
Math 2321 (Multivariable Calculus)

Lecture #36 of 37 ∼ April 19, 2021

Applications of Multivariable Calculus, Part 2

The Heat and Wave Equations

Modeling With Partial Differential Equations

Maxwell’s Equations and Electromagnetism

This material represents §4.7.2-4.7.4 from the course notes. (This
material is for fun only!)



Logistical Things

On Wednesday I will do some problems from the “extra”
review sheet on Stokes’s theorem and the divergence theorem.

I have applied all of the remaining WeBWorK extensions to
set 12 for everyone.

The final exam is 10:30am-12:30pm on Thursday, April 29th,
unless you have already made alternate arrangements due to
an exam conflict.

The best way to study for our final is to practice with the old
finals. I will run a 2-hour review session on Monday, Tuesday,
or Wednesday next week, date + time decided by Piazza vote,
where I will do a bunch of old final exam problems.

Your course grade is the maximum of
16% WeBWorK + 3×18% each midterm + 30% final, and
20% WeBWorK + 2×20% top two midterms + 40% final.



The Heat Equation, I

One place that many of the ideas in this course show up is in
modeling physical phenomena. One famous example is the
heat equation ft = γ∇ · (∇f ), where f (x , y , z , t) gives the
temperature of an object at a point (x , y , z) at time t and γ is a
rate constant.

In standard notation, the heat equation reads as
ft = γ(fxx + fyy + fzz).

For shorthand, even though it is technically bad notation, we
often write the operator ∇ · ∇ as ∇2 = 〈 ∂2

∂x2 ,
∂2

∂y2 ,
∂2

∂z2 〉. This
operator is called the Laplacian and is often also written as ∆.

The heat equation is essentially a rephrasing of the second law
of thermodynamics and Newton’s law of cooling (heat flows
from hot things to cold ones at a rate proportional to the
difference in temperatures).



The Heat Equation, II

In fact, we can actually derive the heat equation ft = γ∇2f using
the divergence theorem, as follows:

Let H(t) be the amount of heat contained in a region D.

Then H(t) =

˚
D
αf (x , y , z , t) dV since temperature is a

measure of heat density.

Taking the derivative with respect to t of both sides yields

Ht(t) =

˚
D
αft(x , y , z , t) dV (this is essentially a

combination of the mixed-partials theorem and Fubini’s
theorem to move the t-derivative inside the integral).



The Heat Equation, III

The heat flow into the solid D is Ht(t) =

˚
D
αft(x , y , z , t) dV .

The heat flow Ht(t) is also given by computing the flux of the
heat flowing through the boundary of the surface. The vector
field modeling the heat flow is ∇f , so the flux of this field is

the surface integral

¨
S
β(∇f ) · n dσ.

By the divergence theorem, the surface integral equals˚
D
β∇ · (∇f ) dV =

˚
D
β∇2f dV .

Since we have an equality

˚
D
αft dV =

˚
D
β∇2f dV on

every solid D, that means the underlying functions αft and
β∇2f are equal everywhere.

Moving the constant factors around then yields ft = γ∇2f :
this is the heat equation.



The Heat Equation, IV

The heat equation ft = γ∇2f also shows up in many other places.

In probability theory, the heat equation shows up as a very
natural continuous model for random walks. In physics, this is
closely connected with the study of Brownian motion.

In financial mathematics, the Black-Scholes equation (which
is used for computing the proper price of options) is a minor
variation of the heat equation: if V is the price of an option
as a function of the asset S and time t, then it says
Vt + 1

2σ
2S2VSS + rSVS − rV = 0. Up to the coefficients and

the first-order and constant terms, it is essentially Vt = γVSS ,
which is a one-dimensional heat equation.

In quantum mechanics, Schrödinger’s equation reads as
H|ψ(t)〉 = ih ∂

∂t |ψ(t)〉. For a single particle, H is (essentially)
the Laplacian operator ∇2, so this is (very roughly!) a heat
equation with an imaginary constant factor.



The Wave Equation, I

Another famous partial differential equation is the wave equation:
ftt = γ∇2f , where f (x , y , z , t) measures the intensity of a wave at
a point (x , y , z) in space at time t.

In standard notation, the wave equation reads as
ftt = γ(fxx + fyy + fzz).



The Wave Equation, II

Pleasantly enough, the one-dimensional wave equation ftt = c2fxx
can actually be solved more or less explicitly.

If we write a = x − ct, b = x + ct, then by the chain rule, the
wave equation is equivalent to fab = 0, which has the simple
solution f (a, b) = F (a) + G (b) for arbitrary functions F and
G (simply antidifferentiate twice).

This yields a general solution f (x , t) = F (x − ct) +G (x + ct).

This is the sum of a “left-moving function” F (x − ct) and a
“right-moving function” G (x + ct) as t increases.

Imagine plucking a string on an instrument and you will have
exactly the right idea!



The Wave Equation, III

Like the heat equation, the wave equation can also be derived from
basic physical principles using the divergence theorem.

Specifically, suppose D is any region. Then the acceleration
within D is the second t-derivative of

˝
D f dV , which is˝

D ftt dV .

The vector field F modeling the force imparted by the wave is
∇f , and so the total force acting on D through its boundary
S is equal to the surface integral

˜
S(∇f ) · n dσ, which equals˝

D ∇
2f dV by the divergence theorem.

Applying Newton’s second law (F = ma) and equating the
two triple integrals on every D then gives the wave equation:
ftt = γ∇2f .



Modeling, I

In most cases, the differential equation (or equations) modeling a
physical phenomenon are difficult if not impossible to solve exactly.

There are many methods for finding approximate solutions.

One approach is to employ a “step method” and linearization:
we take a linearization of the system and then move a small
step forward in time (the idea being that for a small step, the
linearization is a good approximation of the original).

We then iterate this procedure with the new system that has
been moved forward: we linearize and then move a small step
forward in time, repeatedly.

Techniques like this one can be used to analyze models for
weather and climate, urban planning, epidemiology (e.g.,
during global pandemics), ecology, experimental biology,
chemistry, and physics, and just about everywhere else....



Modeling, II

I’ll also mention a related idea involving numerical methods.

In many applications, one needs to search for a minimum or
maximum value of some function.

For example, if one wants to model a chemical reaction
computationally (which is now possible to do with modern
supercomputers), one needs to compute minimum-energy
configurations of molecules.

To perform such simulations, the computer must use step
methods to iterate each interaction of particles in small time
intervals, and search for the minimum-energy state.

To find such a state, one may use a “gradient-step method”:
compute the current energy, and then step in the opposite
direction of the gradient of this energy function.



Modeling, III

As we have discussed, the gradient points in the direction of
maximum increase of a function, so at each stage, the search will
move in the direction that lowers total energy.

Eventually, a gradient-step algorithm will reach a state in
which the gradient is zero, which is a critical point of the
energy function.

To determine whether the energy is actually minimized then
requires classifying the resulting critical point as a local
minimum, local maximum, or saddle point.

Of course, in actual practice, the search space is much larger
than the 2-dimensional examples we treated in this class
(typically it has hundreds or thousands of variables).

But the general principle, that one may classify the type of
critical point by using a “second derivatives test”, turns out to
be very similar.



Modeling, IV

In many applications, we have a model that we want to fit to a
given data set.

In statistics1 there are various methods for making “parameter
estimates” of this type: indeed, a major component of
statistics is about developing methods for making parameter
estimates from data seta.

A computationally convenient technique, frequently used in
practice, is to employ a least-squares regression: we minimize
the sum of the squared errors between the predicted and
observed values.

The reason to use the sum of squares, rather than something
else like the sum of the absolute errors, is because we can
minimize the resulting function using calculus.

1To learn more, take Math 3081. (I am teaching it in summer 2!)



Modeling, V

Perhaps the simplest example is to fit a linear function y = ax + b
to a data set {(x1, y1), (x2, y2), . . . , (xn, yn)}.

The function to minimize for the linear model above is
E (a, b) = (ax1 +b−y1)2 +(ax2 +b−y2)2 +· · ·+(axn+b−yn)2.

To minimize this function we set the two partial derivatives
∂E/∂a and ∂E/∂b equal to zero.

We have ∂E/∂a = 2x1(ax1 + b− y1) + · · ·+ 2xn(axn + b− yn)
and ∂E/∂b = 2(ax1 + b− y1) + · · ·+ 2(axn + b− yn), so that
a
∑

x2
i + b

∑
xi =

∑
xiyi and a

∑
xi + nb =

∑
yi .

This is a linear system for a and b, with solution
a = n

∑
xiyi−

∑
xi
∑

yi
n
∑

x2
i −(

∑
xi )2 and b = 1

n (
∑

yi − a
∑

xi ).

These two values a and b together give the equation for the
famous least-squares regression line to a data set.



Modeling, VI

Here, for example, is the plot of a data set
{(9, 24), (15, 45), (21, 49), (25, 55), (30, 60)} along with its
least-squares regression line y = 1.599x + 14.615 :



Modeling, VII

However, the method of least squares is quite robust, and we can
use it for all sorts of other models too.

For example, we can use more complicated functions than
mere lines – e.g., we could try to fit a quadratic function
y = ax2 + bx + c to a data set.

The procedure is essentially the same as before: we write
down the sum of squared errors and then minimize it using
calculus, by setting all of the partial derivatives equal to zero.

Here, the function is
E (a, b, c) = (ax2

1 +bx1 +c−y1)2 + · · ·+ (ax2
n +bxn +c−yn)2.

We then calculate ∂E/∂a, ∂E/∂b, and ∂E/∂c and set them
equal to zero. The resulting system will be linear in a, b, c and
we can then solve it to compute the predicted coefficients
a, b, c .



Modeling, VIII

Here, for example, is the plot of a data set
{(−2, 19), (−1, 7), (0, 4), (1, 2), (2, 7)} along with the parabola
y = −2.5x2 − 2.9x + 2.8 of best fit:



Maxwell’s Equations and Electromagnetism, I

We now briefly discuss Maxwell’s equations of electromagnetism:

Here, E is the electric field, B is the magnetic field, ρ is
electric charge density, and ε0 and µ0 are constants. (We
assume no current J here.)

Law Integral Form Differential Form

Gauss (E)

‹
S
E · n dσ =

1

ε0

˚
D
ρ dV ∇ · E =

ρ

ε0

Gauss (M)

‹
S
B · n dσ = 0 ∇ · B = 0

Maxwell-Faraday

˛
C
E · T ds = − d

dt

[¨
Σ
B · n dσ

]
∇× E = −

∂B

∂t

Ampère

˛
C
B · T ds = µ0ε0

d

dt

[¨
Σ
E · n dσ

]
∇× B = µ0ε0

∂E

∂t



Maxwell’s Equations and Electromagnetism, II

In the two Gauss laws, S is a closed surface enclosing the solid
region D, so if we apply the divergence theorem, we may convert
the surface integral into a triple integral.

Law Integral Form Differential Form

Gauss (E)

‹
S
E · n dσ =

1

ε0

˚
D
ρ dV ∇ · E =

ρ

ε0

Gauss (M)

‹
S
B · n dσ = 0 ∇ · B = 0

For the electric field law, by the divergence theorem we have‚
S E · n dσ =

˝
D(∇ · E) dV , so the integral form is

equivalent to saying
˝

D(∇ · E) dV = 1
ε0

˝
D ρ dV .

This equality holds on every solid region D, so the integrands
∇ · E and ρ/ε0 are equal: this is the differential form.

A similar argument works for the magnetic field law.



Maxwell’s Equations and Electromagnetism, III

In the other two laws, Σ is a surface with counterclockwise
boundary curve C , so we can apply Stokes’s theorem.

Law Integral Form Differential Form

Maxwell-Faraday

˛
C
E · T ds = − d

dt

[¨
Σ
B · n dσ

]
∇× E = −

∂B

∂t

Ampère

˛
C
B · T ds = µ0ε0

d

dt

[¨
Σ
E · n dσ

]
∇× B = µ0ε0

∂E

∂t

For the Maxwell-Faraday law, by Stokes’ theorem the integral¸
C E · T ds equals

˜
Σ(∇× E) · n dσ.

Thus, the integral form is equivalent to˜
Σ(∇× E) · n dσ = − d

dt

˜
Σ B · n dσ = −

˜
Σ
∂B
∂t · n dσ.

Since this holds on every surface, the two fields ∇× E and
−∂B
∂t must be equal. This is the differential form.

A similar argument yields the two versions of Ampère’s law.



Maxwell’s Equations and Electromagnetism, IV

We can actually derive Gauss’s law for both electricity and
magnetism as a consequence of more general properties of
inverse-square laws.

Coulomb’s law says that the electric force between two
particles is proportional to each of their charges and inversely
proportional to the square of the distance between them.
(Compare to Newton’s law of gravitation.)

More explicitly, for a single point charge q at the origin, the

electric field E equals E(r) =
q

4πε0

r

||r||2
.



Maxwell’s Equations and Electromagnetism, V

More explicitly, for a single point charge q at the origin, the

electric field E equals E(r) =
q

4πε0

r

||r||2
.

We can then compute the surface integral through the sphere
of radius a centered at the origin directly: the normal vector
n = r, and so the surface integral in spherical coordinates isˆ 2π

0

ˆ π

0

q

4πε0

r

a2
· r dϕdθ =

ˆ 2π

0

ˆ π

0

q

4πε0
dϕdθ =

q

ε0
,

because the dot product r · r = a2 on the sphere of radius a.

This agrees with the triple integral of Gauss’s law for the case

of a single particle (the triple integral is simply
q

ε0
).

This may seem like a very special case of Gauss’s law, but we can
actually use it to get the general version.



Maxwell’s Equations and Electromagnetism, VI

First, we extend Gauss’s law to arbitrary surfaces.

If we have an arbitrary closed surface T containing the origin,
choose a sphere S that encloses it and take D to be the
region between the two surfaces.

Then, by the divergence theorem, we see that˝
D(∇ ·E) dV =

‚
S E · n dσ−

‚
T E · n dσ (the minus sign is

because the normal vector for T points inward).

But for E(x, y, z) =
q

4πε0

〈x , y , z〉〉
(x2 + y2 + z2)3/2

, we can compute

explicitly that ∇ · E = 0 for (x , y , z) 6= (0, 0, 0).

Thus, since D does not contain the origin, the triple integral
is zero, and so we conclude that

‚
S E · n dσ =

‚
T E · n dσ.

This means that the Gauss law result holds for a single
particle and an arbitrary surface T .



Maxwell’s Equations and Electromagnetism, VII

Finally, we can use the fact that Gauss’s law holds for a single
particle and an arbitrary surface to obtain the result for arbitrary
charge distributions and arbitrary surfaces.

The idea is simply to sum over all of the various charges, and
observe that both the surface integral and the triple integral
are consistent with summing over charges.

Then we may take a limit of finite sums of charges to obtain
the result for arbitrary charge distributions.

This establishes Gauss’s law, as claimed.

For the Gauss law for magnetic fields
‚

S B · n dσ = 0, the result is
quite a bit simpler.

The point is that there is no magnetic equivalent of charge
(this would be a “magnetic monopole”, of which no
experimental observation has ever been made), and so the
resulting triple integral of “magnetic charge” is simply zero.



Maxwell’s Equations and Electromagnetism, VIII

Law Differential Form

Gauss (E) ∇ · E =
ρ

ε0
Gauss (M) ∇ · B = 0

Maxwell-Faraday ∇× E = −
∂B

∂t

Ampère ∇× B = µ0ε0
∂E

∂t

Both E and B have 3
components. The two
Gauss’s laws each impose
one condition on the
components, while the
other two laws each impose
three conditions. So we
seemingly have 8 conditions
on the 6 components.

But in fact, there are two redundant conditions, which are
accounted for by the div-curl identity, which says
div(curl(F)) = ∇ · (∇× F) = 0 for any vector field F.

So in fact, there are six conditions on the six components,
which is “exactly enough” to determine them.



Maxwell’s Equations and Electromagnetism, IX

There is a slick way to prove the div-curl identity
div(curl(F)) = ∇ · (∇× F) = 0 using the divergence theorem and
Stokes’s theorem.

First, if F is any vector field and S is any closed surface, we
claim that the flux of the curl

˜
S curl(F) · n dσ is zero.

To see this, draw any closed curve C on the surface that cuts
it into two pieces, and apply Stokes’s theorem: the flux across
one piece will be the line integral

¸
C F · dr, while the flux

across the other piece will be the negative −
¸
C F · dr, since

the boundaries of these two surfaces are both C , but with
opposite orientations.

So
˜

S curl(F) · n dσ = 0. Now apply the divergence theorem:
if D is the interior of S , then we get˝

D div(curl(F)) dV = 0. But this holds for every possible
region D, so the integrand itself must be zero everywhere.



Maxwell’s Equations and Electromagnetism, X

One more bit of fun with Maxwell’s equations:

Suppose that the charge density q is zero everywhere: then
Gauss’s law for the electric field says that div(E) = 0.

It is not hard to verify the “curl-curl” identity
curl(curl(F)) = grad(div(F))−∇2 · F just by writing it out.

Applying this to the vector field E yields
∇× (∇× E) = grad(div(E))−∇2 · E = −∇2 · E since
div(E) = 0.

Also, by the other Maxwell’s equations, ∇× E = −∂B
∂t

so

∇× (∇× E) = ∇×−∂B
∂t

= − ∂

∂t
[∇× B] =

∂

∂t

[
µ0ε0

∂E

∂t

]
= µ0ε0Ett .

So, this vector field identity tells us −∇2 · E = −µ0ε0Ett :
thus, E satisfies the wave equation! (Likewise for B.)



Maxwell’s Equations and Electromagnetism, XI

Since µ0ε0 = c2, the calculation from the last slide tells us that in
the absence of charge, E and B both satisfy the wave equation
∇2 · E = c2Ett with speed parameter c (the speed of light).

We see, therefore, that analysis of Maxwell’s equations leads
(more or less directly) to a derivation of the phenomenon of
electromagnetic waves.

Of course, electromagnetic waves are a quite well-understood
concept in the 21st century, so it is likely not very surprising
to you that electromagnetic waves exist.

But Maxwell published his original papers detailing these
equations, and deducing some of these consequences that
unify electricity and magnetism, in 1861.

All of this analysis was done by hand, and it provided the
theoretical foundation for the development of all of this
wonderful technology we now take for granted.



Summary

We discussed some basic facts about the heat and wave equations.

We discussed some results about modeling, approximation, and
least-squares estimation.

We discussed Maxwell’s equations and electromagnetism.

Next lecture: Final exam review, part 1.


