
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2021 ∼ Homework 3, due Thu Feb 11th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Either staple the pages of your assignment
together and write your name on the �rst page, or paperclip the pages and write your name on all pages.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Find the rational number with denominator less than N closest to each of the following real numbers α:

(a) α =
√
13, N = 100.

(b) α =
√
2, N = 100.

(c) α = e, N = 10000.

2. For each value of D, (i) �nd the continued fraction expansion for
√
D, (ii) �nd the fundamental unit in the

ring Z[
√
D], (iii) determine whether the Pell's equation x2 − Dy2 = −1 has a solution and if so �nd the

smallest one, and (iv) �nd the smallest two solutions to the Pell's equation x2 −Dy2 = 1:

(a) D = 19.

(b) D = 22.

(c) D = 130.

(d) D = 61.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

3. Find the smallest positive integer n such that for all integers m with 0 < m < 2020, there exists an integer k

with
m

2020
<
k

n
<
m+ 1

2021
. (Make sure to prove that your value is the smallest possible.)

• Remark: This is a variation of problem B1 from the 1993 Putnam exam.

4. Prove that the real number α =

∞∑
k=1

1

(k!)k!
= 1 +

1

22
+

1

66
+

1

2424
+ · · · is transcendental.

5. The goal of this problem is to prove that if α is an arbitrary irrational number, then the maximum constant

C for which there necessarily exist in�nitely many p/q with

∣∣∣∣α− p

q

∣∣∣∣ < 1

Cq2
is at most

√
5. So let C >

√
5.

(a) Let ϕ =
1 +
√
5

2
= [1, 1, 1, 1, . . . ] be the golden ratio and suppose that

∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

Cq2
. Show that

p

q
=
Fn+1

Fn
for some positive integer n, where Fn is the nth Fibonacci number (de�ned by F1 = F2 = 1

and Fn+1 = Fn + Fn−1 for each n ≥ 1).

(b) Suppose α = [a0, a1, a2, . . . ]. Show that

∣∣∣∣α− pn
qn

∣∣∣∣ = 1

qn(αn+1qn + qn−1)
.

(c) Show that

∣∣∣∣ϕ− Fn+1

Fn

∣∣∣∣ = 1

F 2
n(ϕ+ Fn−1/Fn)

and that lim
n→∞

[ϕ+ Fn−1/Fn] =
√
5.

(d) Deduce that if C >
√
5, then there are only �nitely many rational numbers p/q such that

∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

Cq2
.
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6. The goal of this problem is to prove that if p is a prime congruent to 1 modulo 4, then there is always a
solution to the negative Pell equation x2 − py2 = −1. As we showed, there exists a minimal solution (x1, y1)
to x2 − py2 = 1 where x, y are positive and minimal.

(a) Show that x1 is odd, y1 is even, and that gcd(x1 + 1, x1 − 1) = 2.

(b) Show either that x1 − 1 = 2ps2, x1 + 1 = 2t2 or that x1 − 1 = 2s2 and x1 + 1 = 2pt2 for some positive
integers s, t. [Hint: Use x21 − 1 = py2 and gcd(x1 + 1, x1 − 1) = 2.]

(c) With notation as in (b), show that if x1 − 1 = 2ps2 and x1 + 1 = 2t2 then t2 − ps2 = 1, contradicting
the minimality of (x1, y1). Conclude in fact that there is an integer solution to x2 − py2 = −1.

7. The goal of this problem is to establish some cases in which the negative Pell equation x2−Dy2 = −1 has no
solutions.

(a) Suppose that D is divisible by 4. Show that x2 −Dy2 = −1 has no solutions.

(b) Suppose that p is an odd prime and that there is a solution to the congruence x2 ≡ −1 (mod p). Prove
that p ≡ 1 (mod 4). [Hint: Explain why x has order 4 in the multiplicative group of nonzero residues
modulo p, and then use Lagrange's theorem.]

(c) Suppose that D is divisible by a prime that is congruent to 3 modulo 4. Show that x2 −Dy2 = −1 has
no solutions.

(d) Observe that x2 − 2y2 = −1 and x2 − 17y2 = −1 both have integer solutions. It might stand to reason
that x2 − 34y2 = −1 would also: show, however, that this equation does not have integer solutions.
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