- 1. Find the minimum and maximum values of f (and all points where they occur) subject to the given constraint:
 - (a) f(x,y) = x + 3y + 2 subject to $x^2 + y^2 = 40$.
 - (b) $f(x,y) = xy^2$ subject to $x^2 + y^2 = 12$.
 - (c) f(x,y) = xy subject to 3x + y = 60.
 - (d) f(x,y,z) = 2x + 4y + 5z subject to $x^2 + y^2 + z^2 = 1$.
 - (e) f(x, y, z) = xyz subject to $x^2 + 4y^2 + 16z^2 = 16$.
- 2. You have 60 meters of fencing and wish to make a rectangular enclosure along a straight river, meaning that you only need to fence the east, west, and north sides (not the south side). What dimensions maximize the total area of the enclosure?
- 3. Evaluate the following double integrals:

(a)
$$\int_0^2 \int_y^{2y} xy^2 \, dx \, dy$$
.

(b)
$$\int_0^1 \int_{x^3}^{x^2} x \, dy \, dx$$
.

(c)
$$\int_{\pi/3}^{\pi/2} \int_{1}^{2} r \sin(\theta) \cdot r \, dr \, d\theta.$$

- 4. Set up (but do not evaluate) integrals for the following, using both integration orders dy dx and dx dy:
 - (a) The integral of x^2y on the region $0 \le x \le 1, 0 \le y \le 3$.
 - (b) $\iint_R (x+y) dA$ on the region R between the curves $y = 8\sqrt{x}$ and $y = x^2$.
 - (c) The volume under $z = x^3$ above the triangle in the xy-plane with vertices (0,0), (1,1), and (2,0).
 - (d) The area of the region between the curves $y = x^2 1$ and y = 5.
- 5. Reverse the order of integration for each of the following integrals:

(a)
$$\int_0^3 \int_0^{x^2} xy \, dy \, dx$$
.

(b)
$$\int_{1}^{2} \int_{y}^{y^{2}} y^{4} dx dy$$
.

- 6. Set up, and then evaluate, the following integrals in polar coordinates:
 - (a) The integral of f(x,y) = x on the region inside $x^2 + y^2 = 1$ with $x \le 0$ and $y \le 0$.
 - (b) $\iint_R \sqrt{x^2 + y^2} dA$ where R is the region inside $x^2 + y^2 = 16$, above y = x and y = -x.
 - (c) The volume under $z = 4 x^2 y^2$ and above the xy-plane.
- 7. Evaluate the double integral $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{1}{\sqrt{x^2+y^2}} dy dx$ by converting it to polar coordinates.

1

8. Evaluate the double integral $\int_0^8 \int_{x/2}^4 \frac{e^y}{y} dy dx$ by reversing the order of integration.

9. Evaluate each of the following triple integrals:

(a)
$$\int_0^2 \int_x^{2x} \int_x^y 6z \, dz \, dy \, dx$$
.

(b)
$$\int_0^{\pi} \int_0^{\pi} \int_0^2 \rho^3 \sin \varphi \, d\rho \, d\varphi \, d\theta.$$

10. Compute the following integrals by converting to cylindrical or spherical coordinates:

(a)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{x+y} \sqrt{x^2+y^2} \, dz \, dy \, dx.$$

(b)
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx.$$

(c)
$$\int_0^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{-1}^{x^2+y^2} \frac{1}{\sqrt{x^2+y^2}} dz dy dx$$
.

(d)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{4-x^2-y^2}} \frac{z^2}{\sqrt{x^2+y^2+z^2}} \, dz \, dy \, dx.$$

- 11. Set up (but do not evaluate) triple integrals for the following:
 - (a) The integral $\iiint_D (x^2 + y^2) dV$ on the region D above $z = x^2 + y^2$, below z = 7, for $0 \le x \le 1$ and $0 \le y \le 2$.
 - (b) The integral of xyz on the region above $z=y^2$, below z=9, between x=1 and x=2.
 - (c) The integral $\iiint_D (x^2 + y^2 + z^2) dV$ on the region D above $z = 2\sqrt{x^2 + y^2}$ and below z = 3.
 - (d) The integral of $z\sqrt{x^2+y^2}$ on the region with $x\leq 0$, inside $x^2+y^2=4$, above z=0, below y+z=4.
 - (e) The volume of the region bounded by z = 2x, z = 3x, y = 1, y = 2, x = y, and x = 2y.
 - (f) The integral of $\sqrt{x^2 + y^2 + z^2}$ on the region above $z = -\sqrt{3(x^2 + y^2)}$ and inside $x^2 + y^2 + z^2 = 4$.
 - (g) The volume of the solid below $z = 5 x^2 y^2$, above the xy-plane, and outside $x^2 + y^2 = 1$.
 - (h) The average value of $x^2 + y^2 + z^2$ on the portion of $x^2 + y^2 + z^2 \le 4$ inside the first octant (with $x, y, z \ge 0$).
 - (i) The integral of x on the region with $x \ge 0$, $y \ge 0$, $z \ge 0$ and below $z = 4 x y^2$.
- 12. Find the total mass and the coordinates of the center of mass for each object:
 - (a) The solid bounded by 0cm $\leq x \leq$ 1cm, 0cm $\leq y \leq$ 2cm, and 0cm $\leq z \leq$ 3cm with density $d(x,y,z) = z^{\rm g/cm^3}$.
 - (b) The solid bounded by $0 \le z \le \sqrt{x^2 + y^2} \le 2$ with density $d(x, y, z) = 2\sqrt{x^2 + y^2}$ g/cm³.
 - (c) The solid between $x^2 + y^2 + z^2 = 2$ and $x^2 + y^2 + z^2 = 3$ with density $d(x, y, z) = 3(x^2 + y^2 + z^2)^{3/2} \text{kg/m}^3$.
 - (d) The solid between $z = \sqrt{x^2 + y^2}$ and $z = \sqrt{3(x^2 + y^2)}$ inside $x^2 + y^2 + z^2 = 9$ with density $d(x, y, z) = \frac{1 \text{mg/mm}^3}{2}$.

2