ < 1

q2
n

,

meaning that 0 < |pqn − pnq| < q

qn
.

However,
q

qn
goes to zero as n→∞, since q is fixed but qn is

a strictly increasing sequence. This is impossible, since if
qn > q the expression |pqn − pnq| would be an integer
between 0 and 1.



Continued Fractions, XXI

2. Any infinite continued fraction α is irrational. Furthermore,
any two different irrational numbers have different infinite
continued fraction expansions.

Proof (continued):

For the second statement, first observe that C0 < α < C1,

meaning that a0 < α < a0 +
1

a1
, so we see that bαc = a0.

Next, observe that α =

lim
n→∞

[a0, a1, . . . , an] = lim
n→∞

(
a0 +

1

[a1, . . . , an]

)
= a0 +

1

[a1, a2, . . . ]
.

Now suppose β = [b0, b1, · · · ] and β = α. By taking floors,
we see that b0 = a0.

Then [b1, b2, . . . ] =
1

β − b0
=

1

α− a0
= [a1, a2, . . . ]. Taking

floors again shows b1 = a1. Repeating the argument yields
bi = ai for every i , so α and β are identical.



Continued Fractions, XXII

So far, we have discussed infinite continued fractions from the
perspective of an explicit construction.

However, of course, we would like to calculate the actual
continued fraction expansions of some actual real numbers.

The calculation in the proposition above shows how we can do
this.

So we will start in with some actual calculations next time.



Summary

We established some results on rational approximation using Farey
sequences.

We introduced finite continued fractions and established some of
the properties of their convergents.

We introduced infinite continued fractions. Next lecture: More

with continued fractions.


