
Math 2321 (Multivariable Calculus)

Lecture #38 of 37 ∼ April ??th, 2021

Final Exam Review #2



Final Exam Topics

The topics for the final exam are as follows:

Vectors, dot + cross products

Lines and planes in 3-space

Curves and motion in 3-space

Partial derivatives

Directional derivatives and
gradients of functions

Tangent lines and planes

The multivariable chain rule

Linearization

Minima/maxima/saddle pts

Optimization on a region

Lagrange multipliers

Double integrals in
rectangular and polar

Changing order of integration

Triple integrals in rectangular,
cylindrical, and spherical

Areas, volumes, mass, center
of mass

Line and surface integrals

Work, circulation, and flux

Conservative fields, potential
functions, fundamental
theorem of line integrals

Divergence and curl

Green’s theorem

Stokes’s theorem

The divergence theorem



Exam Information

The exam format is similar to the midterms.

You will write your responses (either on a printout of the
exam or on blank paper) and then scan/photograph your
responses and upload them into Canvas.

The exam is approximately twice the length of a midterm, and
all problems are free-response.

Unless you have made prior arrangements, the exam is from
10:30am–12:30pm on Thursday, April 29th.

The official exam time limit is 120 minutes, plus 20 minutes
of turnaround time (not to be used for working).

LATE SUBMISSIONS WILL BE HEAVILY PENALIZED.
Do not submit the exam late.

Collaboration of any kind is not allowed. If you have any questions
during the exam, email me immediately.



Review Problems, I

(Fa18-#1) Find an equation for the tangent plane to the graph of
f (x , y) = e2(y−1)

√
x at the point (x , y) = (4, 1).

The normal vector to the tangent plane of an implicit surface
g(x , y , z) = c at a point P is the gradient ∇g(P).

Here, we have the implicit surface z = e2(y−1)
√
x , which we

can write as e2(y−1)
√
x − z = 0. If (x , y) = (4, 1) then

z = e2(1−1)
√

4 = 2, so P = (4, 1, 2).

Thus, with g(x , y , z) = e2(y−1)
√
x − z , we have

∇g = 〈12x
−1/2e2(y−1), 2e2(y−1)

√
x ,−1〉, and so

∇g(P) = 〈1/4, 4,−1〉.
Then the tangent plane is

1/4(x − 4) + 4(y − 1)− 1(z − 2) = 0 .
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Review Problems, II

(Fa18-#2) An electric dipole generates an electrostatic potential

given by V (x , y) =
y

x2 + y2
volts, with x , y in meters.

1. What is the gradient of the potential V at (x , y) = (1, 2)?

2. The level curves of V are called equipotential curves. At the
point (1, 2), find the direction of a vector which is tangent to
the equipotential curve passing through that point. Give your
answer as a unit vector with positive i-component.

∇V =
〈

2xy
(x2+y2)2

, x2−y2

(x2+y2)2

〉
, so ∇V (1, 2) = 〈 425 ,−

3
25〉 V/m.

The gradient is normal to the tangent curve, so we want a
vector 〈a, b〉 that is perpendicular to the gradient.

This requires 〈a, b〉 · 〈4/25,−3/25〉 = 0 so that
(4a− 3b)/25 = 0, so we can take 〈a, b〉 = 〈3, 4〉. This vector

has length 5, so the desired unit vector is 〈3/5, 4/5〉 .



Review Problems, II

(Fa18-#2) An electric dipole generates an electrostatic potential

given by V (x , y) =
y

x2 + y2
volts, with x , y in meters.

1. What is the gradient of the potential V at (x , y) = (1, 2)?

2. The level curves of V are called equipotential curves. At the
point (1, 2), find the direction of a vector which is tangent to
the equipotential curve passing through that point. Give your
answer as a unit vector with positive i-component.

∇V =
〈

2xy
(x2+y2)2

, x2−y2

(x2+y2)2

〉
, so ∇V (1, 2) = 〈 425 ,−

3
25〉 V/m.

The gradient is normal to the tangent curve, so we want a
vector 〈a, b〉 that is perpendicular to the gradient.

This requires 〈a, b〉 · 〈4/25,−3/25〉 = 0 so that
(4a− 3b)/25 = 0, so we can take 〈a, b〉 = 〈3, 4〉. This vector

has length 5, so the desired unit vector is 〈3/5, 4/5〉 .



Review Problems, III

(Fa18-#3) Find the critical points of f (x , y) = x3 − 3xy + y3, and
classify each critical point as a point where f has a local maximum
value, a local minimum value, or a saddle point.

First we find the critical points and then we classify them.

We have fx = 3x2 − 3y and fy = −3x + 3y2.

Solving fx = 0 yields y = x2 and so fy = 0 becomes
−3x + 3x4 = 0, which has solutions x = 0, 1.

Since y = x2, there are two critical points: (0, 0) and (1, 1) .

To classify them with the second derivatives test we compute
D = fxx fyy − f 2xy = (6x)(6y)− 32.

At (0, 0) we have D = −9 so this is a saddle point .

At (1, 1), D = 27 and fxx = 6 so this is a local minimum .
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Review Problems, IV

(Fa18-#4) A box-shaped building with a rectangular base is to
have a volume of 8000ft3. Annual heating and cooling costs will
amount to $2/ft2 for its roof, front wall, and back wall, and $4/ft2

for the two remaining walls. Note that the floor is excluded. What
dimensions of the building would minimize these annual costs?

Suppose the dimensions are x feet, y feet, and z feet. Then
xyz = 8000 and we want to minimize
2xy + 2(2xz) + 2(4yz) = 2xy + 4xz + 8yz .

We use Lagrange multipliers: this yields the system
2y + 4z = λyz , 2x + 8z = λxz , 4x + 8y = λxy , xyz = 8000.

After dividing by yz , xz , xy , the first three equations are
equivalent to 2/z + 4/y = λ, 2/z + 8/x = λ, 4/y + 8/x = λ.

Thus 2/z = 4/y = 8/x = λ/2 so z = 1/λ, y = 2/λ, x = 4/λ.
The last equation then yields 8/λ3 = 8000 so λ = 1/10 and

thus (x , y , z) = (40 ft, 20 ft, 10 ft) : this is the minimum.
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Review Problems, V

(Fa18-#5) Let R be the filled-in triangle in the first quadrant of
the xy -plane bounded by the y -axis, the line y = x , and the line
y = 1. Let T be the solid region in R3 that lies above R and
below the surface z = 12y2 − 12x2 + 24. Find the volume of T .

We can compute the volume as the double integral¨
R

(12y2 − 12x2 + 24) dy dx since the function is always

positive above the region.

A quick sketch of the region shows that with integration order
dx dy we have 0 ≤ y ≤ 1 and 0 ≤ x ≤ y , so the desired

integral is

ˆ 1

0

ˆ y

0
(12y2 − 12x2 + 24) dx dy =

ˆ 1

0
(12xy2 − 4x3 + 24x)

∣∣∣y
x=0

dy =

ˆ 1

0
(8y3 + 24y) dy = 14 .
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Review Problems, VI

(Fa18-#6) Evaluate

ˆ 3/
√
2

0

ˆ √9−x2
x

ˆ 9−x2−y2

0
y dz dy dx .

This actually isn’t so hard to evaluate directly, but it is nicer
in cylindrical coordinates.

In cylindrical, the z-limits are 0 ≤ z ≤ 9− r2, and the
xy -limits are 0 ≤ x ≤ 3/

√
2 and x ≤ y ≤

√
9− x2, which

corresponds to 0 ≤ r ≤ 3 and π/4 ≤ θ ≤ π/2.

Since y = r sin θ, in cylindrical the integral isˆ π/2

π/4

ˆ 3

0

ˆ 9−r2

0
r sin θ · r dz dr dθ

=

ˆ π/2

π/4

ˆ 3

0
(9r2 − r4) sin θ dr dθ =

ˆ π/2

π/4
(162/5) sin θ dθ =

81
√

2/5 .
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Review Problems, VII

(Fa18-#7) Let S be the portion of the cone given by ϕ = 5π/6
inside the sphere of radius 5. This surface can be parameterized by

r(u, v) = 〈12u cos v , 12u sin v ,−
√
3
2 u〉 for 0 ≤ u ≤ 5, 0 ≤ v ≤ 2π.

Find the surface area of S .

The surface area is given by
˜

S 1 dσ.

We need dσ = ||(∂r/∂u)× (∂r)/∂v)|| du dv .

We have (∂r/∂u)× (∂r)/∂v) = 〈12 cos v , 12 sin v ,−
√
3
2 〉 ×

〈−1
2u sin v , 12u cos v , 0〉 = 〈

√
3
4 u cos v ,

√
3
4 u sin v , 14u〉.

Thus dσ = ||〈
√
3
4 u cos v ,

√
3
4 u sin v , 14u〉|| dv du = u/2 du dv .

The surface area is then

ˆ 2π

0

ˆ 5

0
(u/2) du dv = 25π/2 .
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Review Problems, VIII

(Fa18-#8) Consider F(x , y) = 〈2x3y4 + x , 2x4y3 + y2〉.
1. Show that F is conservative.

2. Find a potential function f of F.

3. Compute
´
C F · dr where C is the half-circle of radius 2

centered at the origin going clockwise from (0,−2) to (0, 2).

F is conservative because it is defined everywhere and
curl(F) = 〈0, 0,Qx − Py 〉 = 〈0, 0, 8x3y3 − 8x3y3〉 = 〈0, 0, 0〉.
The potential has fx = 2x3y4 + x and fy = 2x4y3 + y2 so we

can take f = 1
2x

4y4 + 1
2x

2 + 1
3y

3 .

By the fundamental theorem of line integrals,´
C F · dr = f (0, 2)− f (0,−2) = 16/3 .
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Review Problems, IX

(Fa18-#9) Consider F(x , y) = 〈
√

1 + x3, 2xy〉. Calculate
´
C F · dr

where C is the curve that starts at (0, 0), goes along the x-axis to
(2, 0), goes vertically to (2, 1), and then goes horizontally to (0, 1).

The curve is three sides of a rectangle.

We can then use Green’s theorem to find´
C F · dr =

´
C P dx + Q dy on the entire rectangle and then

subtract the integral along the missing side.

By Green, the integral on the entire rectangle is´ 2
0

´ 1
0 (Qx − Py ) dy dx =

´ 2
0

´ 1
0 2y dy dx = 2.

The missing side is parametrized by x = 0, y = 1− t for
0 ≤ t ≤ 1. Then P = 1, Q = 0, dx = 0 dt, dy = −dt, so the
integral is

´ 1
0 (1)(0 dt) + 0(−dt) = 0.

Hence the overall value is 2− 0 = 2 .
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Review Problems, X

(Fa18-#10) Use the Divergence theorem to find the flux of the
vector field F(x , y , z) = 〈0, 0, z3/3〉 across the sphere of radius 1
centered at the origin oriented by the outward pointing normal.

By the divergence theorem, the flux is
˝

D div(F) dV .

In spherical, the region is 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, 0 ≤ ρ ≤ 1,
and div(F) = 0 + 0 + z2 = ρ2 cos2 ϕ.

Thus, the integral is

ˆ 2π

0

ˆ π

0

ˆ 1

0
ρ2 cos2 ϕ · ρ2 sinϕ dρ dϕ dθ

=

ˆ 2π

0

ˆ π

0

ˆ 1

0
ρ4 cos2 ϕ sinϕ dρ dϕ dθ

=

ˆ 2π

0

ˆ π

0
(1/5) cos2 ϕ sinϕ dϕ dθ

=

ˆ 2π

0
(2/15) dθ = 4π/15 .
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Review Problems, XI

(Fa18-#11) Let M be the portion of the graph of z = 1− x2 − y2

that lies above the xy -plane, oriented upward. Let
F(x , y , z) = 〈x2 + y2 + y + z2, 3z , 5− x2 − y2〉.

1. Let ∂M be the boundary of M. Find a parametrization of ∂M.

2. Use Stokes’ theorem to compute
˜

M(∇× F) · n dS .

The boundary is the circle x2 + y2 = 1, z = 0 with
parametrization r(t) = 〈cos t, sin t, 0〉 for 0 ≤ t ≤ 2π.

By Stokes, the given integral equals
´
C P dx + Q dy + R dz .

Here, P = x2 + y2 + y + z2 = 1 + sin t, Q = 3z = 0,
R = 5− x2 − y2 = 4, and dx = − sin t dt, dy = cos t dt,
dz = 0 dt.

So the integral is´ 2π
0 (1 + sin t)(− sin t dt) + 0(cos t dt) + 4(0 dt)

=
´ 2π
0 (− sin t − sin2 t) dt = −π .
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Review Problems, XII

(Fa19-#1) Find a standard equation of the tangent plane at the
point (8, 2, 1) to the level surface of the function
f (x , y , z) = x − y2 + z2.

The gradient ∇f is the normal vector to the tangent plane.

We have ∇f = 〈1,−2y , 2z so ∇f (8, 2, 1) = 〈1,−4, 2〉.
Thus, the tangent plane has equation

1(x − 8)− 4(y − 2) + 2(z − 1) = 0 .
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Review Problems, XIII

(Fa19-#2) Suppose that the xy -plane is occupied by a heated
metal plate of temperature T = T (x , y) (in Celsius) at the point

(x , y) (in m), and
∂T

∂x
(1, 2) = −1 ◦C/m and

∂T

∂y
(1, 2) = 2 ◦C/m.

A path parametrized by r(t) = 〈t, 4
1+t2
〉 is traced on the plate,

with t in seconds. What is the instantaneous rate of change of the
temperature along the path at the point (1, 2)?

This is a chain rule problem: T ′(t) =
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
.

Note dx/dt = 1 and dy/dt = −8t/(1 + t2)2.

Since the point (1, 2) corresponds to t = 1, we have

T ′(1) = (−1 ◦C/m)(1 m/s) + (2 ◦C/m)(−2 m/s) = −5◦C/s .
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Review Problems, XIV

(Fa19-#3) A bug is crawling on the surface of a hot plate on
which the temperature at (x , y) is T (x , y) = 3xey + 2y ln x + y .

1. If the bug is at (1, 0), in what direction should it move to cool
off the fastest? What is the rate at which temperature drops
in this direction?

2. If the bug is at (1, 3), what is the rate of change of the
temperature with respect to distance if the bug is moving
southeast, in the direction of 〈1,−1〉?

Note ∇T = 〈3ey + 2y/x , 3xey + 2 ln x + 1〉.
The direction of fastest decrease is −∇T (1, 0) = −〈3, 4〉 ,

and the corresponding rate of decrease is ||∇T (1, 0)|| = 5 .

The unit vector in the southeast direction is
v = 〈1,−1〉/||〈1,−1〉|| = 〈1,−1〉/

√
2, and the rate of change

is ∇T (1, 3) · v = 〈3e3 + 6, 3e3 + 1〉 · 〈1,−1〉/
√

2 = 5/
√

2 .
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Review Problems, XV

(Fa19-#4) Find all four critical points of
f (x , y) = 2x3 + 9xy2 + 15x2 + 27y2 and classify each as a local
maximum, a local minimum, or a saddle point.

First we find the critical points and then we classify them.

We have fx = 6x2 + 9y2 + 30x and fy = 18xy + 54y .
Factoring fy = 0 gives 18y(x + 3) = 0 so y = 0 or x = −3.

If y = 0 the first equation gives 6x2 + 30x = 0 so x = 0,−5.
If x = −3 the first equation gives 9y2 − 36 = 0 so y = −2, 2.

So the critical points are (0, 0), (−5, 0), (−3,−2), (−3, 2) .

To classify, D = fxx fyy − f 2xy = (12x + 30)(18x + 54)− (18y)2.

At (0, 0), D > 0, fxx > 0 so this is a local minimum .

At (−5, 0), D > 0, fxx < 0 so this is a local maximum .

At (−3,±2), D < 0, so these are saddle points .
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Review Problems, XVI

(Fa19-#5) Find the global maximum of the function
f (x , y) = 3x2 + xy + 2y2 over the filled-in triangle with vertices
(−1, 0), (1, 0), and (0, 2).

As fx = 6x + y , fy = x + 4y there is one critical point (0, 0).
Segment (−1, 0) to (1, 0): param x = −1 + 2t, y = 0 for
0 ≤ t ≤ 1, then f = 12t2 − 12t + 3 with f ′ = 24t − 12, zero at
t = 1/2 yielding (x , y) = (0, 0), also endpoints (−1, 0), (1, 0).
Segment (1, 0) to (0, 2): param x = 1− t, y = 2t for 0 ≤ t ≤ 1,
then f = 9t2 − 4t + 3 with f ′ = 18t − 4, zero at t = 2/9 yielding
(x , y) = (7/9, 4/9), also endpoints (1, 0), (0, 2).

Segment (−1, 0) to (0, 2): param x = −1 + t, y = 2t for 0 ≤ t ≤ 1,

then f = 13t2 − 8t + 3 with f ′ = 26t − 8, zero at t = 4/13 yielding

(x , y) = (−9/13, 8/13), also endpoints (−1, 0), (0, 2).

We have f (0, 0) = 0, f (−1, 0) = 3, f (1, 0) = 3,
f (7/9, 4/9) = 23/9, f (0, 2) = 8, f (−9/13, 8/13) = 23/13.

Min is 0 at (0, 0) , max is 8 at (0, 2) .
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f (7/9, 4/9) = 23/9, f (0, 2) = 8, f (−9/13, 8/13) = 23/13.
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Review Problems, XVII

(Fa19-#6) Find the volume of the solid below the surface
z = 4− x2 − y2 and above the xy-plane.

This volume is given by the double integral˜
R(4− x2 − y2) dA over the region R where 4− x2 − y2 ≥ 0.

We can evaluate this integral by converting to polar
coordinates. The region R in polar is 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2,
with function 4− x2 − y2 = 4− r2 and differential r dr dθ.

Thus, the integral is

ˆ 2π

0

ˆ 2

0
(4− r2) · r dr dθ

=

ˆ 2π

0

ˆ 2

0
(4r − r3) dr dθ =

ˆ 2π

0
4 dθ = 8π .

Alternatively (and essentially equivalently) we could use a
triple integral in cylindrical coordinates to find the volume: it

is

ˆ 2π

0

ˆ 2

0

ˆ 4−r2

0
1 · r dz dr dθ.
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Review Problems, XVIII

(Fa19-#7) Find the mass of the unit ball (i.e. a sphere of radius 1
meter) centered at the origin, with density δ(x , y , z) = z2 kg/m3.

The mass is given by
˝

D δ(x , y , z) dV .

In spherical coordinates, the region is 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π,
0 ≤ ρ ≤ 1, the function is z2 = ρ2 cos2 ϕ, and the differential
is ρ2 sinϕ dρ dϕ dθ.

Thus the mass is

ˆ 2π

0

ˆ π

0

ˆ 1

0
ρ2 cos2 ϕ · ρ2 sinϕ dρ dϕ dθ

=

ˆ 2π

0

ˆ π

0

ˆ 1

0
ρ4 cos2 ϕ sinϕ dρ dϕ dθ

=

ˆ 2π

0

ˆ π

0
(1/5) cos2 ϕ sinϕ dϕ dθ

=

ˆ 2π

0
(2/15) dθ = 4π/15 .
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Review Problems, XIX

(Fa19-#8) Consider F(x , y) = 〈6x2 + 2x sin y , x2 cos y + 4y3〉.
1. Find the curl of F.

2. Compute the line integral
´
C F · dr along the curve C

parametrized by r(t) = 〈2t cos t, 2t sin t〉 for 0 ≤ t ≤ 2π.

The curl is curl(F) = 〈0, 0,Qx − Py 〉 =
〈0, 0, 2x cos y − 2x cos y〉 = 〈0, 0, 0〉.
Since the curl is zero, F is conservative. We can compute the
line integral by finding a potential function U with ∇U = F.

We need Ux = 6x2 + 2x sin y and Uy = x2 cos y + 4y3, so we
can take U = 2x3 + x2 sin y + y4.

Then by the fundamental theorem of line integrals, we have´
C F·dr = U(r(2π))−U(r(0)) = U(4π, 0)−U(0, 0) = 128π3 .
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Review Problems, XX

(Fa19-#9) Let C be the circle of radius 3 meters, centered at the
origin and oriented counterclockwise. Consider the force field
F(x , y) = 〈11x + 7y , 2x + e−y

4〉 newtons, where x and y are in
meters. Calculate the work done by F on an object that moves
around the curve C .

This is the work integral
´
C F · dr =

´
C P dx + Q dy . Since C

is a closed curve, by Green’s theorem this equals the double
integral

˜
R(Qx − Py ) dA.

Since R is the interior of the circle C , we can evaluate the
double integral in polar coordinates: the region is 0 ≤ θ ≤ 2π,
0 ≤ r ≤ 3, and the function is Qx − Py = 2− 7 = −5, with
differential dA = r dr dθ.

Thus, the integral isˆ 2π

0

ˆ 3

0
−5r dr dθ =

ˆ 2π

0
−45/2 dθ = −45π J .
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Review Problems, XXI

(Fa19-#10) Find the flux of the vector field
F = 〈3x + 1, 2xez , 3y2z + z3〉 across the outward oriented faces of
a cube without the front face at x = 2 and with vertices at
(0,0,0), (2,0,0), (0,2,0) and (0,0,2).

We can use the divergence theorem here. However, note that
the surface is not closed, so we must close it and then
subtract the flux through the extra plane.

We close it by including the plane x = 2 with 0 ≤ y , z ≤ 2.

Then the solid is 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2 and also
div(F) = 3 + 3y2 + 3z2.

Thus by the divergence theorem, the flux through the solid is˚
D
div(F) dV =

ˆ 2

0

ˆ 2

0

ˆ 2

0
(3 + 3y2 + 3z2) dz dy dx = 88.
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Review Problems, XXI

(Fa19-#10) Find the flux of the vector field
F = 〈3x + 1, 2xez , 3y2z + z3〉 across the outward oriented faces of
a cube without the front face at x = 2 and with vertices at
(0,0,0), (2,0,0), (0,2,0) and (0,0,2).

For the piece being subtracted, which is the portion of the
plane x = 2 where 0 ≤ y ≤ 2 and 0 ≤ z ≤ 2, we have a
parametrization r(s, t) = 〈2, s, t〉 for 0 ≤ s ≤ 2, 0 ≤ t ≤ 2.

Then n = (dr/ds)× (dr/dt) = 〈0, 1, 0〉 × 〈0, 0, 1〉 = 〈1, 0, 0〉,
which has the correct orientation.

Then F · n = 7, and so the surface integral isˆ 2

0

ˆ 2

0
7 dt ds = 28.

Since the flux across all six planes was 88, that means the flux
across the remaining five planes is 88− 28 = 60 .



Review Problems, XXII

(Fa19-#11) Let F = 〈3x2z − 2y , 3x + 3y2z2, 5xez + y2〉.
1. Find curl(F).

2. Evaluate
˜

M(∇× F) · n dS where M is the part of the sphere
x2 + y2 + z2 = 25 below z = −4, oriented upwards.

We have curl(F) = 〈2y − 6yz2, 3x2 − 5ez , 3− (−2)〉 .

Because S is a surface with boundary C , we use Stokes’s
theorem:

˜
S(∇× F) · n dσ =

¸
C P dx + Q dy + R dz

We can parametrize C by r(t) = 〈3 cos t, 3 sin t,−4〉 for
0 ≤ t ≤ 2π (it has correct orientation by the right-hand rule).

Then dx = −3 sin t dt, dy = 3 cos t dt, dz = 0 dt,
P = −6 sin t, Q = 9 cos t, R = 15 cos t + 9 sin2 t.

Thus by Stokes, the integral is
´ 2π
0 (−6 sin t)(−3 sin t) +

(9 cos t)(3 cos t) + (15 cos t + 9 sin2 t)(0 dt) = 45π .
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Review Problems, XXIII

(Sp15-#1) Consider the function f (x , y) = xexy + y sin(x). Let P
be the point (2, 0) and let v be the vector from the point (0, 1) to
the point (3, 5).

1. Find the directional derivative Du(P) where u is the unit
vector in the direction of v.

2. Find the direction, as a unit vector, in which f increases most
rapidly at P.



Review Problems, XXIV

(Sp15-#1) Consider f (x , y) = xexy + y sin(x), let P = (2, 0), and
let v be the vector from (0, 1) to (3, 5).

1. Find the directional derivative Du(P) where u is the unit
vector in the direction of v.

2. Find the unit vector direction in which f increases most
rapidly at P.

The directional derivative is the dot product of u = v/||v|| with the
gradient ∇f . Note v = 〈3, 4〉 so u = 〈3, 4〉/||〈3, 4〉|| = 〈 35 ,

4
5 〉.

Also, ∇f = 〈fx , fy 〉 = 〈exy + xyexy + y cos(x), x2exy + sin(x)〉, so
∇f (2, 0) = 〈1, 4 + sin(2)〉. So the directional derivative is

〈3/5, 4/5〉 · 〈1, 4 + sin(2)〉 = 3/5 + 4/5(4 + sin(2)) ≈ 4.527.

The direction of fastest increase is in the direction of ∇f .
We have ∇f (2, 0) = 〈1, 4 + sin(2)〉, with magnitude
||∇f (2, 0)|| =

√
1 + (4 + sin(2))2.

So the unit vector is 〈1,4+sin(2)〉√
1+(4+sin(2))2

≈ 〈0.200, 0.980〉.
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Review Problems, XXV

(Sp15-#2) Consider the function f (x , y , z) = xey + xz2.

1. Find the partial derivatives ∂f /∂x , ∂f /∂y , ∂f /∂z of the
function f at the point P = (2, 0, 1).

2. Find the linearization L(x , y , z) of f (x , y , z) at P.

3. Use the linearization to estimate the value of f at
(1.9, 0.1, 1.5).

At P = (2, 0, 1) we have fx = ey + z2 = 2 , fy = xey = 2 ,

and fz = 2xz = 4 .

The linearization L(x , y , z)
= f (P) + fx(P)(x − 2) + fy (P)(y − 0) + fz(P)(z − 1)

= 4 + 2(x − 2) + 2(y − 0) + 4(z − 1) .

Then L(1.9, 0.1, 1.5) = 4− 0.2 + 0.2 + 2 = 6 .
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Review Problems, XXVI

(Sp15-#4) Consider the function f (x , y , z) = x2 + y2 +
√
xz .

1. Find an equation of the tangent plane to the level surface of f
at the point (1,−1, 1).

2. Find the coordinates of the point of intersection of the x-axis
with the tangent plane from part 1.

The normal vector to the tangent plane is given by
∇f (1,−1, 1). Since ∇f = 〈2x + 1

2(xz)−1/2z , 2y , 12(xz)−1/2x〉
we have ∇f (1,−1, 1) = 〈5/2,−2, 1/2〉.
Thus, the tangent plane is

(5/2)(x − 1)− 2(y + 1) + (1/2)(z − 1) = 0 .

The x-axis is parametrized by 〈t, 0, 0〉. Plugging this into the
plane’s equation gives (5/2)(t − 1)− 2− 1/2 = 0 so t = 2

and the point is (2, 0, 0) .
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(5/2)(x − 1)− 2(y + 1) + (1/2)(z − 1) = 0 .

The x-axis is parametrized by 〈t, 0, 0〉. Plugging this into the
plane’s equation gives (5/2)(t − 1)− 2− 1/2 = 0 so t = 2

and the point is (2, 0, 0) .



Review Problems, XXVII

(Sp15-#5) Find the points at which the function
f (x , y) = 2x2 + y2 + 2x2y attains a local minimum value, a local
maximum value, or has a saddle point.

First we find the critical points and then we classify them.

We have fx = 4x + 4xy and fy = 2y + 2x2, so we get the
equations 4x + 4xy = 0 and 2y + 2x2 = 0.

The second equation gives y = −x2, and then the first
equation is 4x − 4x3 = 0 with solutions x = −1, 0, 1. Thus

there are three critical points: (−1,−1), (0, 0), (1,−1) .

To classify them we use the second derivatives test: we have
D = fxx fyy − f 2xy = (4 + 4y)(2)− (4x)2.

At (−1,−1), D = −16 so this is a saddle point .

At (0, 0), D = 8 and fxx = 4 so this is a local minimum .

At (1,−1), D = −16 so this is a saddle point .
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Review Problems, XXVIII

(Sp15-#6) Find the global minimum and the global maximum
values of the function f (x , y) = −2 + x2 + 2y2 in the closed disk
D where x2 + y2 ≤ 2, as well as the coordinates of the points
where these extreme values are attained.

First we find any critical points, then we analyze the boundary.

We have fx = 2x and fy = 4y so f has one critical point (0, 0).

The boundary is the circle x2 + y2 = 2, so we can use
Lagrange multipliers with g(x , y) = x2 + y2.

Our system is 2x = λ · 2x , 4y = λ · 2y , and x2 + y2 = 2.

The first equation gives x = 0 or λ = 1. If λ = 1 then the
second equation gives y = 0. So the boundary-critical points
occur where x = 0 or y = 0: these are (±

√
2, 0), (0,±

√
2).

Our full list is (0, 0), (±
√

2, 0), (0,±
√

2).

Since f (0, 0) = −2, f (±
√

2, 0) = 0, f (0,±
√

2) = 2, the

min is − 2 at (0, 0) and the max is 2 at (0,±
√

2) .
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Review Problems, XXIX

(Sp15-#7) Consider a double integral¨
R

(x3 − y2) dA =

ˆ e3

1

ˆ ln x

0
(x3 − y2) dy dx . Sketch the region of

integration R and then reverse the integration order.

The region is 1 ≤ x ≤ e3,
0 ≤ y ≤ ln x .

Using horizontal slices, the
slices range from y = 0 to
y = 3, the left curve is
y = ln x aka x = ey , and
the right curve is x = e3.

So the new integral isˆ 3

0

ˆ e3

ey
(x3 − y2) dy dx .



Review Problems, XXIX

(Sp15-#7) Consider a double integral¨
R

(x3 − y2) dA =

ˆ e3

1

ˆ ln x

0
(x3 − y2) dy dx . Sketch the region of

integration R and then reverse the integration order.

The region is 1 ≤ x ≤ e3,
0 ≤ y ≤ ln x .

Using horizontal slices, the
slices range from y = 0 to
y = 3, the left curve is
y = ln x aka x = ey , and
the right curve is x = e3.

So the new integral isˆ 3

0

ˆ e3

ey
(x3 − y2) dy dx .



Review Problems, XXIX

(Sp15-#7) Consider a double integral¨
R

(x3 − y2) dA =

ˆ e3

1

ˆ ln x

0
(x3 − y2) dy dx . Sketch the region of

integration R and then reverse the integration order.

The region is 1 ≤ x ≤ e3,
0 ≤ y ≤ ln x .

Using horizontal slices, the
slices range from y = 0 to
y = 3, the left curve is
y = ln x aka x = ey , and
the right curve is x = e3.

So the new integral isˆ 3

0

ˆ e3

ey
(x3 − y2) dy dx .



Review Problems, XXX

(Sp15-#8) A solid occupies the region S , which is in the 1st
octant (where x , y , z ≥ 0) of the region where 0 ≤ z ≤ 1 and
1 ≤ x2 + y2 ≤ 4. Suppose x , y , z are measured in meters and the
solid has density given by δ(x , y , z) = 5

x2+y2 kg/m3. Calculate the
mass of the solid.

The mass is given by the integral
˝

S δ(x , y , z) dV .

We can set this triple integral up in cylindrical coordinates:
x , y ≥ 0 corresponds to 0 ≤ θ ≤ π/2, and the other
conditions give 0 ≤ z ≤ 1 and 1 ≤ r ≤ 2.

The density is (5/r2)kg/m3 and the differential is r dz dr dθ.

Thus, the mass isˆ π/2

0

ˆ 2

1

ˆ 1

0

5

r2
r dz dr dθ =

ˆ π/2

0

ˆ 2

1

ˆ 1

0

5

r
dz dr dθ

=

ˆ π/2

0

ˆ 2

1

5

r
dr dθ =

ˆ π/2

0
5 ln(2) dθ = (5/2)π ln(2) kg .
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Review Problems, XXXI

(Sp15-#9) Consider F(x , y , z) = 〈yez , xez + z , xyez + y + 2z〉.
1. Show that F is conservative without producing a potential

function for F.

2. Find a potential function f (x , y , z) for F(x , y , z).

3. Compute the line integral
´
C F · dr, where C is the curve in

R3 consisting of straight line segments from (0, 0, 0) to
(1, 1, 0), then to (2, 1, 1), and finally to (3, 2, 1).

F is conservative because it is defined everywhere and its
curl is zero: curl(F) = 〈Ry − Qz ,Pz − Rx ,Qx − Py 〉
= 〈xez + 1− (xez + 1, yez − yez , ez − ez〉 = 〈0, 0, 0〉.
For a potential function we want fx = yez , fy = xez + z ,

fz = xyez + y + 2z . We can take f = xyez + yz + z2 .

By the fundamental theorem of line integrals, the line integral
equals f (3, 2, 1)− f (0, 0, 0) = 6e + 3 .
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Review Problems, XXXII

(Sp15-#10) Suppose F = 〈3y + x2, x2 + e−y
2〉 represents a force

field in newtons, where x and y are in meters.

1. Compute the curl of F.
2. Find the work done by F on a particle that moves along the

curve C given by three sides of a square, starting from (1, 0),
to (1, 1), then to (0, 1), and finally to (0, 0).

We have curl(F) = 〈0, 0,Qx − Py 〉 = 〈0, 0, 2x − 3〉 .

For the work, notice that this work equals the work done
around the unit square [0, 1]× [0, 1] minus the work on the
segment from (0, 0) to (1, 0).
By Green’s theorem, the work on the whole square equals˜

R curl(F) · k dA =
´ 1
0

´ 1
0 (2x − 3) dy dx = −2.

The segment is parametrized by x = t, y = 0 for 0 ≤ t ≤ 1 so
the work is

´
C P dx + Q dy =

´ 1
0 t2 dt = 1/3.

Thus the answer is the difference, (−2− 1/3) J = −(7/3) J .
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Review Problems, XXXIII

(Sp15-#12) Consider F(x , y , z) = 〈2y cos z , ex sin z , ez〉. Let M be
the top hemisphere of the sphere of radius 3 centered at the origin,
oriented upward. Compute the flux integral

˜
M(∇× F) · n dS .

Setting this up as a surface integral is quite messy because of
the exponentials. Instead, we can use Stokes’s theorem:¨

M
(∇× F) · n dS =

˛
C
F · dr =

˛
C
P dx + Q dy + R dz

where C is the boundary curve of the surface.

Here, C is the circle x2 + y2 = 9, z = 0 which is parametrized
by r(t) = 〈3 cos t, 3 sin t, 0〉 for 0 ≤ t ≤ 2π.

Then dx = −3 sin t dt, dy = 3 cos t dt, dz = 0 dt and
P = 6 sin t, Q = 0, R = 1.

So, the line integral isˆ 2π

0
(6 sin t)(−3 sin t dt)+0+0 =

ˆ 2π

0
−18 sin2 t dt = −18π .
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Review Problems, XXXIV

(Sp15-#11) Consider F(x , y , z) = 〈cos z + y2ez , xe−z , z2〉. Let M
be the part of the hemisphere z =

√
4− x2 − y2 that lies inside

the cylinder x2 + y2 = 3, oriented upward. Compute the flux
integral

˜
M F · n dS of F through M. Note that M is not closed.

If we set up the surface integral directly, it will be very messy
because of the exponential terms.

We can instead try to use the divergence theorem. Here note
that div(F) = 0 + 0 + 2z , which is easy to integrate.

However, the given surface is not closed, so we will have to
add in a surface that will close it, and then subtract off the
resulting surface integral.

A fairly natural surface to use is the disc that lies at the
bottom of the spherical slice we have: this is the disc with
x2 + y2 ≤ 3 and z =

√
4− 3 = 1.
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Review Problems, XXXIV

(Sp15-#11) Consider F(x , y , z) = 〈cos z + y2ez , xe−z , z2〉. Let M
be the part of the hemisphere z =

√
4− x2 − y2 that lies inside

the cylinder x2 + y2 = 3, oriented upward. Compute the flux
integral

˜
M F · n dS of F through M. Note that M is not closed.

The integral equals

˚
D

(divF) dV −
¨

S
F · n dσ, where D is

the solid with x2 + y2 ≤ 3 and 1 ≤ z ≤
√

4− x2 − y2, and S
is the disc x2 + y2 ≤ 3, z = 1 oriented downward.

We can set up the triple integral in cylindrical coordinates.
The region is 0 ≤ θ ≤ 2π, 0 ≤ r ≤

√
3, 1 ≤ z ≤

√
4− r2 with

function (divF) = 2z and differential r dz dr dθ.

So the triple integral is

˚
D

(divF) dV =

ˆ 2π

0

ˆ √3
0

ˆ √4−r2
1

2z · r dr dθ =

ˆ 2π

0

ˆ √3
0

(3r − r3) dr dθ = 9π/2.



Review Problems, XXXIV

(Sp15-#11) Consider F(x , y , z) = 〈cos z + y2ez , xe−z , z2〉. Let M
be the part of the hemisphere z =

√
4− x2 − y2 that lies inside

the cylinder x2 + y2 = 3, oriented upward. Compute the flux
integral

˜
M F · n dS of F through M. Note that M is not closed.

For the surface integral, we parametrize the disc as
r(r , θ) = 〈r cos θ, r sin θ, 1〉 for 0 ≤ θ ≤ 2π, 0 ≤ r ≤

√
3.

Then n = (∂r/∂r)× (∂r/∂θ) =
〈cos θ, sin θ, 0〉 × 〈−r sin θ, r cos θ, 0〉 = 〈0, 0, r〉.
This has the wrong orientation (it needs to be downward) so
we need to multiply by −1.

Then F · (−n) = −r , so the surface integral isˆ 2π

0

ˆ √3
0
−r dr dθ =

ˆ 2π

0
(−3/2) dθ = −3π.

Thus, the desired surface flux is (9π/2)− (−3π) = 15π/2 .



Final Remarks

I will have office hours after this review until 3:30pm, and also on
Wednesday from 1pm-3pm, in case you have any last-minute
questions.

This is one of my favorite calculus-level courses1 to teach, and I
hope you enjoyed the course this semester. If you did, please do
make sure to fill out the TRACE evaluations.

Happy studying, good luck on the final and on your other exams,
have a great summer, and, of course, stay safe!

1In summer-2 I am teaching Math 3081 (Probability and Statistics) and in
the fall I am teaching Math 2331 (Linear Algebra), in case you have more math
courses to take!


