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Please check that you have 12 different pages.

Answers from your calculator, without supporting work, are worth zero points.

1) Consider the surface given by the equation z = 3x2y + y2
√
x and the point P = (1,−2,−2) on this surface.

(a) (4 points) Find a standard equation of the tangent plane to the surface at the point P .

(b) (4 points) Give a unit normal vector to the tangent plane from part (a).
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2) Consider the function F (x, y, z) = x2 + y2 + z.

(a) (4 points) Sketch the level set of F that contains the point P = (1, 1, 3).

(b) (4 points) Give a vector equation of the line that is perpendicular to the tangent plane to the level surface from

(a) through point P .
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3) Consider the function f(x, y) = e2(y−1)
√
x.

(a) (3 points) Starting at (4, 1), in what direction does f increase most rapidly with respect to distance? Give your

answer as a unit vector.

(b) (2 points) Determine the maximum value of the instantaneous rate of change of the function f at (4, 1) with respect

to distance.

(c) (3 points) Calculate the instantaneous rate of change of f at (4, 1) in the direction of (−3,−4) with respect to

distance.
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4) Consider the function f(x, y) = x3 + y3 + 3xy + 3.

(a) (5 points) Find all critical points of the function f .

(b) (4 points) Classify the critical points as local minimum, local maximum, or saddle points.
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5) (8 points) Using the Lagrange Multiplier Method, find the point P on the surface 12x+ 4y + 3z = 169 closest to

the origin O = (0, 0, 0). (Hint: Minimize the square distance from the point P to the point O).

No credit is given for using a different method than the Lagrange Multiplier method.
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6) (8 points) Evaluate the following integral by switching the order of integration:

∫ π/2

0

∫ π/2

x

sin(y)

y
dy dx.

6



7) Consider the vector field F = (6x3y2, 3x4y).

(a) (3 points) Show that F is a conservative vector field.

(b) (3 points) Find a function f such that F = ∇f . Show work!

(c) (3 points) Evaluate the line integral

∫
C

F · dr, where C consists of the curve y = xex
2−1 + sin(πx) from (0, 0) to

(1, 1) followed by the curve x =
√

1 + (y − 1)3 from (1, 1) to (0, 0).

7



8) (9 points) Find the surface area of the surface that is cut from the saddle-shaped surface z = xy by the cylinder

x2 + y2 = 1.
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9) (9 points) Let S be the solid region in the first octant (x ≥ 0, y ≥ 0, z ≥ 0) between the spheres with equations

x2 + y2 + z2 = 1 and x2 + y2 + z2 = 9. Find the mass of S if the density of the solid region S is given by

δ(x, y, z) =
z2

(x2 + y2 + z2)2
kg/m

3
.

Assume that x, y, and z are measured in meters.
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10) (8 points) Let F = (sin(x3), 2yex
2

). Evaluate the line integral

∫
C

F · dr, where C consists of two line segments, which

go from (0, 0) to (2, 2), and then from (2, 2) to (0, 2).
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11) (8 points) Let T be the solid right circular cylinder of radius 3, centered around the z-axis, for 1 ≤ z ≤ 6, where all

lengths are in meters. Let M denote the boundary surface of the solid T ; so that M consists of the cylindrical side

together with disks on the top and bottom. We give M its default outward-pointing orientation. Compute the flux of

the vector field F(x, y, z) = (xz, yz, xy) newtons through M .
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12) Let F(x, y, z) = (−x2yz, xy2z, xy + z2).

(a) (3 points) Calculate
→
∇× F = the curl of F.

(b) (5 points) Let M be the chopped off paraboloid given by z = x2 + y2 and 0 ≤ z ≤ 9 (note that there is no closing

disk at the top). Give M the upward orientation (i.e., the orientation where unit normal vectors have a positive

z-component). Calculate the flux of
→
∇× F through M .
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