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Farey Sequences

The Frobenius Coin Problem (part 2)

The Farey Sequences

Rational Approximation

This material represents §6.2.1 from the course notes.



More Frobenius Coin Problem, I

The problem of describing the largest integer that cannot be
written as a nonnegative linear combination of two integers (also
called the Frobenius coin problem) was first solved by Sylvester:

Theorem (Sylvester)

If a and b are relatively prime integers, then there are exactly
1

2
(a− 1)(b − 1) integers that cannot be written in the form

ax + by with x , y ≥ 0, and the largest such integer is ab − a− b.

I proved this theorem last time. We’ll do a few quick applications
today.



More Frobenius Coin Problem, II

Example: There are postage stamps worth 5 cents and stamps
worth 13 cents. What is the largest non-attainable amount of
postage, and how many non-attainable amounts are there?

By Sylvester’s theorem with a = 5 and b = 13, the largest
non-representable integer is 5 · 13− 13− 5 = 47.

In total, there are
1

2
· 4 · 12 = 24 unattainable totals.
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More Frobenius Coin Problem, III

We could of course generalize this problem, to ask: for given
integers a1, a2, ... , ak , what is the largest integer n that cannot
be written as a nonnegative integer linear combination of the ai?

It turns out that there is no known general formula when
k > 2 (though the result is fairly effectively computable for
k = 3).

For a fixed number of denominations k , there does exist a
polynomial-time algorithm (polynomial in log ak , specifically)
for computing this maximum integer n, but it is not
appreciably faster than merely attempting to list the
possibilities!

For a variable number of denominations k, it is known that
computing n is NP-hard.

For small values, we can use Sylvester’s theorem and some case
analysis to solve the more general problem.



More Frobenius Coin Problem, IV

Example: Find the largest amount of postage that cannot be given
using some combination of 6-cent, 11-cent, and 14-cent stamps.

By Sylvester’s theorem with a = 3 and b = 7, we know that
3 · 7− 3− 7 = 11 is the largest amount that cannot be made
with 3 and 7.

Thus, 6 and 14 can make any even total that exceeds 22.

Adding one 11-cent stamp if needed, we can make any total
greater than or equal to 34. We can also clearly make
33 = 3 · 11, 31 = 6 + 11 + 14, 29 = 3 · 6 + 11.

But 27 is not possible (we would need one 11-cent stamp, but
we cannot make 16 from 6 and 14). So the largest amount we
cannot make is 27 cents.
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Rational Approximation, I

We will now study some problems related to rational
approximation of real numbers by rational numbers.

Although it may not seem so clear at the moment, we will in
fact be able to use some of these results to solve Diophantine
equations.

When describing real numbers, for convenience we often want
to give a nearby rational number that is a good approximation.



Rational Approximation, II

Indeed, this idea is implicitly embedded in the notion of the
decimal expansion of a real number.

For example, writing e = 2.7182818284590 . . . formally means
that e is the limit of the sequence 2, 2.7, 2.71, 2.718, 2.7182,
. . . .

Thus, truncating this sequence after some finite number of
steps will provide a good approximation of e.

More specifically, in the case of the decimal expansion to n
digits, the approximation is accurate to within an error of
10−n.

Decimal numbers are all well and good, but we can often get
better approximations using arbitrary rational numbers, rather
than just ones whose denominators are powers of 10.



Farey Sequences, I

If we are seeking to approximate a real number α, one thing we
might first look at is the set of rational numbers of small
denominator.

Since we want to understand distances between nearby
numbers, we should arrange the rationals in increasing order,
and then identify where our real number α lands between the
nearest pair.

This resulting sequence of rationals is known as a Farey sequence:

Definition

The Farey sequence of level n is the set of rational numbers
between 0 and 1 whose denominators (in lowest terms) are ≤ n,
arranged in increasing order.



Farey Sequences, II

Here are the first few Farey sequences:

Level 1:
0

1
,

1

1
.

Level 2:
0

1
,

1

2
,

1

1
.

Level 3:
0

1
,

1

3
,

1

2
,

2

3
,

1

1
.

Level 4:
0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1
.

Level 5:
0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1
.



Farey Sequences, III

To get the (n + 1)st Farey sequence from the nth one, we just
need to insert the fractions with denominator n + 1 properly:

Level 6:

0

1
,

1

6
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

5

6
,

1

1
.
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1
,

1

7
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1

6
,

1

5
,

1

4
,

2

7
,

1

3
,

2

5
,

3

7
,

1

2
,

4

7
,

3

5
,

2

3
,

5

7
,

3

4
,

4

5
,

5

6
,

6

7
,

1

1
.

Level 8:

0

1
,

1

8

1

7
,

1

6
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1

5
,

1

4
,

2

7
,

1

3
,

3

8
,

2

5
,

3

7
,

1

2
,

4

7
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3

5
,

5

8
,

2

3
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5

7
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3

4
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4

5
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5

6
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6

7
,

7

8
,

1

1
.

Audience participation time: find some patterns.



Farey Sequences, IV

A few fairly obvious patterns:

Here’s 4 sets of newly-inserted terms:
1

2
,

3

5
,

2

3

0

1
,

1

7
,

1

6

2

5
,

3

7
,

1

2

1

3
,

3

8
,

2

5
.

It appears that the first term that appears between two
consecutive terms a/b and c/d is (a + c)/(b + d). This
quantity is called the mediant (or the “baseball average”).

Here’s 3 pairs of differences between consecutive terms:
2

5
− 1

3
=

1

15

2

7
− 1

5
=

1

35

6

7
− 5

6
=

1

42
.

Note that the difference between the terms a/b and c/d is
always 1/(bd). Equivalently, the value bc − ad for
consecutive terms a/b and c/d is always equal to 1.



Farey Sequences, V

Proposition (Properties of Farey Sequences)

Let n be a positive integer.
1. If a/b and c/d are consecutive terms in the Farey sequence of

level n, then bc − ad = 1.

2. If a/b, e/f , and c/d are three consecutive terms in a Farey
sequence, then e/f = (a + c)/(b + d).

3. If 0 ≤ a/b, c/d ≤ 1 with bc − ad = 1, then a/b and c/d are
consecutive in the Farey sequence of level max(b, d). The first
term that appears between them in any later sequence is
(a + c)/(b + d) in the Farey sequence of level b + d.

4. a/b and c/d are consecutive terms in the Farey sequence of
level n if and only if bc − ad = 1 and b + d > n.

5. If a/b and e/f are consecutive terms in the Farey sequence of
level n, the term immediately following e/f is c/d, where
c =

⌊
n+b
f

⌋
e − a and d =

⌊
n+b
f

⌋
f − b.



Farey Sequences, VI

In order to prove the first result, we will need the following
surprisingly useful fact from elementary geometry:

Theorem (Pick’s Theorem)

If R is a polygon in the plane whose vertices are all lattice points,
then the area of R is given by the formula A = I + 1

2B − 1, where
I is the number of lattice points in the interior of R and B is the
number of lattice points on the boundary of R.

A boundary point is a point on one of the sides of R, while an
interior point is a point not on one of the sides of R.



Farey Sequences, VII

Pick’s Theorem is easiest to see with an example: this polygon has
9 boundary points and 5 interior points, and by drawing triangles

around it, one can verify its area is
17

2
= 5 +

9

2
− 1:



Farey Sequences, VIII

1. If a/b and c/d are consecutive terms in the Farey sequence of
level n, then bc − ad = 1.

Proof:

Suppose a/b and c/d are consecutive terms in the Farey
sequence of level n.
In the plane, draw the triangle whose vertices are (0,0), (b, a),
and (d , c):

0 1 2 3 4
0

1

2

3
By Pick’s Theorem, the
area of this lattice-point

triangle is
1

2
B + I − 1.

We claim B = 3 and I = 0
(as is clear in the picture).



Farey Sequences, VIII

1. If a/b and c/d are consecutive terms in the Farey sequence of
level n, then bc − ad = 1.

Proof (continued):

To show B = 3 and I = 0, first suppose there were a lattice
point (x , y) in the interior, where (necessarily) y ≤ max(b, d).
Then the slope of the line joining (0, 0) to (x , y) would be
between a/b and c/d : but then y/x would be between a/b
and c/d in the Farey sequence, impossible.

Now consider a non-vertex boundary point. It cannot lie on
the side joining (0,0) and (b, a), since a and b are relatively
prime. Similarly, it cannot lie on the side joining (0,0) and
(d , c). If it were on the side joining (b, a) and (d , c), then by
the same argument given above, there would be a term
between a/b and c/d in the Farey sequence.



Farey Sequences, IX

1. If a/b and c/d are consecutive terms in the Farey sequence of
level n, then bc − ad = 1.

Proof (finally):

Thus, B = 3 and I = 0, so the triangle has area
1

2
.

By basic geometry we can see that the area of the triangle

with vertices (0, 0), (b, a), and (d , c) is
1

2
|bc − ad |.

Some approaches for this: either enclose this triangle with
larger right triangles, or note that the area of the triangle is
half of the magnitude of the cross product
〈b, a, 0〉 × 〈d , c , 0〉 = 〈0, 0, bc − ad〉.

So, since bc > ad , setting
1

2
|bc − ad | =

1

2
immediately gives

bc − ad = 1.



Farey Sequences, X

2. If a/b, e/f , and c/d are three consecutive terms in a Farey
sequence, then e/f = (a + c)/(b + d).

Proof:

By (1), since a/b and e/f are consecutive we have
be − af = 1, and by (2) since e/f and c/d are consecutive we
have cf − de = 1.

This is a system of two linear equations in the two variables e
and f , so solving it yields e = (a + c)/(bc − ad) and
f = (b + d)/(bc − ad).

Thus,
e

f
=

a + c

b + d
, as claimed.

One can check directly that
a + c

b + d
appears between

a

b
and

c

d

in the Farey sequence of level b + d , since
a

b
<

a + c

b + d
<

c

d
.



Farey Sequences, XI

3. If 0 ≤ a/b, c/d ≤ 1 with bc − ad = 1, then a/b and c/d are
consecutive in the Farey sequence of level max(b, d). The first
term that appears between them in any later sequence is
(a + c)/(b + d) in the Farey sequence of level b + d .

Proof:

First suppose
e

f
is the term immediately following

a

b
in the

Farey sequence of level max(b, d). Then be − af = 1 by (1).

Subtracting bc − ad = 1 yields b(c − e)− a(d − f ) = 0, so
b(c − e) = a(d − f ). Since a and b are relatively prime, we
conclude that b divides d − f . Since f ≤ max(b, d) < b + d ,
the only possibility is that f = d , and then e = c .

Alternatively, we could have observed that both (e, f ) and
(c , d) are solutions to the linear Diophantine equation
bx − ay = 1, and used the structure of the solutions to win.



Farey Sequences, XII

3. If 0 ≤ a/b, c/d ≤ 1 with bc − ad = 1, then a/b and c/d are
consecutive in the Farey sequence of level max(b, d). The first
term that appears between them in any later sequence is
(a + c)/(b + d) in the Farey sequence of level b + d .

Proof (continued):

For the second statement, we just showed that a/b and c/d
are consecutive in the Farey sequence of level max(b, d).

Now increase the level of the sequence in increments of 1.

If e/f is the first term to appear between a/b and c/d , then
by (2), it would necessarily be the case that
e = (a + c)/(bc − ad) = a + c and
f = (b + d)/(bc − ad) = b + d .

So in fact, this is the first term that appears between them.



Farey Sequences, XIII

4. a/b and c/d are consecutive terms in the Farey sequence of
level n if and only if bc − ad = 1 and b + d > n.

Proof:

We must have bc − ad = 1 by (1).

Also, if b + d ≤ n, then
a + c

b + d
is a term between a/b and

c/d as noted in (2).

Thus, we must have bc − ad = 1 and b + d > n.

But if both conditions hold, then (3) immediately implies that
there are no terms between a/b and c/d in the Farey
sequence of level n, so they are in fact consecutive.



Farey Sequences, XIV

5. If a/b and e/f are consecutive terms in the Farey sequence of
level n, the term immediately following e/f is c/d , where

c =

⌊
n + b

f

⌋
e − a and d =

⌊
n + b

f

⌋
f − b.

Proof:

By the mediant property (2), we know that
e

f
=

a + c

b + d
.

Thus, there must exist some integer k such that a + c = ke
and b + d = kf , so that c = ke − a and d = kf − b.

Since the closest term to e/f will have k as large as possible,

and since d ≤ n, the largest possible value of k is

⌊
n + b

f

⌋
.



Farey Sequences, XV

Using the above results, we can construct the portion of any Farey
sequence around any desired rational number, without needing to
compute all of the terms in the sequence.

To find the next term after a/b we can solve bx − ay = 1, and
then we can use use the two-term recursion to extend the
sequence.

We can also fill in the terms in between any two given terms
by taking mediants, or (if desired) by using the above
procedure to generate the terms after a/b.



Farey Sequences, XVI

Example: Verify that 7/19 and 10/27 are consecutive in the Farey
sequence of level 35, and find the next term that appears between
them in a higher sequence.

By the above results, since 10 · 19− 7 · 27 = 190− 189 = 1,
the terms are consecutive in the Farey sequence of level 27.

The next term will be the mediant 17/46, and so they are still
consecutive in the Farey sequence of level 35.



Farey Sequences, XVI
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Farey Sequences, XVII

Example: Verify that 10/17 and 13/22 are consecutive in the Farey
sequence of level 25, and find the next three terms after them.

Recurrence: c =

⌊
n + b

f

⌋
e − a and d =

⌊
n + b

f

⌋
f − b.

By the above results, since 13 · 17− 10 · 22 = 221− 220 = 1,
the terms are consecutive in the Farey sequence of level 22.

The next term will be the mediant 23/39, and so they are still
consecutive in the Farey sequence of level 25.

For the next terms we use the recursion: after a/b, e/f , the

next term is c =

⌊
n + b

f

⌋
e − a and d =

⌊
n + b

f

⌋
f − b.

Plugging in yields the next terms 3/5, 14/23, 11/18.
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Farey Sequences, XVIII

Example: Find the next term after 11/202 in the Farey sequence of
level 500.

By the above results, if 11/202 and c/d are consecutive
terms, then 202c − 11d = 1.

We can solve this linear Diophantine equation using the
method from last class: reducing mod 11 yields 4c ≡ 1 (mod
11) so c = 3 is a solution, yielding d = 55.

So the solutions are (c , d) = (3 + 11k , 55 + 202k) for k ∈ Z.

The larger the value of k is, the smaller the value of
c

d
− 11

202
=

1

202d
will be.

The largest possible value for k with 55 + 202k ≤ 500 is
k = 2, so the next term is 25/457.
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Farey Sequences, XIX

Example: Find all terms between 7/33 and 14/65 in the Farey
sequence of level 100.

These terms are not consecutive anywhere because
14 · 33− 7 · 65 = 7, not 1.

We start by finding terms between them: the mediant of these
two terms is 21/98 = 3/14.

Now 7/33 and 3/14 are consecutive in the Farey sequence of
level 33, since 33 · 3− 7 · 14 = 1.

Also, 3/14 and 14/65 are consecutive in the Farey sequence of
level 65, since 14 · 14− 3 · 65 = 1.

At this point, we can find all of the remaining terms by
computing mediants (we can stop when the sum of two
consecutive denominators exceeds 100). We get
7

33
,

17

80
,

10

47
,

13

61
,

16

75
,

19

89
,

3

14
,

20

93
,

17

79
,

14

65
.
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.



More Farey Sequences, III

We can use the Farey sequences to do rational approximation.

Proposition (Rational Approximation via Farey)

Let n be a positive integer and α be a real number. Then the
following hold:

1. There exists a rational number p/q such that 0 < q ≤ n and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(n + 1)
.

2. If α is irrational, then there are infinitely many distinct
rational numbers p/q such that |α− p/q| < 1/q2.

3. If α is irrational, then there are infinitely many pairs of
positive integers (m, n) such that |mα− n| < 1/m.



More Farey Sequences, III

1. There exists a rational number p/q such that 0 < q ≤ n and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(n + 1)
.

Proof:

By replacing α with α− bαc as necessary, we can assume
α ∈ [0, 1].

Now consider the Farey sequence of level n, and let
a

b
and

c

d
be two consecutive terms such that

a

b
≤ α ≤ c

d
.

By our earlier results, we know that bc − ad = 1 and
b + d ≥ n + 1.



More Farey Sequences, IV

1. There exists a rational number p/q such that 0 < q ≤ n and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(n + 1)
.

Proof (continued):

The number α either lies in

[
a

b
,

a + c

b + d

]
or in

[
a + c

b + d
,

c

d

]
.

In the first case,∣∣∣α− a

b

∣∣∣ ≤ ∣∣∣∣a

b
− a + c

b + d

∣∣∣∣ =
|ad − bc|
b(b + d)

≤ 1

b(n + 1)
.

In the second case,∣∣∣α− c

d

∣∣∣ ≤ ∣∣∣∣ c

d
− a + c

b + d

∣∣∣∣ =
|ad − bc|
d(b + d)

≤ 1

d(n + 1)
.

Hence, in either case, we obtain a rational number p/q such

that

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(n + 1)
.



More Farey Sequences, IV

2. If α is irrational, then there are infinitely many distinct
rational numbers p/q such that |α− p/q| < 1/q2.

Proof:

Apply (1) to the Farey sequence of level n for each n: this
yields a collection of rational numbers pn/qn such that∣∣∣∣α− pn

qn

∣∣∣∣ < 1

qn(n + 1)
<

1

q2
n

, and with qn ≤ n.

Since α is irrational, none of these differences can be zero.

Thus, there must be infinitely many different terms pn/qn,

since the distances

∣∣∣∣α− pn

qn

∣∣∣∣ become arbitrarily small, but

remain nonzero.



More Farey Sequences, V

3. If α is irrational, then there are infinitely many pairs of
positive integers (m, n) such that |mα− n| < 1/m.

Proof:

Clear denominators in (2).

This result was first proven by Dirichlet and is sometimes known as
Dirichlet’s Diophantine approximation theorem.



More Farey Sequences, VI

We can illustrate these results with a typical irrational
α =
√

2 ≈ 1.4142136 . . . for various n.

For example, with n = 5 (in the Farey sequence of level 5) the
two entries surrounding

√
2− 1 are 2/5 and 1/2.

We can see that
∣∣√2− 7/5

∣∣ ≈ 0.0142 < 1
5·5 , so 7/5 has the

desired property in (1) of the proposition.

In fact, 3/2 also has the desired property, since∣∣√2− 3/2
∣∣ ≈ 0.0858 < 1

5·2 .

Taking an increasing sequence of values of n up to n = 100

then yields various
p

q
with

∣∣√2− p/q
∣∣ < 1/q2 per (2):

specifically, we obtain the sequence 1, 2, 3/2, 4/3, 7/5, 10/7,
17/12, 24/17, 41/29, 58/41, 99/70, 140/99, ....



Summary

We finished our discussion of the Frobenius coin problem.

We introduced the Farey sequences and established some of their
properties.

Next lecture: Rational approximation and continued fractions.


