
Math 2321 (Multivariable Calculus)

Lecture #37 of 37 ∼ April 21st, 2021

Final Exam Review #1

Today’s review will cover more examples of Stokes’s theorem and
the divergence theorem.



Final Exam Topics

The topics for the final exam are as follows:

Vectors, dot + cross products

Lines and planes in 3-space

Curves and motion in 3-space

Partial derivatives

Directional derivatives and
gradients of functions

Tangent lines and planes

The multivariable chain rule

Linearization

Minima/maxima/saddle pts

Optimization on a region

Lagrange multipliers

Double integrals in
rectangular and polar

Changing order of integration

Triple integrals in rectangular,
cylindrical, and spherical

Areas, volumes, mass, center
of mass

Line and surface integrals

Work, circulation, and flux

Conservative fields, potential
functions, fundamental
theorem of line integrals

Divergence and curl

Green’s theorem

Stokes’s theorem

The divergence theorem



Exam Information

The exam format is similar to the midterms.

You will write your responses (either on a printout of the
exam or on blank paper) and then scan/photograph your
responses and upload them into Canvas.

The exam is approximately twice the length of a midterm, and
all problems are free-response.

Unless you have made prior arrangements, the exam is from
10:30am–12:30pm on Thursday, April 29th.

The official exam time limit is 120 minutes, plus 20 minutes
of turnaround time (not to be used for working).

Late submissions will be heavily penalized. DO NOT SUBMIT
THE EXAM LATE.

Collaboration of any kind is not allowed.



Review Problems, I

(Rev-#1) Find the flux of F =
〈
xy2z2, x2z2, −xy2

〉
outward

through the surface S made up of the portions of the six planes
x = 0, x = 1, y = 0, y = 1, z = 0, z = 1, with 0 ≤ x , y , z ≤ 1.

We can use the divergence theorem here, because S is a
closed surface enclosing the solid region with 0 ≤ x ≤ 1,
0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

The theorem says Flux =

¨
S
F · n dσ =

˚
D
div(F) dV .

We have div(F) = Px + Qy + Rz = y2z2.

So, by the divergence theorem, the flux is˚
D
div(F) dV =

ˆ 1

0

ˆ 1

0

ˆ 1

0
y2z2 dz dy dx = 1/9 .
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Review Problems, II

(Rev-#2) Find the flux of F =
〈
x3z , y3z , 0

〉
outward through the

boundary of the solid region with x2 + y2 ≤ 4 and 1 ≤ z ≤ 3.

We can use the divergence theorem here, because S is a
closed surface enclosing a solid region.

We can describe the region most easily in cylindrical
coordinates: it has 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 1 ≤ z ≤ 3.

We also have div(F) = 3x2z + 3y2z = 3r2z in cylindrical.

Thus by the divergence theorem, the flux is˚
D
div(F) dV =

ˆ 2π

0

ˆ 2

0

ˆ 3

1
3r2z · r dz dr dθ = 96π .
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Review Problems, III

(Rev-#3) Find the flux of F =
〈
xy2, yz2, x2z

〉
through the surface

of the unit sphere with outward orientation.

We can use the divergence theorem here, because S is a
closed surface enclosing a solid region.

We can describe the region most easily in spherical
coordinates: it has 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, 0 ≤ ρ ≤ 1

We also have div(F) = y2 + z2 + x2 = ρ2 in spherical.

Thus by the divergence theorem, the flux is˚
D
div(F) dV =

ˆ 2π

0

ˆ π

0

ˆ 1

0
ρ2 · ρ2 sinϕ dρ dϕ dθ = 4π/5 .



Review Problems, III

(Rev-#3) Find the flux of F =
〈
xy2, yz2, x2z

〉
through the surface

of the unit sphere with outward orientation.

We can use the divergence theorem here, because S is a
closed surface enclosing a solid region.

We can describe the region most easily in spherical
coordinates: it has 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, 0 ≤ ρ ≤ 1

We also have div(F) = y2 + z2 + x2 = ρ2 in spherical.

Thus by the divergence theorem, the flux is˚
D
div(F) dV =

ˆ 2π

0

ˆ π

0

ˆ 1

0
ρ2 · ρ2 sinϕ dρ dϕ dθ = 4π/5 .



Review Problems, IV

(Rev-#4) Find the flux of the curl
˜

S(∇× F) · n dσ, where
F(x , y , z) = 〈−2y cos(z), 2x , xey 〉 and S is the upper half of the
sphere x2 + y2 + z2 = 9 with outward orientation.

We can use Stokes’s theorem¨
S

(∇× F) · n dσ =

˛
C
P dx + Q dy + R dz here, because S

is a surface with boundary C .

We can parametrize the hemisphere’s boundary by
r(t) = 〈3 cos t, 3 sin t, 0〉 for 0 ≤ t ≤ 2π. This has the correct
orientation by the right-hand rule.

Then dx = −3 sin t dt, dy = 3 cos t dt, dz = 0 and
P = 6 sin t, Q = 6 cos t, R = 3 cos t · e3 sin t .

Thus by Stokes, the integral is

ˆ 2π

0
(−6 sin t) · (−3 sin t) dt +

(6 cos t) · 3 cos t dt + 3 cos t · e3 sin t · 0 dt =

ˆ 2π

0
18 dt = 36π .
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Review Problems, V

(Rev-#5) Compute the outward flux
˜

S F · n dσ where S is the
surface of the “ice cream cone” (the portion of the cone
z =

√
x2 + y2 that lies inside the sphere x2 + y2 + z2 = 1 along

with that portion of the sphere that lies above the cone), and
F(x , y , z) =

〈
x + 2y2, 5y − 3xz , y2 + 6z

〉

We can use the divergence theorem here, because S is a
closed surface enclosing a solid region.

The solid is easiest to describe in spherical: it is 0 ≤ θ ≤ 2π,
0 ≤ ϕ ≤ π/4, 0 ≤ ρ ≤ 1 in spherical.

We also have div(F) = 12.

Thus by the divergence theorem, the flux is

˚
D
div(F) dV =

ˆ 2π

0

ˆ π/4

0

ˆ 1

0
12 · ρ2 sinϕ dρ dϕ dθ = 4π(2−

√
2) .
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Review Problems, VI

(Rev-#6) Evaluate the line integral
´
C F · dr where

F(x , y , z) =
〈
x − y2, y − z , z2 + y

〉
and C is the rectangle with

vertices (0, 0, 4), (2, 0, 0), (2, 1, 0), and (0, 1, 3) lying in the plane
x + 2y + z = 4, oriented counterclockwise from above.

Use Stokes’s theorem:
¸
C F · dr =

˜
S(∇× F) · n dσ where S

is the portion of the plane inside the triangle.

We can parametrize S as r(s, t) = 〈s, t, 4− s − 2t〉 for
0 ≤ s ≤ 2, 0 ≤ t ≤ 1. Then
∇× F = 〈Ry − Qz ,Pz − Rx ,Qx − Py 〉 =
〈1− (−1), 0− 0, 0− (−2y)〉 = 〈2, 0, 2y〉, and so
n = (dr/ds)× (dr/dt) = 〈1, 0,−1〉 × 〈0, 1,−2〉 = 〈1, 2, 1〉
(correct orientation since the z-coordinate is positive).

Then (∇× F) · n = 2 + 2y = 2 + 2t so the surface integral isˆ 2

0

ˆ 1

0
(2 + 2t) dt ds = 6 .
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Review Problems, VII

(Rev-#7) Find the circulation of the vector field F =
〈
2xy , x2, y

〉
around the counterclockwise boundary of the portion of the surface
z = x2y that lies above the plane region with 0 ≤ x ≤ 1 and
0 ≤ y ≤ x .

Use Stokes’s theorem:
¸
C F · dr =

˜
S(∇× F) · n dσ where S

is the given portion of the surface.

We can parametrize S as r(s, t) =
〈
s, t, s2t

〉
for 0 ≤ s ≤ 1,

0 ≤ t ≤ s, and then
∇× F = 〈1− 0, 0− 0, 2x − 2x〉 = 〈1, 0, 0〉 while n =
(dr/ds)× (dr/dt) = 〈1, 0, 2st〉 ×

〈
0, 1, s2

〉
=
〈
−2st,−s2, 1

〉
(correct orientation since z-coordinate is positive).

Then (∇× F) · n = −2st, and so the surface integral isˆ 1

0

ˆ s

0
−2st dt ds = −1/4 .
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Review Problems, VIII

(Rev-#8) Find the flux of F =
〈
3x2y , xy2, 8xy

〉
outward through

the surface S made up of the portions of the five planes x = 0,
x = 1, y = 0, y = 1, z = 1, with 0 ≤ x , y , z ≤ 1.

We can use the divergence theorem here. However, note that
the surface is not closed, so we must close it and then
subtract the flux through the extra plane.

We close it by including the plane z = 0 with 0 ≤ x , y ≤ 1.

Then the solid is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and also
div(F) = 6xy + 2xy + 0 = 8xy .

Thus by the divergence theorem, the flux through the solid is˝
D div(F) dV =

´ 1
0

´ 1
0

´ 1
0 8xy dz dy dx = 2.



Review Problems, VIII

(Rev-#8) Find the flux of F =
〈
3x2y , xy2, 8xy

〉
outward through

the surface S made up of the portions of the five planes x = 0,
x = 1, y = 0, y = 1, z = 1, with 0 ≤ x , y , z ≤ 1.

We can use the divergence theorem here. However, note that
the surface is not closed, so we must close it and then
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Review Problems, IX

(Rev-#8) Find the flux of F =
〈
3x2y , xy2, 8xy

〉
outward through

the surface S made up of the portions of the five planes x = 0,
x = 1, y = 0, y = 1, z = 1, with 0 ≤ x , y , z ≤ 1.

For the piece being subtracted, which is the portion of the
plane z = 0 where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, we have a
parametrization r(s, t) = 〈s, t, 0〉 for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

Then n = (dr/ds)× (dr/dt) = 〈1, 0, 0〉 × 〈0, 1, 0〉 = 〈0, 0, 1〉,
but this has the wrong orientation since it must point
downward (that is the outward direction relative to the cube).

Then F · (−n) = −8st, and so the surface integral is´ 1
0

´ 1
0 −8st dt ds = −2.

Since the flux across all six planes was 2, that means the flux
across the remaining five planes is 2− (−2) = 4 .



Review Problems, X

(Rev-#9) Find the flux of F =
〈
xy2 + ez , x2y + e2z ,

√
x2 + y2

〉
through the portion of the surface z = 1− x2 − y2 that lies above
the xy -plane.

We can use the divergence theorem here. However, note that
the surface is not closed, so we must close it and then
subtract the flux through the extra piece.

We close the surface by including the bottom disc with
x2 + y2 ≤ 1 and z = 0.

The solid is 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1− r2 in
cylindrical and also div(F) = y2 + x2 = r2.

Thus by the divergence theorem, the flux through the solid is˝
D div(F) dV =

´ 2π
0

´ 1
0

´ 1−r2
0 r2 r dz dr dθ = π/6.



Review Problems, X
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〈
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Review Problems, XI

(Rev-#9) Find the flux of F =
〈
xy2 + ez , x2y + e2z ,

√
x2 + y2

〉
through the portion of the surface z = 1− x2 − y2 that lies above
the xy -plane.

For the piece being subtracted, we have a parametrization
r(r , θ) = 〈r cos θ, r sin θ, 0〉 for 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1.

Then n = (dr/dr)× (dr/dθ) =
〈cos θ, sin θ, 0〉 × 〈−r sin θ, r cos θ, 0〉 = 〈0, 0, r〉, but this has
the wrong orientation since it must point downward.

Then F · (−n) = −r
√
x2 + y2 = r2, and so the surface

integral is
´ 2π
0

´ 1
0 −r

2 dr dθ = −2π/3.

Thus, the flux across just the top portion is the difference

π/6− (−2π/3) = 5π/6 .



Review Problems, XII

(Rev-#10) Evaluate the flux of
F =

〈
x3 + 2xz2, x2y + 2yz2, 4y2z

〉
outward through the upper

half of the sphere x2 + y2 + z2 = 5.

We can use the divergence theorem here. However, note that
the surface is not closed, so we must close it and then
subtract the flux through the extra piece.

We close the surface by including the bottom disc with
x2 + y2 ≤ 5 and z = 0.

The solid is 0 ≤ ϕ ≤ π/2, 0 ≤ θ ≤ 2π, 0 ≤ ρ ≤
√

5 in
spherical and also
div(F) = (3x2+2z2)+(x2+2z2)+4y2 = 4(x2+y2+z2) = 4ρ2.

Thus by the divergence theorem, the flux through the solid is˝
D div(F) dV =

´ 2π
0

´ π/2
0

´ √5
0 4ρ2 · ρ2 sinϕ dρ dϕ dθ =

40π
√

5.
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Review Problems, XIII

(Rev-#10) Evaluate the flux of
F =

〈
x3 + 2xz2, x2y + 2yz2, 4y2z

〉
outward through the upper

half of the sphere x2 + y2 + z2 = 5.

For the piece being subtracted, we have a parametrization
r(r , θ) = 〈r cos θ, r sin θ, 0〉 for 0 ≤ θ ≤ 2π and 0 ≤ r ≤

√
5.

Then n = (dr/dr)× (dr/dθ) =
〈cos θ, sin θ, 0〉 × 〈−r sin θ, r cos θ, 0〉 = 〈0, 0, r〉, but this has
the wrong orientation since it must point downward.

Then F · (−n) = 0, so the flux through the bottom is simply
zero (we don’t even have to set up the integral).

Hence the flux through the top piece is simply 40π
√

5 .



Final Remarks

I will have office hours on Thursday this week at the usual times,
and also on Monday and Wednesday next week, times TBA.

The online format for the course isn’t ideal, but I hope you found
it (at least) tolerable, if not entirely passable, adequate,
acceptable, okay, decent, suitable, or even satisfactory.

This is one of my favorite calculus-level courses1 to teach, and I
hope you enjoyed the course this semester. If you did, please do
make sure to fill out the TRACE evaluations.

Happy studying, good luck on your other exams, and I will
(hopefully) see you at the review session!

1In summer-2 I am teaching Math 3081 (Probability and Statistics) and in
the fall I am teaching Math 2331 (Linear Algebra), in case you have more math
courses to take!
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Summary

We did some review problems for the final exam.

Next lecture: There isn’t one, the course is over :-(

Don’t forget about the final exam review session, where I will do a
bunch of problems from the old finals. Please vote in the Piazza
poll to select the time.


