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Introduction + Pythagorean Triples

Pythagorean Triples (part 2)

Linear Diophantine Equations

The Frobenius Coin Problem

This material represents §6.1.1-6.1.3 from the course notes.



More Pythagorean Triples, I

Recall from last time:

Definition

We say a Pythagorean triple (x , y , z) satisfying x2 + y2 = z2 is
primitive if gcd(x , y , z) = 1.

Theorem (Primitive Pythagorean Triples)

Every primitive Pythagorean triple of the form (x , y , z) with x even
is of the form (x , y , z) = (2st, s2 − t2, s2 + t2), for some relatively
prime integers s > t of opposite parity. Conversely, any such triple
is Pythagorean and primitive.

I gave two proofs last time (one using arithmetic in Z and another
using arithmetic in Z[i ]). Now I will do the third proof, which uses
geometry.



More Pythagorean Triples, II

Proof #3:

Suppose x2 + y2 = z2 and x , y , z are relatively prime.

Dividing by z2 yields the equivalent equation(x

z

)2
+
(y

z

)2
= 1.

Each Pythagorean triple (x , y , z) therefore yields a point
(a, b) = (x/z , y/z) with rational coordinates on the unit circle
x2 + y2 = 1.

Conversely, if we have a point (a, b) with rational coordinates
on the unit circle, then if z is the lcm of the denominators so
that (a, b) = (x/z , y/z), we obtain a primitive triple (x , y , z)
with x2 + y2 = z2.

Therefore, finding the primitive Pythagorean triples is
equivalent to describing all points (a, b) on the unit circle
x2 + y2 = 1 whose coordinates are both rational numbers.



More Pythagorean Triples, III

Proof #3 (continued):

To do this, consider a line passing through the point (−1, 0)
with a finite slope:

Such a line will intersect
the circle x2 + y2 = 1 in
exactly one other point.

If the coordinates of this
point are rational, then the
line will have rational slope.

Conversely, if the line has
rational slope, its other
intersection point with the
circle will be rational.



More Pythagorean Triples, IV

Proof #3 (continued more):

Explicitly, if the line has slope
t

s
, its equation is y =

t

s
(x + 1).

We can then simply plug in y =
t

s
(x + 1) to x2 + y2 = 1 and

solve to see that the other intersection point is

(x , y) =

(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
, which is rational.

Thus, the rational points on the unit circle are those of the

form

(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
for some integers s and t.

Clearing the denominator immediately yields the desired
Pythagorean triples.



More Pythagorean Triples, V

If you’ve never seen it before, the idea in the third proof actually
has a surprisingly useful application in calculus.

Specifically, if we write u = s/t, then we obtain a rational
parametrization of the unit circle in terms of u.

Explicitly, we have cos θ =
1− u2

1 + u2
and sin θ =

2u

1 + u2
.

Using some elementary geometry, it is not hard to see that
this parameter is u = tan(θ/2).

The upshot: if we make the substitution u = tan(θ/2), then
both sin θ and cos θ are rational functions in u.

This substitution is called the Weierstrass substitution and

can be used to evaluate integrals like

∫
1

3 + sin θ
dθ that are

quite hard otherwise.



More Pythagorean Triples, VI

Using the characterization above, we can easily generate a list of
Pythagorean triples with hypotenuse ≤ 80:

s t Primitive Triple Other Triples

2 1 (3, 4, 5) (6, 8, 10), (9, 12, 15), ... , (48, 64, 80)

3 2 (5, 12, 13) (10, 24, 26), . . . , (30, 72, 78)

4 1 (8, 15, 17) (16, 30, 34), . . . , (32, 60, 68)

4 3 (7, 24, 25) (14, 48, 50), (21, 72, 75)

5 2 (20, 21, 29) (40, 41, 58)

5 4 (9, 40, 41)

6 1 (12, 35, 37) (24, 70, 74)

6 5 (11, 60, 61)

7 2 (28, 45, 53)

7 4 (33, 56, 65)

8 1 (16, 63, 65)

8 3 (48, 55, 73)



More Pythagorean Triples, VI

Example: Find all Pythagorean right triangles having one side of
length 20.

Any such right triangle has legs of lengths k(2st) and
k(s2 − t2), with hypotenuse k(s2 + t2), where s > t are
unique positive integers of opposite parity and k is some
unique positive integer. Now we just try each possibility:

1. Suppose 20 = 2stk .

Then 10 = stk , so (s, t, k) = (10, 1, 1) or (5, 2, 1).
This yields 20-99-101 and 20-21-29 triangles.
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More Pythagorean Triples, VI

Example (continued): Find all Pythagorean right triangles having
one side of length 20.

2. Suppose 20 = k(s2 − t2).

Then k must be divisible by 4 since s2 − t2 is odd.
Since k 6= 20 we see k = 4. Then s2 − t2 = 5 requires
s = 3 and t = 2.
This yields a 15-20-25 triangle.

3. Suppose 20 = k(s2 + t2).

Then since s2 + t2 ≥ 5, the only possibilities are k = 4
(then s = 2, t = 1), k = 2 (then s = 3, t = 1 but these
are not of opposite parity) or k = 1 (then s = 4 and
t = 2 but again these don’t work).
This yields a 12-16-20 triangle.

So we get 4 triples: (20,99,101), (20,21,29), (15,20,25), (12,16,20).



Linear Diophantine Equations, I

We will now take a step in the “easier” direction and talk about
the simpler class of linear Diophantine equations.

Solving a linear equation in one variable over the integers is
trivial (the solution to ax = b is x = b/a, assuming a is
nonzero and divides b).

So the simplest interesting equations are linear equations in
two variables.

The general form of a linear equation in two variables is
ax + by = c , for some fixed integers a, b, and c .

Our goal is to determine when this equation has an integral
solution (x , y), and then to characterize all the solutions.

In keeping with our theme of “exploiting other rings to solve
problems in Z”, we will use modular arithmetic to reduce the
two-variable equation to a one-variable equation.



Linear Diophantine Equations, II

We will use the following proposition about linear congruences
modulo m:

Proposition (Linear Equations Mod m)

The equation ax ≡ b (mod m) has a solution for x if and only if
d = gcd(a,m) divides b.

If d |b, then the set of all such x is given by the residue class r
modulo m/d, where r is any solution to the equation.

Examples:

1. The equation 9x ≡ 5 mod 12 has no solutions, because
gcd(9, 12) = 3 does not divide 5. The point is: any multiple of
9 will always be divisible by 3 modulo 12, so it can’t equal 5.

2. The equation 9x ≡ 6 mod 12 has solutions, since
gcd(9, 12) = 3 does divide 6. Since x = 2 is a solution, the
full set of solutions is x ≡ 2 mod 4.
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Linear Diophantine Equations, III

Proof:

If x is a solution to the congruence ax ≡ b (mod m), then
there exists an integer k with ax −mk = b. Since
d = gcd(a,m) divides the left-hand side, it must divide b.

Now suppose d = gcd(a,m) divides b, and set a′ = a/d ,
b′ = b/d , and m′ = m/d .

Then the original equation becomes a′dx ≡ b′d (mod m′d),
which is equivalent to a′x ≡ b′ (mod m′). This is a property
of congruences that is easy to verify if you write it in terms of
divisibility.

But since a′ and m′ are relatively prime, a′ is a unit modulo
m′, so we can simply multiply by its inverse to obtain
x ≡ b′ · (a′)−1 (mod m′). This means that there is a unique
solution to the congruence modulo m′ = m/d , as claimed.



Linear Diophantine Equations, IV

By reducing modulo one of the coefficients, we can solve linear
Diophantine equations in two variables:

Theorem (Linear Diophantine Equations in 2 Variables)

Let a, b, c be integers with ab 6= 0, and set d = gcd(a, b).

If d - c, the equation ax + by = c has no integer solutions (x , y).

If d | c, ax + by = c has infinitely many integer solutions (x , y).
If (x0, y0) is one solution, then all the others are
(x0 − bt/d , y0 + at/d), for some integer t.

Examples:

1. The equation 9x + 12y = 5 has no integer solutions, since
gcd(6, 9) = 3 does not divide 5.

2. The equation 9x + 12y = 6 has integer solutions because
gcd(9, 12) = 3 does divide 6. One solution is (x , y) = (2,−1),
so the full set is (x , y) = (2− 4t,−1 + 3t) for integers t.
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Linear Diophantine Equations, V

Proof:

If a = b = 0, then the equation ax + by = c is either trivially
true (if c = 0) or trivially false (if c 6= 0), so we can assume
that the gcd d is nonzero.

If one of a, b is zero, the equation is also trivial, so we may
also deal only with the case where ab 6= 0.

In this case, observe that there is an integral solution to
ax + by = c if and only if there is a solution to the

congruence ax ≡ c (mod b), since then y =
c − ax

b
.

From our proposition above, we know that ax ≡ c (mod b)
has a solution only if d = gcd(a, b) divides c . This is the first
part of the theorem.



Linear Diophantine Equations, VI

Proof (continued):

For the second part, suppose d = gcd(a, b) does divide c, and
consider the values of x satisfying ax + by = c .

In this case, again by the proposition we just proved, if we set
a′ = a/d , b′ = b/d , and c ′ = c/d , the set of all such x is
given by the residue class x0 modulo b′, where x0 ≡ c ′ · (a′)−1

(mod b′).

Now if (x , y) is any solution, then by the above, we see that
x = x0 − bt/d for some integer t, and then we can directly
compute y = y0 + at/d where ax0 + by0 = c .

Since these are all solutions, this yields the full
characterization of the solutions given above.



Linear Diophantine Equations, VII

Example: Find all solutions to 14x + 18y = 12 in integers (x , y).

First, we compute gcd(14, 18) = 2, and then divide through
by the gcd to get 7x + 9y = 6.

This is equivalent to solving 7x ≡ 6 (mod 9).

We compute (via the Euclidean algorithm or guess-and-check)
that the inverse of 7 mod 9 is 4, so multiplying both sides by
4 yields x ≡ 24 ≡ 6 (mod 9).

Hence one solution is (x , y) = (6,−4). The set of all solutions

is then (x , y) = (6− 9t,−4 + 7t) for t ∈ Z.
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Linear Diophantine Equations, VIII

Example: Find all solutions to 372x + 948y = 42 in integers (x , y).

Using the Euclidean algorithm we can quickly compute
gcd(372, 948) = 12.

Since 12 does not divide 42, there are no solutions.



Linear Diophantine Equations, IX

We can solve linear Diophantine equations in two variables by
making changes of variable. Here’s an example:

Example: Find all solutions to the equation 4x + 13y = 5.

By the division algorithm, we have 13 = 3 · 4 + 1, so we can
write the system in the form 4x + (3 · 4 + 1)y = 5, and
rearrange this into the form 4(x + 3y) + 1y = 5.

If we substitute u = x + 3y , this new system becomes
4u + y = 5, which we can easily solve to get y = 5− 4u.

Substituting back yields
x = u − 3y = u − 3(5− 4u) = −15 + 13u.

Thus, we obtain the general solution
(x , y) = (−15 + 13u, 5− 4u).



Linear Diophantine Equations, X

This method, using changes of variable, is the most efficient way
to solve systems of linear Diophantine equations involving more
variables or equations.

The approach is essentially the same as the standard linear
algebra procedure of row-reducing a matrix to solve a system
of equations.

The easiest approach is convert the system into matrix form,
and then perform row and column operations on the matrix
until it is in a sufficiently simple form that the solution to the
original system is obvious.

The general procedure for solving a system of linear equations
over Z is essentially the same, except for the added
complication that all of the row and column operations need
to be done over Z.



Linear Diophantine Equations, XI

As with a system of equations over a field, the end result will be
either that the system has no solution, a unique solution, or an
infinite family of solutions with some number of free parameters.

I won’t bother going into the technical details or proving that
this procedure always works, since it really is a topic from
abstract algebra.

For those curious: it is in fact equivalent to the procedure for
converting a presentation of a finitely generated additive
abelian group into a description of the abelian group as a
direct product of cyclic groups, which is in turn a special case
of the general classification theorem for finitely-generated
modules over a principal ideal domain.

So I’ll just give an example and let you see the general idea.



Linear Diophantine Equations, XII

Example: Find all solutions to 3x + 7y + 8z = 13 in integers
(x , y , z).

Motivated by the division algorithm, we rewrite the equation
as 3(x + 2y + 2z) + y + 2z = 13, and then substitute
w = x + 2y + 2z .

The new equation is 3w + y + 2z = 13, which we can easily
solve for y , yielding y = 13− 3w − 2z .

Then x = w − 2y − 2z = 7w + 2z − 26.

So we obtain the general solution
(x , y , z) = (7w + 2z − 26, 13− 3w − 2z , z) where w and z
are arbitrary integers.



The Frobenius Coin Problem, I

In various settings (some of which are actually motivated by
real-world concerns for once!), we are sometimes also interested in
knowing for which values of c the equation ax + by = c has a
solution in nonnegative integers (x , y).

For example, if there are postage stamps worth 5 cents and
stamps worth 13 cents, is it possible to use them to put
exactly 79 cents’ worth of postage on an envelope? (Here we
want to solve 5x + 13y = 79.)

Another version occurs in sports: In American football, a
team can score 3 points for a field goal, or 7 points for a
touchdown. What possible scores can a team obtain? (Ignore
safeties, missed extra points, and so forth.)

We remark that we can reduce to the situation with a, b relatively
prime by dividing through by their gcd.



The Frobenius Coin Problem, II

The most obvious method is simply to make a list of totals that
are attainable.

For example, for 5x + 13y , we obtain values 0, 5, 10, 13, 15,
18, 20, 23, 25, 26, 28, 30, 31, 33, 35, 36, 38, 39, 40, 41, 43,
44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, ....

Likewise, for 3x + 7y we obtain values 0, 3, 6, 7, 9, 10, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, ....

In each case, it seems like we miss only finitely many values.



The Frobenius Coin Problem, III

The problem of describing the largest integer that cannot be
written as a nonnegative linear combination of two integers (also
called the Frobenius coin problem) was first solved by Sylvester:

Theorem (Sylvester)

If a and b are relatively prime integers, then there are exactly
1

2
(a− 1)(b − 1) integers that cannot be written in the form

ax + by with x , y ≥ 0, and the largest such integer is ab − a− b.

Remark: In mathematics competition circles, this result is often
known as the “Chicken McNuggets Theorem”.



The Frobenius Coin Problem, IV

Proof:

For brevity, we say an integer is “representable” if it can be
written in the form ax + by with x , y ≥ 0.

Without loss of generality, assume a < b. Arrange the
nonnegative integers in an array in the following manner:

0 1 2 · · · a− 1
a a + 1 a + 2 · · · 2a− 1

2a 2a + 1 2a + 2 · · · 3a− 1
...

...
...

...
ab − a ab − a + 1 ab − a + 2 · · · ab − 1

Now we use the array to mark all of the representable
integers. We first box all of the multiples of b: then an
integer is representable precisely if it appears in the same
column as some multiple of b, lower down.



The Frobenius Coin Problem, V

Proof (continued):

For illustration, here is the array with a = 4 and b = 7:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27



The Frobenius Coin Problem, VI

Proof (continueder):

Since a and b are relatively prime, the integers 0, b, 2b, ... ,
(a− 1)b all lie in different columns. Thus, the largest element
that is left unmarked is the element one row above (a− 1)b,
which is ab − a− b, so this is the largest integer not
expressible as ax + by with x , y ≥ 0.

For the other part, we simply count the number of unmarked
integers in the array.

The number of integers lying above kb is bkb/ac, so there are

a total of
a−1∑
k=0

⌊
kb

a

⌋
unmarked integers in the array.



The Frobenius Coin Problem, VII

Proof (continuederer):

We can interpret the sum
∑a−1

k=0

⌊
kb
a

⌋
geometrically as the

number of lattice points lying under the line y = (b/a)x , with
1 ≤ x ≤ a− 1.

Equivalently, this is the total number of lattice points lying
strictly inside the rectangle with vertices (0, 0), (a, 0), (a, b),
(0, b) and below the diagonal.

By symmetry, since there are no lattice points on the interior
of the diagonal, exactly half of the lattice points inside the
a× b rectangle are below the diagonal.

Since this full set of points forms an (a− 1)× (b − 1)
rectangle, there are (a− 1)(b − 1) such lattice points.
Therefore, the number of unmarked integers in the array is
1
2(a− 1)(b − 1), as claimed.



The Frobenius Coin Problem, VIII

Example: There are postage stamps worth 5 cents and stamps
worth 13 cents. What is the largest non-attainable amount of
postage, and how many non-attainable amounts are there?

By Sylvester’s theorem with a = 5 and b = 13, the largest
non-representable integer is 5 · 13− 13− 5 = 47.

In total, there are
1

2
· 4 · 12 = 24 unattainable totals.



The Frobenius Coin Problem, VIII
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The Frobenius Coin Problem, IX

We could of course generalize this problem, to ask: for given
integers a1, a2, ... , ak , what is the largest integer n that cannot
be written as a nonnegative integer linear combination of the ai?

It turns out that there is no known general formula when
k > 2 (though the result is fairly effectively computable for
k = 3).

For a fixed number of denominations k , there does exist a
polynomial-time algorithm (polynomial in log ak , specifically)
for computing this maximum integer n, but it is not
appreciably faster than merely attempting to list the
possibilities!

For a variable number of denominations k, it is known that
computing n is NP-hard.



Summary

We discussed a bit more about Pythagorean triples.

We discussed how to solve linear Diophantine equations in two
variables and made some remarks about larger systems.

We discussed the Frobenius coin problem.

Next lecture: The Farey sequences and rational approximation.


