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Welcome to Math 4527 + Course Logistics

Pythagorean Triples

This material represents §6.1.3 from the course notes.



Welcome!

Welcome to Math 4527 (Number Theory 2)! Here are some
course-related locations to bookmark:

The course webpage is here: https://web.northeastern.

edu/dummit/teaching_sp21_4527.html . Most
course-related information is posted there.

Course-related discussion will be done via Piazza:
https://piazza.com/class/kj7dl2uyqpq2he .

Homework assignments will be submitted via the course’s
Canvas page.

https://web.northeastern.edu/dummit/teaching_sp21_4527.html
https://web.northeastern.edu/dummit/teaching_sp21_4527.html
https://piazza.com/class/kj7dl2uyqpq2he


Course Topics: Number Theory

As you might expect based on the title, we will be covering some
topics in number theory in this course. The catalog description is
fairly accurate, but here is the more updated plan:

6. Rational approximation and Diophantine equations

7. Elliptic curves

8. Quadratic integer rings

9. Geometry of numbers

10. Analytic number theory

One of the themes of the course is to build on some of the basic
results from Math 3527 (which is why the chapter numbering
starts at 6). However, I won’t assume very much background from
3527, and anything that is referenced I am happy to explain, so if
you haven’t taken it, don’t worry.



Lectures + Office Hours

The course lectures will be conducted via Zoom. All lectures are
recorded for later viewing. For security reasons (since these lecture
slides are posted publicly) the links to upcoming and past lectures
are only available via the Canvas page or via the Piazza page.

The course meets Mon/Wed/Thu from 10:30am-11:35am
Eastern time. All lectures are recorded.

I have office hours Wed/Thu from 3:00pm-4:15pm Eastern
time, Thu from 12:15pm-1:15pm, or by appointment. Office
hours are not recorded. You are highly encouraged to drop by.

Lecture attendance is not required. However, I would prefer if you
attended each lecture live, and (if possible) turn your camera on
and participate, because otherwise the lectures are not nearly as
valuable.



Grades

Your course grade consists of 1/3 homework and 2/3 exams.

There will be a take-home midterm and a take-home final.
These are not timed, and are arranged essentially like a “solo”
homework assignment.

The homeworks are assigned weekly.

Assignments are due via Canvas. This is to make it easier to
record grading comments.

The lowest homework grade is dropped, in case you have an
emergency or something comes up. I am also moderately flexible
about homework deadlines, so it is okay if you need to submit an
occasional assignment a day or so late. But please do notify me if
you aren’t going to be able to submit by the deadline.



Miscellaneous Info

Here is some other miscellaneous information:

I will write lecture notes for the course (in lieu of an official
textbook) as the semester progresses. I am drawing material
from a number of different sources so it is hard to give a good
textbook recommendation, but if you really want one I can
give you some suggestions during office hours.

Course prerequisites: A basic comfort level with groups,
polynomials, and modular arithmetic is expected. Math 3527
is not required, although it will make the course material feel
a bit more natural.

Collaboration: You are allowed to work on, and discuss,
homework assignments together, as long as the actual
submissions are your own work. Collaboration is, of course,
not allowed on exams.



Other Boilerplate, I

Statement on Academic Integrity: A commitment to the
principles of academic integrity is essential to the mission of
Northeastern University. Academic dishonesty violates the
most fundamental values of an intellectual community and
undermines the achievements of the entire University.
Violations of academic integrity include (but are not limited
to) cheating on assignments or exams, fabrication or
misrepresentation of data or other work, plagiarism,
unauthorized collaboration, and facilitation of others’
dishonesty. Possible sanctions include (but are not limited to)
warnings, grade penalties, course failure, suspension, and
expulsion.



Other Boilerplate, II

Statement on Accommodations: Any student with a disability
is encouraged to meet with or otherwise contact the instructor
during the first week of classes to discuss accommodations.
The student must bring a current Memorandum of
Accommodations from the Office of Student Disability
Services.

Statement on Classroom Behavior: Disruptive classroom
behavior will not be tolerated. In general, any behavior that
impedes the ability of your fellow students to learn will be
viewed as disruptive.

Statement on Inclusivity: Faculty are encouraged to address
students by their preferred name and gender pronoun. If you
would like to be addressed using a specific name or pronoun,
please let your instructor know.



Other Boilerplate, III

Statement on Evaluations: Students are requested to
complete the TRACE evaluations at the end of the course.

Miscellaneous Disclaimer: The instructor reserves the right to
change course policies, including the evaluation scheme of the
course (e.g., in the event of natural disaster or global
pandemic). Notice will be given in the event of any
substantial changes.



Transition Into Actual Content

Pause here for questions about course logistics.

Note to self: don’t read this slide out loud.



Overview of Course

In this course, we will study a bunch of topics in number theory.

Number theory is a vast and ancient subject, and it is hard to
collect two millennia of work into a two-semester sequence.

I could try to pretend that there is a 100% coherent theme to
the topics we’ll be discussing, but the only true theme is
“interesting things in elementary number theory that Prof.
Dummit wants to teach in this course”.

Nonetheless, one recurring motif this semester will be the
famous Fermat equation xn + yn = zn.

My hope is that by the end of the semester, I will have been
able to develop enough of the background to be able to give
you a 40,000-foot overview of Wiles’s celebrated proof of
Fermat’s conjecture that there are no nontrivial integer
solutions to the Fermat equation with n ≥ 3.



Diophantine Equations, I

In this first chapter, we discuss Diophantine equations, which is the
general name to the problem of solving equations over the integers.

Example: Find all integer solutions to a7 + b7 = c7.

Example: Find all integer solutions to 14x2 − 5xy + 3y2 = 11.

But before you get excited, I will deflate some of your hopes with
the following theorem:

Theorem (Matiyasevich, 1970)

The problem of determining whether an arbitrary Diophantine
equation possesses any integer solutions is undecidable, as is the
problem of finding all solutions to an arbitrary Diophantine
equation.

For the non-CS majors, this means that there is no general
algorithm that can solve arbitrary Diophantine equations.



Diophantine Equations, II

However, for number theorists at least, Matiyasevich’s theorem is
actually good, because it keeps us in business! (There are always
new Diophantine equations to solve.)

Many of the methods for solving Diophantine equations feel
rather ad hoc, and so the goals in this chapter are provide a
survey of various elementary techniques.

One recurring theme, however, will be to exploit the structure
of the rings Z/mZ (i.e., by using modular arithmetic) and
Z[
√

D].

Since I am not assuming that you are intimately familiar with
the ring theory language, let me try to get you up to speed
quickly.



Brief Algebra Interlude, I

Definition

A commutative ring with 1 is a set R having two closed binary
operations + and · such that + and · are commutative and
associative with · distributing over +, there is an additive identity
0 and every element has an additive inverse, and there is a
multiplicative identity 1 6= 0.

Some famous examples of commutative rings with 1:

1. The integers Z.

2. The rational numbers Q.

3. The real numbers R.

4. The complex numbers C.

5. The ring Z/mZ of integers
modulo m.

There are also noncommutative rings, such as the ring of n × n
matrices and the quaternions, but we won’t worry about them now.



Brief Algebra Interlude, II

One of the magical facts about number theory is that, even though
most of our questions are asked about Z, we often want to use the
structure of other rings to solve them.

One important class of rings, which we will discuss and use
extensively, are the quadratic rings
Z[
√

D] = {a + b
√

D : a, b ∈ Z}.
The arithmetic operations in these rings look like
(a + b

√
D) + (c + d

√
D) = (a + c) + (b + d)

√
D and

(a + b
√

D)(c + d
√

D) = (ac + Dbd) + (ad + bc)
√

D.

When D = −1, we get the ring of Gaussian integers
Z[i ] = {a + bi : a, b ∈ Z}.
We will usually assume that D is a squarefree integer not
equal to 1 when we are discussing these rings.



Brief Algebra Interlude, III

The elements with multiplicative inverses in a ring R are special:

Definition

If R is a ring with 1, we say an element a ∈ R is a unit if it has a
multiplicative inverse: that is, if there exists b ∈ R such that
ab = 1 = ba.

Examples:

1. In Z, the units are 1 and −1.

2. In Q, R, and C, every nonzero element is a unit. (This is
really just another way of saying that these rings are fields.)

3. In Z/mZ, a residue class a is a unit if and only if it is
relatively prime to m.

4. In Z[i ], the units are 1, i , −1, and −i .

The set of units in a commutative ring forms an abelian group
under multiplication.



Brief Algebra Interlude, IV

Ring arithmetic often behaves like arithmetic in Z, but there is one
situation that is a bit different:

Definition

If R is a ring with 1, we say an element a ∈ R is a zero divisor if
a 6= 0 but there exists a nonzero b ∈ R such that ab = 0.

Examples:

1. There are no zero divisors in any ring that is a subset of a
field, such as Z, Q, or Z[

√
D].

2. In Z/6Z, the elements 2 and 3 are zero divisors since 2 · 3 = 0.

3. More generally, the zero divisors in Z/mZ are the nonzero
residue classes not relatively prime to m.



Brief Algebra Interlude, V

Definition

A commutative ring with 1 having no zero divisors is called an
integral domain.

Integral domains (per the name) behave a lot like the integers Z.

For example, in an integral domain, we can cancel nonzero
elements under multiplication: if ab = ac and a 6= 0, then
b = c . (Proof: Rearrange this to a(b − c) = 0 and then
deduce that b− c = 0 using the definition of integral domain.)

We can also give sensible definitions of things like divisibility
in arbitrary integral domains (and they will have most of the
properties we’d expect): for example, we say a|b (a divides b)
if there exists some c such that b = ac.

I will mention these things as they come up in the course.



Brief Algebra Interlude, VI

One of the themes of modern number theory is to study which
rings have various properties of integer arithmetic still hold (e.g.,
existence of GCDs, unique prime factorization, etc.).

We will get more into that particular discussion in Chapter 8
where we make a more focused study of quadratic integer
rings (essentially the rings Z[

√
D]).

I’ve mentioned these things today for two reasons: one, to
make sure you’re comfortable with these ideas now because
they’ll show up many times in this course, and two, so that I
can refer to some facts about Z[i ] in the rest of today’s
lecture.

Specifically, I will refer to the fact that Z[i ] has unique prime
factorization, and some minor facts about some of the
Gaussian prime factors of particular elements.



Pythagorean Triples, I

With all of that out of the way, let’s spend the rest of today looking
at a simple but quite famous Diophantine equation: x2 + y2 = z2.

Triples of positive integers (x , y , z) satisfying this equation are
called Pythagorean triples (see if you can figure out why).

Some well-known Pythagorean triples are (3, 4, 5), (5, 12, 13),
(6, 8, 10), and (8, 15, 17).

But there are lots more, like (11, 60, 61), (20, 21, 29),
(1344, 1508, 2020), and even (2021, 47472, 47515).

Just like the ancient Greeks, we would like to come up with a
recipe for all of the Pythagorean triples.

As should be familiar from elementary geometry, and is also
easy to see from the equation x2 + y2 = z2, if we have one
solution (a, b, c) then we can scale it to get others:
(ka, kb, kc) for any positive integer k .



Pythagorean Triples, II

We would like to exclude these essentially repetitious cases:

Definition

We say a Pythagorean triple (x , y , z) satisfying x2 + y2 = z2 is
primitive if gcd(x , y , z) = 1.

It is enough to characterize the primitive triples, since we may then
scale them arbitrarily to get all the triples.

First, notice that if (x , y , z) is a primitive Pythagorean triple,
x and y cannot both be even, since then z would also be even.

Also, x and y cannot both be odd, since then x2 + y2 ≡ 2
(mod 4), but 2 is not a square modulo 4.

So in a primitive triple, z must be odd, and also exactly one
of x and y is also odd.



Pythagorean Triples, III

We now characterize the primitive Pythagorean triples:

Theorem (Primitive Pythagorean Triples)

Every primitive Pythagorean triple of the form (x , y , z) with x even
is of the form (x , y , z) = (2st, s2 − t2, s2 + t2), for some relatively
prime integers s > t of opposite parity. Conversely, any such triple
is Pythagorean and primitive.

As a consequence we can characterize all Pythagorean triples:

Corollary (Pythagorean Triples)

The positive-integer solutions (x , y , z) to x2 + y2 = z2 can be
uniquely written as (x , y , z) = (2kst, k(s2 − t2), k(s2 + t2)) for a
unique positive integer k and relatively prime positive integers
s > t of opposite parity.



Pythagorean Triples, III

We now characterize the primitive Pythagorean triples:

Theorem (Primitive Pythagorean Triples)

Every primitive Pythagorean triple of the form (x , y , z) with x even
is of the form (x , y , z) = (2st, s2 − t2, s2 + t2), for some relatively
prime integers s > t of opposite parity. Conversely, any such triple
is Pythagorean and primitive.

As a consequence we can characterize all Pythagorean triples:

Corollary (Pythagorean Triples)

The positive-integer solutions (x , y , z) to x2 + y2 = z2 can be
uniquely written as (x , y , z) = (2kst, k(s2 − t2), k(s2 + t2)) for a
unique positive integer k and relatively prime positive integers
s > t of opposite parity.



Pythagorean Triples, IV

Proof (easy parts):

First, it is easy to see that (2st)2 + (s2 − t2)2 = (s2 + t2)2

simply by multiplying everything out.

It is also easy to check that if s and t are relatively prime and
have opposite parity, that gcd(s2 − t2, s2 + t2) = 1, so this
triple is primitive. (Any common factor would divide both 2s2

and 2t2 hence could only be 1 or 2, but it cannot be 2
because s2 + t2 is odd.)

Also, the corollary (the characterization of all triples) follows
from our earlier discussion of primitive triples above, since we
may take k = gcd(x , y , z).



Pythagorean Triples, IV

Proof (preamble):

It remains to prove that if (x , y , z) is primitive then it has the
claimed form. We will give three different proofs that
illustrate different approaches.

The central idea in the first proof is to rearrange the equation
and use the arithmetic of Z.

The central idea in the second proof is to exploit the fact that
Z[i ] has unique factorization.

The central idea in the third proof is to use the geometry of
the dehomogenized curve x2 + y2 = 1 to study the rational
solutions.



Pythagorean Triples, V

Proof #1:

Suppose x2 + y2 = z2 and x , y , z are relatively prime.

Since y and z are both odd and x is even, we can rewrite the
equation as z−y

2 ·
z+y
2 =

(
x
2

)2
.

Now we claim that z−y
2 and z+y

2 are relatively prime: their
gcd divides their sum z and their difference y , and since y and
z are relatively prime, the gcd must be 1.

Since z−y
2 and z+y

2 share no prime divisors and their product
is a square, each of them must individually be a square, by the
uniqueness of prime factorization.

Thus z−y
2 = t2 and z+y

2 = s2 for some s and t.

Then z = s2 + t2 and y = s2 − t2, and then clearly x = 2st.

Furthermore, s and t are necessarily relatively prime and have
opposite parity, since (x , y , z) is primitive. Victory ensues.



Pythagorean Triples, VI

Proof #2:

Suppose x2 + y2 = z2 and x , y , z are relatively prime.

In Z[i ], factor the equation as (x + iy)(x − iy) = z2.

Now we claim that x + iy and x − iy are relatively prime as
elements of Z[i ]: any greatest common divisor in Z[i ] must
divide 2x and 2y , so since x and y are relatively prime
integers, the gcd must divide 2.

In Z[i ], the prime factorization of 2 is 2 = −i(1 + i)2, and the
unique irreducible element in this factorization is 1 + i , so this
is the only possible Gaussian prime factor that could appear in
the gcd.

However, x + iy is not divisible by the Gaussian prime 1 + i ,
since x and y are of opposite parity. Therefore, the gcd is 1,
and so x + iy and x − iy are relatively prime.



Pythagorean Triples, VII

Proof #2 (continued):

Hence, since x + iy and x − iy are relatively prime and have
product equal to a square (namely z2), by the uniqueness of
prime factorization in Z[i ], there exists some s + it ∈ Z[i ] and
some unit u ∈ {1, i ,−1,−i} such that x + iy = u(s + it)2.

Multiplying out yields x + iy = u
[
(s2 − t2) + (2st)i

]
.

Since x is positive and even while y is odd, we must have
u = −i : then x + iy = 2st + (t2 − s2)i and so x = 2st,
y = t2 − s2. Then z = t2 + s2, and so we are done.



Pythagorean Triples, IX

Proof #3:

Suppose x2 + y2 = z2 and x , y , z are relatively prime.

Dividing by z2 yields the equivalent equation(x

z

)2
+
(y

z

)2
= 1.

Each Pythagorean triple (x , y , z) therefore yields a point
(a, b) = (x/z , y/z) with rational coordinates on the unit circle
x2 + y2 = 1.

Conversely, if we have a point (a, b) with rational coordinates
on the unit circle, then if z is the lcm of the denominators so
that (a, b) = (x/z , y/z), we obtain a primitive triple (x , y , z)
with x2 + y2 = z2.

Therefore, finding the primitive Pythagorean triples is
equivalent to describing all points (a, b) on the unit circle
x2 + y2 = 1 whose coordinates are both rational numbers.



Pythagorean Triples, X

Proof #3 (continued):

To do this, consider a line passing through the point (−1, 0)
with a finite slope:

Such a line will intersect
the circle x2 + y2 = 1 in
exactly one other point.

If the coordinates of this
point are rational, then the
line will have rational slope.

Conversely, if the line has
rational slope, its other
intersection point with the
circle will be rational.



Pythagorean Triples, XI

Proof #3 (continued more):

Explicitly, if the line has slope
t

s
, its equation is y =

t

s
(x + 1).

We can then simply plug in y =
t

s
(x + 1) to x2 + y2 = 1 and

solve to see that the other intersection point is

(x , y) =

(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
, which is rational.

Thus, the rational points on the unit circle are those of the

form

(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
for some integers s and t.

Clearing the denominator immediately yields the desired
Pythagorean triples.



Pythagorean Triples, XII

If you’ve never seen it before, the idea in the third proof actually
has a surprisingly useful application in calculus.

Specifically, if we write u = s/t, then we obtain a rational
parametrization of the unit circle in terms of u.

Explicitly, we have cos θ =
1− u2

1 + u2
and sin θ =

2u

1 + u2
.

Using some elementary geometry, it is not hard to see that
this parameter is u = tan(θ/2).

The upshot: if we make the substitution u = tan(θ/2), then
both sin θ and cos θ are rational functions in u.

This substitution is called the Weierstrass substitution and

can be used to evaluate integrals like

∫
1

3 + sin θ
dθ that are

quite hard otherwise.



Pythagorean Triples, XIII

Using the characterization above, we can easily generate a list of
Pythagorean triples with hypotenuse ≤ 80:

s t Primitive Triple Other Triples

2 1 (3, 4, 5) (6, 8, 10), (9, 12, 15), ... , (48, 64, 80)

3 2 (5, 12, 13) (10, 24, 26), . . . , (30, 72, 78)

4 1 (8, 15, 17) (16, 30, 34), . . . , (32, 60, 68)

4 3 (7, 24, 25) (14, 48, 50), (21, 72, 75)

5 2 (20, 21, 29) (40, 41, 58)

5 4 (9, 40, 41)

6 1 (12, 35, 37) (24, 70, 74)

6 5 (11, 60, 61)

7 2 (28, 45, 53)

7 4 (33, 56, 65)

8 1 (16, 63, 65)

8 3 (48, 55, 73)



Summary

We discussed the logistics for Math 4527.

We discussed Pythagorean triples and gave a recipe for generating
all of them.

Next lecture: Linear Diophantine equations.


